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Abstract

In this paper we present a survey on recent developments in the study of ambit
fields and point out some open problems. Ambit fields is a class of spatio-temporal
stochastic processes, which by its general structure constitutes a flexible model for
dynamical structures in time and/or in space. We will review their basic probabilis-
tic properties, main stochastic integration concepts and recent limit theory for high
frequency statistics of ambit fields.
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1 Introduction

The recent years have witnessed a strongly increasing interest in ambit stochastics. Ambit
fields1 is a class of spatio-temporal stochastic processes that has been originally introduced
by Barndorff-Nielsen and Schmiegel in a series of papers [13, 14, 15] in the context of
turbulence modelling, but which found manifold applications in mathematical finance and
biology among other sciences; see e.g. [5, 10].

Ambit processes describe the dynamics in a stochastically developing field, for instance
a turbulent wind field, along curves embedded in such a field. An illustration of the
various concepts involved is demonstrated by figure 1. This shows a curve running with
time through space. To each point on the curve is associated a random variable Xθ which
should be thought of as the value of an observation at that point. This value is assumed
to depend only on a region of previous space-time, indicated by the solid line in the figure,
called the ambit set associated to the point in question. Further, a key characteristic of
the modelling framework, which distinguishes ambit fields from other approaches is that
beyond the most basic kind of random input it also specifically incorporates additional,
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1From Latin ambitus: a sphere of influence
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Figure 1: A spatio-temporal ambit field. The value Xt(x) of the field at the point (x, t)
marked by the nearby dot is defined through an integral over the corresponding ambit
set At(x) marked by the shaded region. The blue circles of varying sizes indicate the
stochastic volatility/intermittency. By considering the field along the path (x(s), t(s)) in
space-time an ambit process is obtained.

often drastically changing, inputs referred to as volatility or intermittency. This feature
is illustrated by the blue circles whose sizes indicate volatility effects of varying degree.

In terms of mathematical formulae an ambit field is specified via

Xt(x) = µ+

∫
At(x)

g(t, s, x, ξ)σs(ξ)L(ds, dξ) +

∫
Dt(x)

q(t, s, x, ξ)as(ξ)dsdξ (1.1)

where t denotes time while x gives the position in space. Further, At(x) and Dt(x)
are ambit sets, g and q are deterministic weight functions, σ represents the volatility or
intermittency field, a is a drift field and L denotes a Lévy basis. We recall that a Lévy
basis L = {L(B) : B ∈ S}, where S is a δ-ring of an arbitrary non-empty set S such that
there exists an increasing sequence of sets (Sn) ⊂ S with ∪n∈NSn = S, is an independently
scattered random measure with Lévy-Khinchin representation

logE[exp(iuL(B))] = iuv1(B)− 1

2
u2v2(B) +

∫
R

(
exp(iuy)− 1− iuy1[−1,1](y)

)
v3(dy,B).

(1.2)

Here v1 is a signed measure on S, v2 is a measure on S and v3(·, ·) is a generalised Lévy
measure on R × S (see e.g. [46] for details). In the turbulence framework the stochastic
field (Xt(x))t≥0,x∈R3 describes the velocity of a turbulent flow at time t and position x,
while the ambit sets At(x), Dt(x) are typically bounded.

Triggered by the wide applicability of ambit fields there is an increasing need in un-
derstanding their mathematical properties. The main mathematical topics of interest are:



Ambit fields: survey and new challenges 3

stochastic analysis for ambit fields, modelling of volatility/intermittency, asymptotic the-
ory for ambit fields, numerical approximations of ambit fields, and asymptotic statistics.
The aim of this paper is to give an overview of recent studies and to point out the main
challenges in future. We will see that most of the mathematical problems already arise in
a null spatial setting, and therefore parts of the presented theory will deal with this case
only. However, possible extensions to spatial dimension will be discussed. At this stage
we would like to mention another review on ambit fields [6], which focuses on integration
theory, various examples of ambit fields and their applications in physics and finance.
Numerical schemes for ambit processes, which will not be demonstrated in this work, are
investigated in [22].

The paper is structured as follows. We introduce the main mathematical setting and
discuss some basic probabilistic properties of ambit fields in Section 2. Section 3 gives a
review on integration concepts with respect to ambit fields. Section 4 is devoted to limit
theorems for high frequency statistics of ambit fields and their statistical applications.

2 The model and basic probabilistic properties

Throughout this paper all stochastic processes are defined on a given probability space
(Ω,F ,P). We first consider a subclass of an ambit field defined via

Xt(x) = µ+

∫
A+(t,x)

g(t− s, x− ξ)σs(ξ)L(dsdξ) +

∫
D+(t,x)

q(t− s, x− ξ)as(ξ)dsdξ,

(2.1)

where A,D ⊂ R × Rd are fixed ambit sets. This specific framework allows for modelling
stationary random fields, namely when the field (σ, a) is stationary and independent of the
driving Lévy basis L, X turns out to be stationary too. Another potentially important
features of a random field, such as e.g. isotropy or skewness, can be easily modelled via
an appropriate choice of the deterministic kernels g and q, and the stochastic field (σ, a).

Specializing even further, we introduce a Lévy semi-stationary process given by

Yt = µ+

∫ t

−∞
g(t− s)σsL(ds) +

∫ t

−∞
q(t− s)asds, (2.2)

where now L is a two-sided one dimensional Lévy motion and A = D = (−∞, 0), which is
a purely temporal analogue of the ambit field at (2.1). It is indeed this special subclass of
ambit fields, which will be the focus of our interest, as many mathematical problems have
to be solved for Lévy semi-stationary processes first before transferring the principles to
more general random fields. In the following we will check the validity and discuss some
basic properties of ambit fields. Note that we sometimes use dLs instead of L(ds) in the
setting of (2.2). We also remark that the meaning of some notations may change from
section to section.
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2.1 Definition of the stochastic integral

The first natural question when introducing an ambit field is the definition of the first
integral appearing in the decomposition (1.1). Here we recall two classical approaches of
Rajput and Rosinski [46] and Walsh [50].

2.1.1 Rajput and Rosinski theory

The first simplified mathematical problem is the definition of stochastic integral in case
of a deterministic intermittency field σ. In this situation we may study a more general
integral ∫

A
fdL,

where L is a Lévy basis on a δ-ring S, f : (S, σ(S))→ (R,B(R)) a measurable real valued
function and A ∈ σ(S), which is the main object of a seminal paper [46]. We will briefly
recall the most important results of this work. By definition of a Lévy basis the law of
(L(A1), . . . , L(Ad)), Ai ∈ S, is infinitely divisible, the random variables L(A1), . . . , L(Ad)
are independent when the sets A1, . . . , Ad are disjoint, and

L (∪∞i=1Ai) =

∞∑
i=1

L(Ai) P− almost surely

for disjoint Ai’s with ∪∞i=1Ai ∈ S. Recalling the characteristic triplet (v1, v2, v3) from the
Lévy-Khinchin representation (1.2), the control measure λ of L is defined via

λ(A) := |v1|(A) + v2(A) +

∫
R

min(1, x2)v3(dx,A), A ∈ S,

where |v1| denotes the total variation measure associated with v1. In this subsection we
will use the truncation function

τ(z) :=

{
z : ‖z‖ ≤ 1

z/‖z‖ : ‖z‖ > 1

Now, for any simple function

f(x) =
d∑
i=1

ai1Ai(x), ai ∈ R, Ai ∈ S,

the stochastic integral is defined as∫
A
fdL :=

d∑
i=1

aiL(A ∩Ai), A ∈ σ(S).

The extension of this definition is as follows.
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Definition 2.1 A measurable function f : (S, σ(S))→ (R,B(R)) is called L-integrable if
there exists a sequence of simple functions (fn)n≥1 such that

(i) fn → f λ-almost surely.

(ii) For any A ∈ σ(S) the sequence (
∫
A fndL) converges in probability.

In this case the stochastic integral is defined by∫
A
fdL := P− lim

n→∞

∫
A
fndL.

Although this definition is quite intuitive, it does not specify the class of L-integrable
functions explicitly. The next theorem, which is one of the main results of [46], gives an
explicit condition on the L-integrability of a function f .

Theorem 2.2 ([46, Theorem 2.7]) Let f : (S, σ(S)) → (R,B(R)) be a measurable func-
tion. Then f is L-integrable if and only if the following conditions hold:∫

S
U(f(s), s)λ(ds) <∞,

∫
S
f2(s)v2(s)λ(ds) <∞,

∫
S
V0(f(s), s)λ(ds) <∞,

where

U(u, s) := uv1(s) +

∫
R

(τ(xu)− uτ(x))v3(dx, s),

V0(u, s) :=

∫
R

min(1, |xu|2)v3(dx, s).

Furthermore, the real valued random variable X =
∫
S fdL is infinitely divisible with Lévy-

Khinchin representation

logE[exp(iuX)] = iuv1(f)− 1

2
u2v2(f) +

∫
R

(
exp(iuy)− 1− iuy1[−1,1](y)

)
vf3 (dy),

where

v1(f) =

∫
S
U(f(s), s)λ(ds),

v2(f) =

∫
S
f2(s)v2(s)λ(ds),

vf3 (B) = v3 {(x, s) ∈ R× S : xf(s) ∈ B \ {0}} , B ∈ B(R).

Remark 2.3 The most basic example of a null spatial ambit field is the Lévy moving
average process given by

Xt =

∫ t

−∞
g(t− s)dLs, (2.3)
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where L is a two-sided Lévy motion with ELt = 0. In this situation the control measure λ
is just the Lebesgue measure and the sufficient conditions from Theorem 2.2 translate to∫ ∞

0
g2(s)ds <∞,

∫ ∞
0

(∫
R

min(|xg(s)|, |xg(s)|2)v3(dx)

)
ds <∞,

where v3 is the Lévy measure of L. 2

Theorem 2.2 gives a precise condition for existence of the stochastic integral. However,
it does not say anything about the existence of moments. To study this question let us
assume for the rest of this subsection that

E[|L(A)|q] <∞ ∀A ∈ S,

for some q > 0. Clearly, in general we can not expect the existence of moments higher
than q for the integral

∫
S fdL, but we may study the existence of pth moment with p ≤ q.

For this purpose we introduce the function Φp : R× S → R via

Φp(u, s) := U?(u, s) + u2v2(s) + Vp(u, s),

where

U?(u, s) := sup
c∈[−1,1]

|U(cu, s)|,

Vp(u, s) :=

∫
R

(
|ux|p1{|ux|>1} + |ux|21{|ux|≤1}

)
v3(dx, s),

and the function U is introduced in Theorem 2.2. Then

‖f‖Φp := inf

{
c > 0 :

∫
S

Φp(c
−1|f(s)|, s)λ(ds)

}
defines a norm and the vector space

LΦp :=

{
f :

∫
S

Φp(|f(s)|, s)λ(ds) <∞
}

equipped with ‖ · ‖Φp is the so called Musielak-Orlicz space (see [46] for details). The next
result gives a connection between the existence of pth norm of the stochastic integral and
the finiteness of ‖f‖Φp .

Theorem 2.4 ([46, Theorem 3.3]) Let p ∈ [0, q]. Then it holds that

E
[∣∣∣∣∫

S
fdL

∣∣∣∣p] <∞⇐⇒ ‖f‖Φp <∞.
Remark 2.5 Let X be a Lévy moving average process as defined at (2.3), where the
driving Lévy motion has characteristic triplet (0, 0, const.|x|−1−βdx), i.e. L is a symmetric
β-stable process (β ∈ (0, 2)) without drift. In this case the pth absolute moment of Xt

exists whenever g ∈ Lβ(R≥0) and p < β. Moreover it holds that

C1E
[∣∣∣∣∫ ∞

0
|g(x)|βdx

∣∣∣∣]1/β

≤ E[|Xt|p]1/p ≤ C2E
[∣∣∣∣∫ ∞

0
|g(x)|βdx

∣∣∣∣]1/β

for some positive constants C1, C2. 2
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2.1.2 Walsh approach

The integration concept proposed by Walsh [50] is, in some sense, an extension of Itô’s
theory to spatio-temporal setting. As in the classical Itô calculus the martingale theory
and isometry play an essential role.

Here we review the main ideas of Walsh approach. In the following we will concen-
trate on integration with respect to a Lévy basis on bounded domains (the theory can be
extended to unbounded domains in a straightforward manner, see [50]). Let Bb(Rd) the
Borel σ-field generated by bounded Borel sets on Rd and L a Lévy basis on [0, T ]×S with
S ∈ Bb(Rd). For S ⊇ A ∈ Bb(Rd) we introduce the notation

Lt(A) := L((0, t]×A).

Unlike in the approach of Rajput and Rosinski, which does not require any moment as-
sumptions (which however deals only with deterministic integrands), the basic assumption
of Walsh concept is:

For any A ∈ Bb(Rd) it holds that E[Lt(A)] = 0 and Lt(A) ∈ L2(Ω,F ,P).

Now, we introduce a right continuous filtration (Ft)t≥0 via

Ft := ∩ε>0F0
t+ε with F 0

t = σ{Ls(A) : S ⊇ A ∈ Bb(Rd), 0 < s ≤ t} ∨ N ,

where N denotes the P-null sets of F . Since L is a Lévy basis, the stochastic field
(Lt(A))t≥0,S⊇A∈Bb(Rd) is an orthogonal martingale measure with respect to (Ft)t≥0 in the
sense of Walsh, i.e. (Lt(A))t≥0 is a square integrable martingale with respect to the filtra-
tion (Ft)t≥0 for any A ∈ Bb(Rd) and the random variables Lt(A), Lt(B) are independent
for disjoint sets A,B ∈ Bb(Rd).

In the next step we introduce the covariance measure Q via

Q([0, t]×A) := 〈L(A)〉t, A ∈ Bb(Rd),

and the associated L2-norm

‖ψ‖2Q := E

[∫
[0,T ]×S

ψ2(t, ξ)Q(dt, dξ)

]

for a random field ψ on [0, T ]×S. Now, we are following the Itô’s program: We call ψ an
elementary random field if it has the form

ψ(ω, s, ξ) = X(ω)1(a,b](s)1A(ξ),

where X is a bounded Fa-measurable random variable and A ∈ Bb(Rd). For such an
elementary random field the integral with respect to a Lévy basis is defined by (t ≤ T )∫ t

0

∫
B
ψ(s, ξ)L(ds, dξ) := X(Lt∧b(A ∩B)− Lt∧a(A ∩B)), B ∈ Bb(Rd), A,B ⊆ S.
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By linearity this definition can be extended to the linear span given by elementary random
fields. The σ-field P generated by elementary random fields is called predictable, and the
space PL = L2(Ω× [0, T ]× S,P, Q) equipped with ‖ · ‖Q is a Hilbert space. Furthermore,
the space of elementary functions is dense in PL. Thus, for any random field ψ ∈ PL, we
may find a sequence of elementary random fields ψn with ‖ψn − ψ‖Q → 0 and∫ t

0

∫
B
ψ(t, ξ)L(dt, dξ) := lim

n→∞

∫ t

0

∫
B
ψn(t, ξ)L(dt, dξ) in L2(Ω,F ,P).

Moreover, the Itô type isometry

E

[∣∣∣∣∫ T

0

∫
S
ψ(s, ξ)L(ds, dξ)

∣∣∣∣2
]

= ‖ψ‖2Q

is satisfied by construction.

Remark 2.6 The Walsh approach can be used to define ambit fields in (1.1) only when the
driving Lévy basis is square integrable, which excludes e.g. β-stable processes (β ∈ (0, 2)).
The recent work of [26] combines the ideas of Walsh [50] and Rajput and Rosinski [46] to
propose an integration concept for random integrands and general Lévy bases. It relies on
an earlier work [24] by Bichteler and Jacod. A general reference for comparison of various
integration concepts is [30]. 2

2.2 Is an ambit field a semimartingale?

Semimartingales is nowadays a well studied object in probability theory. From theoretical
perspective it is important to understand whether a given null spatial subclass of ambit
fields is a semimartingale or not, since in this case one may better study its fine structure
properties. Furthermore, limit theory for high frequency statistics, which will be the focus
of our discussion in Section 4, has been investigated in great generality in the framework of
semimartingales; we refer to [35] for a comprehensive study. Thus, new asymptotic results
are only needed for ambit fields, which do not belong to the class of semimartingales.

For simplicity of exposition we concentrate on the study of Volterra type processes

Xt =

∫ t

−∞
g(t, s)dLs, (2.4)

where L is a Lévy motion with L0 = 0, which is obviously a purely temporal subclass of
ambit fields. The semimartingale property can be studied with respect to the filtration
generated by the driving Lévy motion L or with respect to the natural filtration (which
is a harder task). For any t ≥ 0, we define

FLt := σ(Ls : s ≤ t), FXt := σ(Xs : s ≤ t).

In the following we will review the main studies of the semimartingale property.
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2.2.1 Semimartingale property with respect to (FLt )

Semimartingale property of various subclasses of Volterra type processes X have been
studied in the literature, see e.g. [18, 21, 38] among many others. However, in this
subsection we closely follow the recent results of [19, Section 4]. We note that the original
work [19] contains a study of more general processes, which are specialized in this paper
to models of the form (2.4).

Let L be a Lévy process with characteristic triplet (a, b2, ν). In the following we
consider stationary increments moving average model of the type

Xt =

∫
R

[g1(t− s)− g0(−s)]dLs, (2.5)

where g0, g1 are measurable functions satisfying g0(x) = g1(x) = 0 for x < 0. This
obviously constitutes a subclass of (2.4). Integrability conditions can be directly extracted
from Theorem 2.2. Notice that by construction the process X has stationary increments,
which explains the aforementioned notion. The main result of this subsection is [19,
Theorem 4.2].

Theorem 2.7 Assume that the process X is defined as in (2.5) and the following condi-
tions are satisfied: ∫ ∞

0
|g′1(s)|2ds <∞ (when b2 > 0),∫ ∞

0

∫
R

min(|xg′1(s)|, |xg′1(s)|2)ν(dx)ds <∞.

Then X is a semimartingale with respect to the filtration (FLt ).

Theorem 2.7 gives sufficient conditions for the semimartingale property of the process X.
In certain special cases these conditions are also necessary as the following result from [19,
Corollary 4.8] shows.

Theorem 2.8 Assume that the process X is defined as in (2.5), L has infinite variation
on compact sets and L1 is either square integrable or has a regular varying distribution
at ∞ with index β ∈ [−2,−1). Then X is a semimartingale with respect to the filtration
(FLt ) if and only if the following conditions are satisfied:∫ ∞

0
|g′1(s)|2ds <∞ (when b2 > 0),∫ ∞

0

∫
R

min(|xg′1(s)|, |xg′1(s)|2)ν(dx)ds <∞.

In this case it has the decomposition

Xt = X0 + g1(0)Lt +

∫ t

0

(∫
R
g′1(s− u)dLu

)
ds.
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When the driving process L is a symmetric β-stable Lévy motion with β ∈ (1, 2), i.e.
the characteristic triplet is given via (0, 0, const.|x|−1−βdx), the condition of Theorem 2.8
translates to ∫ ∞

0
|g′1(s)|βds <∞.

Remark 2.9 Another important subclass of stationary increments moving average mod-
els, which will be the object of investigation in Section 4, is a fractional Lévy motion. A
fractional Lévy motion is defined as

Xt =

∫ t

−∞
[(t− s)α+ − (−s)α+]dLs. (2.6)

When L is a Brownian motion, this is one of the representation of a fractional Brownian
motion with Hurst parameter H = α + 1/2 (with α ∈ (−1/2, 1/2)). Assume now that
α > 0. Then X is a semimartingale with respect to the filtration (FLt ) if and only if
b2 = 0, α ∈ (0, 1/2) and ∫

R
|x|1/(1−α)ν(dx) <∞.

We refer to [19, Proposition 4.6] for details. 2

Remark 2.10 Sufficient conditions for the semimartingale property for general Lévy
semi-stationary processes defined at (2.2) can be deduced from a seminal work [45] on
Volterra type equations. 2

Remark 2.11 In physical applications it may appear that an ambit field is observed along
a curve in time-space. Let us consider for simplicity an ambit field of the form

Xt(x) =

∫
At(x)

g(t, s, x, ξ)L(ds, dξ),

where L is a Lévy basis on R≥0 × Rd. Let θ = (θ1, θ2) : [0, T ] → R≥0 × Rd be a curve in
time-space. Then the observed process is given by

Yt = Xθ1(t)(θ2(t)).

The semimartingale property of the process Y is still an open problem. 2

2.2.2 Semimartingale property with respect to (FXt )

Showing the semimartingale property with respect to the natural filtration (FXt ) is by far
a more delicate issue. In this subsection we restrict our attention to Volterra processes of
the form ∫

R
[g1(t− s)− g0(−s)]dWs.

where W is a Brownian motion, since, to the best of our knowledge, little is known
for general driving Lévy processes. Here g0, g1 are measurable functions satisfying the
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integrability condition s 7→ g1(t − s) − g0(−s) ∈ L2(R) for any t ∈ R (this insures the
existence of the integral). In the case g0 = 0 the paper [37] provides necessary and sufficient
conditions for the semimartingale property with respect to the natural filtration (FXt ).
The work [16] extends the results to include the model defined above. The methodology
of proofs is based upon Fourier transforms and Hardy functions.

We need to introduce some notation. For a function h : R→ R, ĥ : R→ C denotes its
Fourier transform, i.e.

ĥ(t) :=

∫
R

exp(itx)h(x)dx.

For a function f : R→ S1, where S1 denotes the unit circle on a complex plane, satisfying
f(·) = f(−·) we define the function f̃ : R→ R via

f̃(t) := lim
a→∞

∫ a

−a

exp(its)− 1[−1,1](s)

is
f(s)ds.

The main result of this subsection is [16, Theorem 3.2].

Theorem 2.12 The Gaussian process X is a semimartingale with respect to the natural
filtration (FXt ) if and only if the following conditions are satisfied:

(i) The function g1 has the representation

g1(t) = b+ af̃(t) +

∫ t

0
f̂ ĥ(s)ds for Lebesgue almost all t ∈ R,

where a, b ∈ R, f : R → S1 is a measurable function with f(·) = f(−·), and
h ∈ L2(R) is 0 whenever a 6= 0.

(ii) Set ζ = ̂f(ĝ1 − g0). When a 6= 0 then

∫ r

0

 |ζ(s)|√∫∞
s ζ2(u)du

 ds <∞ ∀r > 0,

where 0/0 := 0.

The second part of [16, Theorem 3.2] gives the canonical decomposition of X in case,
where the above conditions (i) and (ii) are satisfied. If X0 = 0 one may choose a, b, h and
f such that the canonical decomposition Xt = Mt +At is given via

Mt = a

∫
R

(f̃(t− s)− f̃(−s))dWs, At =

∫ t

0

(∫
R
f̂ ĥ(s− u)dWu

)
ds.

In this decomposition the martingale part M is a Wiener process with scaling parameter
(2πa)2. Finally, let us remark that in the special case g1 = g0, as e.g. in the fractional
Brownian motion setting, the condition (ii) of Theorem 2.12 is trivially satisfied.
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2.3 Fine properties of Lévy semi-stationary processes

In Section 4 we will study the limit theory for power variation of Lévy semi-stationary
processes

[t/∆n]∑
i=1

|Yi∆n − Y(i−1)∆n
|p with ∆n → 0,

where the process Y is defined at (2.2). A first step towards understanding the first and
second order asymptotics for this class of statistics is to determine the fine scale behaviour
of Lévy semi-stationary processes. For simplicity of exposition we start our discussion
with Lévy moving average processes defined at (2.3), i.e.

Xt =

∫ t

−∞
g(t− s)dLs,

which constitute a subclass of Lévy semi-stationary processes with constant intermittency
and zero drift. We restrict ourselves to symmetric β-stable Lévy processes L with β ∈ (0, 2]
and zero drift (thus, the Brownian motion is included).

The most interesting class of weight functions g in physical applications is given via

g(x) = xαf(x) for x > 0, (2.7)

and g(x) = 0 for x ≤ 0, where f : R≥0 → R is a smooth function with f(0) 6= 0 decaying
fast enough at infinity to ensure the existence of the integral (see Remark 2.3). When
β ∈ (0, 2), i.e. L is a pure jump process, we further always assume that α > 0, since
α < 0 leads to explosive behaviour of X near jump times of L. Hence, for any β ∈ (0, 2],
the Lévy moving average process X is continuous since g(0) = 0 when β < 2. A formal
differentiation leads to the identity

dXt = g(0+)dLt +

(∫ t

−∞
g′(t− u)dLu

)
dt.

According to Theorem 2.8 this identity indeed makes sense when (a) β = 2, g(0+) < ∞
and g′ ∈ L2(R≥0), or (b) β ∈ (0, 2) and∫ ∞

0
|g′(x)|βdx <∞.

In this case the Lévy moving average process X is an Itô semimartingale and the law of
large numbers for its power variation is well understood (see e.g. the monograph [35]). In
Section 4 we will be specifically interested in situations where X is not a semimartingale.
It is particularly the case under the conditions

β = 2 and α ∈ (−1/2, 1/2) or

β ∈ (0, 2) and α ∈ (0, 1− 1/β),

since the above integrability condition for the function g′ is not satisfied near 0. Under
these conditions the derivative of the function g explodes at 0. For a small ∆ > 0, we
intuitively deduce the following approximation for the increments of X:
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Xt+∆ −Xt =

∫
R

[g(t+ ∆− s)− g(t− s)]dLs

≈
∫ t+∆

t+∆−ε
[g(t+ ∆− s)− g(t− s)]dLs

≈ f(0)

∫ t+∆

t+∆−ε
[(t+ ∆− s)α+ − (t− s)α+]dLs

≈ f(0)

∫
R

[(t+ ∆− s)α+ − (t− s)α+]dLs = X̃t+∆ − X̃t,

where

X̃t = f(0)

∫
R

[(t− s)α+ − (−s)α+]dLs, (2.8)

and ε > 0 is an arbitrary small real number with ε � ∆. The formal proof of this
first order approximation relies on the fact that the weight g(t+ ∆− s)− g(t− s) attains
asymptotically highest values when s ≈ t, since g′ explodes at 0. The stochastic process X̃
is called a fractional β-stable Lévy motion and its properties have been studied in several
papers, see e.g. [20, 39] among others (for β = 2 it is just an ordinary scaled fractional
Brownian motion with Hurst parameter H = α + 1/2). In particular, X̃ has stationary
increments, it is (α+ 1/β)-self similar with symmetric β-stable marginals.

The key fact to learn from this approximation is that, under above assumptions on
g, the fine structure of a Lévy moving average process X with symmetric β-stable driver
L is similar to the fine structure of a fractional β-stable Lévy motion X̃. Thus, under
certain conditions, one may transfer the asymptotic theory for power variation of X̃ to
the corresponding results for power variation of X. The limit theory for power variation of
X̃ is sometimes easier to handle than the original statistic due to stationarity of increments
of X̃ and their self similarity property, which allows to transform the original triangular
observation scheme into a usual one when studying distributional properties (for the latter,
ergodic limit theory might apply). Indeed, it is one method of proofs of laws of large
numbers presented in Theorem 4.8(ii) of Section 4.

Remark 2.13 As mentioned above the fractional Lévy motion defined at (2.8) is, up to a
scaling factor, a fractional Brownian motionBH with Hurst parameterH = α+1/2 ∈ (0, 1)
when β = 2. Due to self similarity property of BH it is sufficient to study the asymptotic
behaviour of the statistic

[t/∆n]∑
i=1

|BH
i −BH

i−1|p, p > 0,

to investigate the limit theory for power variation of BH . Below we review some classical
results of [25, 49]. First of all, we obtain the convergence

∆n

[t/∆n]∑
i=1

|BH
i −BH

i−1|p
u.c.p.
=⇒ mpt, mp := E[|N (0, 1)|p], (2.9)
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where Zn
u.c.p.
=⇒ Z stands for uniform convergence in probability on compact intervals, i.e.

supt∈[0,T ] |Znt − Zt|
P−→ 0. The associated weak limit theory depends on the correlation

kernel of the fractional Brownian noise and the Hermite rank of the function h(x) =
|x|p −mp. Recall that the correlation kernel of the fractional Brownian noise is given via

ρ(j) := corr(BH
1 −BH

0 , B
H
j+1 −BH

j ) =
1

2

(
|j + 1|2H − 2|j|2H + |j − 1|2H

)
.

The Hermite expansion of the function h is defined as

h(x) = |x|p −mp =
∞∑
l=2

alHl(x),

where (Hl)l≥0 are Hermite polynomials, i.e.

H0 = 1 and Hl = (−1)l exp(x2/2)
d

dxl
{− exp(x2/2)} for l ≥ 1.

The Hermite rank of h is the smallest index l with al 6= 0, which is 2 in our case. The
condition for the validity of a central limit theorem associated with (2.9) is then

∞∑
j=1

ρ2(j) <∞,

where the power 2 indicates the Hermite rank of h. This condition holds if and only
if H ∈ (0, 3/4). For H > 3/4 the limiting process is non-central. More precisely, the
following functional limit theorems hold:

0 < H < 3/4 : ∆−1/2
n

∆n

[t/∆n]∑
i=1

|BH
i −BH

i−1|p −mpt

 d−→ vpW
′
t ,

H = 3/4 : (∆n log ∆−1
n )−1/2

∆n

[t/∆n]∑
i=1

|BH
i −BH

i−1|p −mpt

 d−→ ṽpW
′
t ,

3/4 < H < 1 : ∆2H−2
n

∆n

[t/∆n]∑
i=1

|BH
i −BH

i−1|p −mpt

 d−→ Zt,

where the weak convergence takes place on D([0, T ]) equipped with the uniform topology,
W ′ denotes a Brownian motion and Z is a Rosenblatt process (see e.g. [49]). Finally, the
constants vp and ṽp are given by

vp :=
∞∑
l=2

l!a2
l

(
1 + 2

∞∑
j=1

ρl(j)
)
,

ṽp := 2 lim
n→∞

1

log n

n−1∑
j=1

n− k
n

ρ2(j) ·
∞∑
l=2

l!a2
l .

2
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Remark 2.14 When β ∈ (0, 2) and α ∈ (0, 1 − 1/β) we deduce via the (α + 1/β)-self
similarity property and the strong ergodicity of the fractional β-stable Lévy process X̃

∆1−p(α+1/β)
n

[t/∆n]∑
i=1

|X̃i∆n − X̃(i−1)∆n
|p u.c.p.

=⇒ cpt, cp := E[|X̃1 − X̃0|p]

whenever p < β. For p > β the constant cp is infinite and non-ergodic limits appear, see
Theorem 4.8 in Section 4. 2

Remark 2.15 Once we have proved the law of large numbers for power variation of the
basic process X̃ as in Remarks 2.13 and 2.14 (or for the Lévy moving average process X
defined at (2.3)), the main principles of the proof usually transfer to the integral process

It =

∫ t

0
σsdX̃t,

whenever the latter is well defined. As it was shown in e.g. [7, 29] the Bernstein’s blocking
technique can be applied to deduce the law of large numbers for power variation of the
process I. For instance, when X̃ = BH is a fractional Brownian motion with Hurst
parameter H, it holds that

∆1−pH
n

[t/∆n]∑
i=1

|Ii∆n − I(i−1)∆n
|p u.c.p.

=⇒ mp

∫ t

0
|σs|pds,

where σ is a stochastic process, which has finite q-variation with q < 1/(1−H) (see [29]).
Quite often the same asymptotic result holds also for a subclass of ambit processes given
by

Yt =

∫ t

−∞
g(t− s)σsdWs,

where W is a Brownian motion (cf. Section 4). The reason is again a similar fine structure
of the processes I and Y (see e.g. [27, Section 2.2.3] for a detailed exposition).

Transferring a central limit theorem for the power variation of the driver BH to the
integral process I (and also in case of the process Y ) is a more delicate issue. Apart from
further assumptions on the integrand σ a more technical and precise treatment of the
Bernstein’s blocking technique is required. We refer to a recent work [28] for a detailed
description of such a method, which relies on fractional calculus. 2

3 Integration with respect to ambit fields

In this section we will discuss the integration concepts with respect to ambit processes of
the type

Xt =

∫ t

0
g(t, s)σsdLs,
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where σ is a stochastic intermittency process and L is a Lévy motion. Our presentation is
mainly based upon the recent work [3], where Malliavin calculus is applied to define the
stochastic integral. The introduction of the integral

∫ t

0
ZsdXs, (3.1)

for a stochastic integrand Z, strongly depends on whether the driving process L is a
Brownian motion or a pure jump Lévy motion, since the main notions of Malliavin calculus
differ in those two cases. An alternative way of defining the stochastic integral at (3.1)
without imposing L2-structure of the integrand Z is proposed in [4]. The authors apply
white noise analysis to construct the integral in the situation, where X is driven by a
Brownian motion.

3.1 Integration with respect to ambit processes driven by Brownian
motion

Before we present the definition of the integral at (3.1) for L = W , we start by introducing
the main notions of Malliavin calculus on Gaussian spaces. The reader is referred to the
monograph [40] for any unexplained definition or result.

Let H be a real separable Hilbert space. We denote by B = {B(h) : h ∈ H} an
isonormal Gaussian process over H, i.e. B is a centered Gaussian family indexed by the
elements of H and such that, for every h1, h2 ∈ H,

E
[
B(h1)B(h2)

]
= 〈h1, h2〉H. (3.2)

In what follows, we shall use the notation L2(B) = L2(Ω, σ(B),P). For every q ≥ 1,
we write H⊗q to indicate the qth tensor power of H; the symbol H�q indicates the qth
symmetric tensor power of H, equipped with the norm

√
q!‖ · ‖H⊗q . We denote by Iq the

isometry between H�q and the qth Wiener chaos of X, which is a linear map satisfying
the property

Iq(h
⊗q) := Hq(B(h)), h⊗q := h⊗ · · · ⊗ h ∈ H⊗q with ‖h‖H = 1,

where Hq is the qth Hermite polynomial defined in Remark 2.13. It is well-known (see [40,
Chapter 1]) that any random variable F ∈ L2(B) admits an orthogonal chaotic expansion:

F =

∞∑
q=0

Iq(fq), (3.3)

where I0(f0) = E[F ], the series converges in L2 and the kernels fq ∈ H�q, q ≥ 1, are
uniquely determined by F . In the particular case where H = L2(A,A, µ), with (A,A)
a measurable space and µ a σ-finite and non-atomic measure, one has that H�q =
L2
s(A

q,A⊗q, µ⊗q) is the space of symmetric and square integrable functions on Aq. More-
over, for every f ∈ H�q, Iq(f) coincides with the multiple Wiener-Itô integral (of order q)
of f with respect to B (see [40, Chapter 1]).
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Now, we introduce the Malliavin derivative. Let S be the set of all smooth cylindrical
random variables of the form

F = f
(
B(h1), . . . , B(hn)

)
,

where n ≥ 1, f : Rn → R is a smooth function with compact support and hi ∈ H. The
Malliavin derivative of F is the element of L2(Ω,H) defined as

DF :=
n∑
i=1

∂f

∂xi

(
B(h1), . . . , B(hn)

)
hi.

For instance, DW (h) = h for every h ∈ H. We denote by D1,2 the closure of S with
respect to the norm ‖ · ‖1,2, defined by the relation

‖F‖21,2 = E[F 2] + E[‖DF‖2H].

Note that, if F is equal to a finite sum of multiple Wiener-Itô integrals, then F ∈ D1,2.
The Malliavin derivative D verifies the following chain rule: if ϕ : Rn → R is in C1

b (that
is, the collection of continuously differentiable functions with bounded partial derivatives)
and if {Fi}i=1,...,n is a vector of elements of D1,2, then ϕ(F1, . . . , Fn) ∈ D1,2 and

Dϕ(F1, . . . , Fn) =
n∑
i=1

∂ϕ

∂xi
(F1, . . . , Fn)DFi.

We denote by δ the adjoint of the unbounded operator D, also called the divergence
operator. A random element u ∈ L2(Ω,H) belongs to the domain of δ, noted Domδ, if
and only if it verifies

|E〈DF, u〉H| ≤ cu ‖F‖L2 for any F ∈ S,

where cu is a constant depending only on u. If u ∈ Domδ, then the random variable δ(u)
is defined by the duality relationship (sometimes called ‘integration by parts formula’):

E[Fδ(u)] = E〈DF, u〉H, (3.4)

which holds for every F ∈ D1,2. An immediate consequence of (3.4) is the following
identity

δ(Fu) = Fδ(u)− 〈DF, u〉H, (3.5)

which holds for all F ∈ D1,2 and u ∈ Domδ such that Fu ∈ Domδ.

Remark 3.1 When H = L2([0, T ], dx), which is the most basic example, then the isonor-
mal Gaussian process B is a standard Brownian motion on [0, T ]. In this case we have

δ(h) =

∫ T

0
hsdBs, ∀h ∈ L2([0, T ], dx).
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The divergence operator δ is often called Skorohod integral. One can show that for a
stochastic process u ∈ Domδ, the Skorohod integral δ(u) and the Itô integral

∫ T
0 usdBs

coincide whenever the latter is well defined.

In case H = L2([0, T ], dx) the Malliavin derivative D and the divergence operator δ can
be computed directly using chaos expansion. Indeed, the derivative of a random variable
F as in (3.3) can be identified with the element of L2([0, T ]× Ω) given by

DaF =

∞∑
q=1

qIq−1

(
fq(·, a)

)
, a ∈ [0, T ]. (3.6)

On the other hand, for any u ∈ L2([0, T ]× Ω) there exists a chaos decomposition

us =
∞∑
q=0

Iq(fq(·, s)), fq(·, s) ∈ L2
s([0, T ]q × Ω).

Let f̃q ∈ L2
s([0, T ]q+1 × Ω) denote the symmetrization of fq(·, ·). Then the element δ(u)

can be written in terms of chaotic decomposition as

δ(u) =

∞∑
q=0

Iq+1(f̃q).

2

Now, we start introducing the definition of the integral
∫ t

0 ZsdXs, where the ambit process
X is driven by a Brownian motion W . The following exposition is related to a seminal
work [2], where the integration with respect to Gaussian processes has been investigated.
Throughout this subsection we assume that

E
[∫ t

0
g2(t, s)σ2

sds

]
<∞ (3.7)

and F = σ(Wt : t ∈ [0, T ]). The following definition is due to [3, Section 4].

Definition 3.2 Assume that, for any s ≥ 0, the function t 7→ g(t, s) has bounded variation
on the interval [t, v] for all 0 ≤ s < t < v <∞. We say that the process Z belongs to the
class IX(0, T ) when the following conditions are satisfied:

(i) For any s ∈ [0, T ] the process (Zu − Zs)u∈(s,T ] is integrable with respect to g(du, s).

(ii) Define the operator

Kg(h)(t, s) := h(s)g(t, s) +

∫ t

s
(h(u)− h(s))g(du, s).

The process s 7→ Kg(Z)(T, s)σs1[0,T ](s) belongs to Domδ.
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(iii) Kg(Z)(T, s) is Malliavin differentiable with respect to Ds with s ∈ [0, T ], such that
the mapping s 7→ Ds[Kg(Z)(T, s)]σs is Lebesgue integrable on [0, T ].

When Z ∈ IX(0, T ) we define∫ T

0
ZsdXs := δ

(
Kg(Z)(T, s)σs1[0,T ](s)

)
+

∫ T

0
Ds[Kg(Z)(T, s)]σsds.

We remark that the proposed definition is linear in the integrand. It also holds that∫ T

0
Y ZsdXs = Y

∫ T

0
ZsdXs

for any bounded random variable Y such that Z, Y Z ∈ IX(0, T ). We refer to [3] for further
properties and applications.

The operator K has been introduced in [2]. The intuition behind Definition 3.2 is
explained by the following heuristic derivation. Using classical integration by parts formula
and (3.5) we conclude that∫ T

0
ZsdXs = ZTXT −

∫ T

0

dZu
du

(∫ u

0
g(u, s)σsdWs

)
du

= ZTXT −
∫ T

0
δ

(
dZu
du

g(u, s)σs1[0,T ](s)

)
du

−
∫ T

0

∫ u

0
Ds

[
dZu
du

]
g(u, s)σsdsdu.

Next, the stochastic Fubini theorem applied to the last two quantities implies the identity∫ T

0
ZsdXs = ZTXT − δ

(
σs

∫ T

s
g(u, s)

dZu
du

du1[0,T ](s)

)

−
∫ T

0
Ds

[∫ T

s
g(u, s)

dZu
du

du

]
σsds.

Similarly, we deduce that

ZTXT = δ
(
ZT g(T, s)σs1[0,T ](s)

)
+

∫ T

0
Ds [ZT ] g(T, s)σsds.

Thus, putting things together and applying the classical integration by parts formula once
again we obtain the heuristic formula∫ T

0
ZsdXs = δ

(
σs

[
ZT g(T, s)−

∫ T

s
g(u, s)

dZu
du

du

]
1[0,T ](s)

)

−
∫ T

0
Ds

[
ZT g(T, s)−

∫ T

s
g(u, s)

dZu
du

du

]
σsds

= δ
(
Kg(Z)(T, s)σs1[0,T ](s)

)
+

∫ T

0
Ds[Kg(Z)(T, s)]σsds.
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This explains the intuition behind Definition 3.2.

Remark 3.3 In a recent work [23] the integration concept has been extended to the class
of Hilbert-valued processes. 2

3.2 Integration with respect to ambit processes driven by pure jump
Lévy motion

In this subsection we will introduce the definition of the integral∫ t

0
ZsdXs,

where the ambit process X is driven by a square integrable pure jump Lévy motion L
with characteristic triplet (0, 0, ν). We assume that the condition (3.7) holds and F =
σ(Lt : t ∈ [0, T ]).

The definition of the stochastic integral proposed in [3] relies again on Malliavin calcu-
lus. However, in contrast to the Gaussian space, there exist different variations of Malliavin
calculus for Poisson random measures. Here we follow an approach described in [31]. We
deal with the Hilbert space H = L2([0, T ], dx). Let N(dt, dz) denote the Poisson random
measure on [0, T ] × (R \ {0}) associated with L and Ñ(dt, dz) = N(dt, dz) − dtν(dz) the
compensated Poisson random measure. We have

Lt =

∫ t

0

∫
R\{0}

zÑ(dt, dz).

As in the Gaussian case there exists an orthogonal chaos decomposition of the type (3.3)
in terms of multiple integrals. For any f ∈ L2

s(([0, T ]× (R \ {0}))q), we introduce the qth
order multiple integral of f with respect to Ñ(dt, dz) via

Iq(f) = q!

∫ T

0

∫
R\{0}

· · ·
∫ t2−

0

∫
R\{0}

f(t1, z1, . . . , tq, zq)Ñ(dt1, dz1) . . . N(dtq, dzq).

Then, for any random variable F ∈ L2(Ω,F ,P), there exists a unique sequence of sym-
metric functions (fq)q≥0 with fq ∈ L2

s(([0, T ]× (R \ {0}))q) such that

F =
∞∑
q=0

Iq(fq), (3.8)

which is obviously an analogue of (3.3). Furthermore, it holds that

E[F 2] =
∞∑
q=0

q!‖fq‖2q,ν ,

where the norm ‖fq‖2q,ν is defined by

‖fq‖2q,ν :=

∫
([0,T ]×(R\{0}))q

f2(t1, z1, . . . , tq, zq)dt1ν(dz1) . . . dtqν(dzq).
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Similarly to the exposition of Remark 3.1, the Malliavin derivative D and the divergence
operator δ are introduced using the above chaos representation. We say that a random
variable F with chaos decomposition (3.8) belongs to the space D1,2 whenever the condition

∞∑
q=0

qq!‖fq‖2q,ν <∞

holds. Whenever F ∈ D1,2 we define

Dt,zF :=
∞∑
q=1

qIq−1(fq(·, t, z)).

Now, we say that that a random field u ∈ L2([0, T ]×R \ {0} ×Ω) belongs to the domain
of the divergence operator δ (Domδ) when∣∣∣∣∣E

[∫ T

0

∫
R\{0}

u(t, z)Dt,zFν(dz)dt

]∣∣∣∣∣ ≤ cu‖F‖L2

for all F ∈ D1,2. Whenever u ∈ Domδ the element δ(u) is uniquely characterized via the
identity

E[Fδ(u)] = E

[∫ T

0

∫
R\{0}

u(t, z)Dt,zFν(dz)dt

]
∀F ∈ D1,2,

which is an integration by parts formula (cf. (3.4)). An immediate consequence of the
integration by parts formula is the following equation:

Fδ(u) = δ(u(F +DF )) +

∫ T

0

∫
R\{0}

u(t, z)Dt,zFν(dz)dt, (3.9)

which holds for any F ∈ D1,2, u ∈ Domδ such that u(F + DF ) ∈ Domδ. Notice the
appearance of the term uDF on the right hand side that is absent in the Gaussian case
(cf. (3.5)).

Now, we proceed with the introduction of the stochastic integral. Its definition in the
pure jump Lévy framework is essentially analogous to the Gaussian case. We refer again
to [3, Section 4] for a more detailed exposition and the intuition behind this definition.

Definition 3.4 Assume that, for any s ≥ 0, the function t 7→ g(t, s) has bounded variation
on the interval [t, T ]. We say that the process Z belongs to the class IX(0, T ) when the
following conditions are satisfied:

(i) For any s ∈ [0, T ] the process (Zu − Zs)u∈(s,T ] is integrable with respect to g(du, s).

(ii) The process (s, z) 7→ z(Kg(Z)(T, s) +Ds,z[Kg(Z)(T, s)])σs1[0,T ](s) belongs to Domδ.

(iii) Kg(Z)(T, s) is Malliavin differentiable with respect to Ds,z with (s, z) ∈ [0, T ] × R,
such that the mapping (s, z) 7→ zDs,z[Kg(Z)(T, s)]σs is ν(dz)dt-integrable.
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When Z ∈ IX(0, T ) we define∫ T

0
ZsdXs := δ

(
z(Kg(Z)(T, s) +Ds,z[Kg(Z)(T, s)])σs1[0,T ](s)

)
+

∫ T

0

∫
R
zDs,z[Kg(Z)(T, s)]σsν(dz)ds.

4 Limit theory for high frequency observations of ambit
fields

In this section we will review the asymptotic results for power variation of Lévy semi-
stationary processes (LSS ) without drift, i.e.

Yt = µ+

∫ t

−∞
g(t− s)σsL(ds).

We will see that the limit theory heavily depends on whether the driving Lévy motion
is a Brownian motion or a pure jump process. Furthermore, the structure of the weight
function g plays an important role as we will see below. More precisely, the singularity
points of g determine the type of the limit.

In what follows we assume that the underlying observations of Lévy semi-stationary
process Y are

Y0, Y∆n , Y2∆n , . . . , Y∆n[t/∆n]

with ∆n → 0 and t fixed. In other words, we are in the infill asymptotics setting. For
statistical purposes we introduce kth order differences ∆n

i,kY of Y defined via

∆n
i,kY :=

k∑
j=0

(−1)j
(
k

j

)
Y(i−j)∆n

. (4.1)

For instance,

∆n
i,1Y = Yi∆n − Y(i−1)∆n

and ∆n
i,2Y = Yi∆n − 2Y(i−1)∆n

+ Y(i−2)∆n
.

The power variation of kth order differences of Y is given by the statistic

V (Y, p, k; ∆n)t :=

[t/∆n]∑
i=k

|∆n
i,kY |p. (4.2)

In the following we will study the asymptotic behaviour of the functional V (Y, p, k; ∆n)t.
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4.1 LSS processes driven by Brownian motion

In this section we consider the case of Brownian semi-stationary processes given via

Yt = µ+

∫ t

−∞
g(t− s)σsW (ds),

defined on a filtered probability space (Ω,F , (Ft)t∈R,P). The following asymptotic results
have been investigated in a series of papers [8, 9, 27, 32]. We also refer to a related work
[7, 29], where the power variation of integral processes as defined in Remark 2.15 has been
studied.

In the model introduced above W is an (Ft)t∈R-adapted white noise on R, g : R→ R
is a deterministic weight function satisfying g(t) = 0 for t ≤ 0 and g ∈ L2(R). The inter-
mittency process σ is assumed to be an (Ft)t∈R-adapted càdlàg process. The finiteness
of the process X is guaranteed by the condition∫ t

−∞
g2(t− s)σ2

sds <∞ almost surely, (4.3)

for any t ∈ R, which we assume from now on. As pointed out in [8, 9] and also briefly dis-
cussed in Remark 2.15, the Gaussian core G is crucial for understanding the fine structure
of Y . The process G = (Gt)t∈R is a zero-mean stationary Gaussian process given by

Gt :=

∫ t

−∞
g(t− s)W (ds), t ∈ R. (4.4)

We remark that Gt <∞ since g ∈ L2(R). A straightforward computation shows that the
correlation kernel r of G has the form

r(t) =

∫∞
0 g(u)g(u+ t)du

‖g‖2L2(R)

, t ≥ 0.

Another important quantity for the asymptotic theory is the variogram R, i.e.

R(t) := E[(Gt+s −Gs)2] = 2‖g‖2L2(R)(1− r(t)), τk(∆n) :=
√

E[(∆n
i,kG)2]. (4.5)

The quantity τk(∆n) will appear as a proper scaling in the law of large numbers for the
statistic V (Y, p, k; ∆n) introduced at (4.2).

As mentioned above the set of singularity points 0 = θ0 < θ1 < · · · < θl < ∞ of g
will determine the limit theory for the power variation V (Y, p, k; ∆n). Let α0, . . . , αl ∈
(−1/2, 0)∪ (0, 1/2) be given real numbers. For any function h ∈ Cm(R), h(m) denotes the
m-th derivative of h. Recall that k ≥ 1 stands for the order of the filter defined in (4.1).
We introduce the following set of assumptions.

(A): For δ < 1
2 min1≤i≤l(θi − θi−1) it holds that

(i) g(x) = xα0f0(x) for x ∈ (0, δ) and g(x) = |x− θl|αlfl(x) for x ∈ (θl − δ, θl) ∪ (θl,∞).
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(ii) g(x) = |x− θi|αifi(x) for x ∈ (θi − δ, θi) ∪ (θi, θi + δ), i = 1, . . . , l − 1.

(iii) g(θi) = 0, fi ∈ Ck ((θi − δ, θi + δ)) and fi(θi) 6= 0 for i = 0, . . . , l.

(iv) g ∈ Ck(R \ {θ0, . . . , θl}) and g(k) ∈ L2
(
R \ ∪li=0(θi − δ, θi + δ)

)
.

(v) For any t > 0

Ft =

∫ ∞
θl+1

g(k)(s)2σ2
t−sds <∞. (4.6)

We also set

α := min{α0, . . . , αl}, A := {0 ≤ i ≤ l : αi = α}. (4.7)

The points θ0, . . . , θl are singularities of g in the sense that g(k) is not square integrable
around these points, because α0, . . . , αl ∈ (−1/2, 0) ∪ (0, 1/2) and conditions (A)(i)-(iii)
hold. Condition (A)(iv) indicates that g exhibits no further singularities.

Remark 4.1 According to the discussion of Section 2.3, the Brownian semi-stationary
processes Y (or even the Gaussian core G) is not a semimartingale, since g′ 6∈ L2(R≥0)
due to the presence of the singularity points θ0, . . . , θl. For this reason we can not rely
on limit theory for power variations of continuous semimartingales investigated in e.g.
[11, 34]. Although some of the asymptotic results look similar to the semimartingale case,
the methodology behind the proof is completely different. The main steps of the proof
are based on methods of Malliavin calculus developed in e.g. [41, 44] and on Bernstein’s
blocking technique. 2

The limit theory for the power variation is quite different according to whether we have a
single singularity at, say, θ0 = 0 (i.e. l = 0) or multiple singularity points. Hence, we will
treat the corresponding results separately.

4.1.1 The case l = 0

The theory presented in this section is mainly investigated in [8, 9]. Below we will inten-
sively use the concept of stable convergence, which is originally due to Rényi [47]. We
say that a sequence of processes Xn converges stably in law to a process X, where X
is defined on an extension (Ω′,F ′,P′) of the original probability (Ω,F ,P), in the space

D([0, T ]) equipped with the uniform topology (Xn dst−→ X) if and only if

lim
n→∞

E[f(Xn)Z] = E′[f(X)Z]

for any bounded and continuous function f : D([0, T ])→ R and any bounded F-measurable
random variable Z. We refer to [1], [36] or [47] for a detailed study of stable convergence.
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Note that stable convergence is a stronger mode of convergence than weak convergence,
but it is weaker that u.c.p. convergence.

The following theorem has been shown in [9, Theorems 1 and 2].

Theorem 4.2 Assume that condition (A) holds.

(i) We obtain that

∆nτk(∆n)−pV (Y, p, k; ∆n)t
u.c.p.
=⇒ V (Y, p)t := mp

∫ t

0
|σs|pds, (4.8)

where the power variation V (Y, p, k; ∆n)t is defined at (4.2) and the constant mp is
given by (2.9).

(ii) Assume that the intermittency process σ is Hölder continuous of order γ ∈ (0, 1) and
γ(p ∧ 1) > 1/2. When k = 1 we further assume that α ∈ (−1/2, 0). Then we obtain
the stable convergence

∆−1/2
n

(
∆nτk(∆n)−pV (Y, p, k; ∆n)t − V (Y, p)t

)
dst−→ λ

∫ t

0
|σs|p dBs (4.9)

on D([0, T ]) equipped with the uniform topology, where B is a Brownian motion
that is defined on an extension of the original probability space (Ω,F ,P) and is
independent of F , and the constant λ is given by

λ2 = lim
n→∞

∆−1
n var

(
∆1−pH
n V (BH , p, k; ∆n)1

)
, (4.10)

with BH being a fractional Brownian motion with Hurst parameter H = α+ 1/2.

Remark 4.3 The appearance of the fractional Brownian motion in the definition of the
constant λ2 is not surprising given the discussion of fine properties of the Gaussian core
G in Section 2.3. In case k = 1 the factor λ2 coincides with the quantity vp defined in
Remark 2.13. We also remark that the validity region of the central limit theorem in (4.9)
in the case k = 1 (α ∈ (−1/2, 0)) is smaller than the region H = α + 1/2 ∈ (0, 3/4)
described in Remark 2.13. This is due to a bias problem, which appears in the context of
Brownian semi-stationary processes. 2

Notice that the asymptotic result at (4.8) and (4.9) are not feasible from the statisti-
cal point of view, since the scaling τk(∆n) depends on the unknown weight function g.
Nevertheless, Theorem 4.2 is useful for statistical applications. Our first example is the
estimation of the smoothness parameter α. Under mild conditions on the intermittency
process σ, the Brownian semi-stationary process Y (as well as its Gaussian core G) has
Hölder continuous paths of any order smaller than H = α+1/2 ∈ (0, 1). In turbulence the
smoothness parameter α is related to the so called Kolmogorov’s 2/3-law, which predicts
that

E[(Xt+∆ −Xt)
2] ∝ ∆2/3,
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or in other words α ≈ −1/6, which holds for a certain range of frequencies ∆. Hence,
estimation of the parameter α is extremely important.

A typical model for the weight function g is the Gamma kernel given via

g(x) = xα exp(−cx), c > 0, α ∈ (−1/2, 0) ∪ (0, 1/2),

which obviously satisfies the assumption (A)(i)-(iv) with l = 0. An application of the law
of large numbers at (4.8) for a fixed t > 0 gives

Sn :=
V (Y, p, k; 2∆n)t
V (Y, p, k; ∆n)t

P−→ 2
(2α+1)p

2 ,

since τk(2∆n)2/τk(∆n)2 → 22α+1. The latter is due to τk(∆n)2 ∼ ∆2α+1
n , which follows

from the fact that the Gaussian core G and the fractional Brownian motion BH with
Hurst parameter H = α + 1/2 have the same small scale behaviour. Thus, a consistent
estimator of α is given via

α̂n =
1

2

(
2 log2 Sn

p
− 1

)
P−→ α, (4.11)

where log2 denotes the logarithm at basis 2. Note that the estimator α̂n is feasible, i.e. it
does not depend on the unknown scaling τk(∆n). One may also deduce a standard feasible
central limit theorem for α̂n as it was shown in [8, 9, 27], and thus obtain asymptotic
confidence regions for the smoothness parameter α. We also refer to [27] for empirical
implementation of this estimation method to turbulence data.

Another useful application of Theorem 4.2 is the estimation of the relative intermit-
tency, which is defined as

RIt :=

∫ t
0 σ

2
sds∫ T

0 σ2
sds

, t ≤ T,

where T > 0 is a fixed time. While the intermittency process σ is not identifiable when no
structural assumption on g are imposed, the relative intermittency RIt is easy to estimate.
Indeed, the convergence in (4.8) immediately implies that

R̂I
n

t :=
V (Y, p, k; ∆n)t
V (Y, p, k; ∆n)T

P−→ RIt.

We refer to [12] for the limit theory and physical applications of the statistic R̂I
n

t .

4.1.2 The case l ≥ 1

The limit theory for the case l ≥ 1 appears to be more complex. The asymptotic results
presented below have been investigated in [32].

First of all, we need to introduce some notations. Recall that k ∈ N denotes the order
of increments. The k-th order filter associated with g is introduced via

∆n
kg(x) :=

k∑
j=0

(−1)j
(
k

j

)
g(x− j∆n), x ∈ R. (4.12)
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There is a straightforward relationship between the scaling quantity τk(∆n) defined at
(4.5) and the function ∆n,

k g, namely

τk(∆n)2 = ‖∆n
kg‖2L2(R).

Now, we define the concentration measure associated with ∆n
kg:

πn,k(A) :=

∫
A(∆n

kg(x))2dx

‖∆n
kg‖2L2(R)

, A ∈ B(R). (4.13)

Observe that πn,k is a probability measure. Its asymptotic behaviour determines the law
of large numbers for the power variation. In order to identify the limit of πn,k, we define
the following functions

h0(x) := f0(θ0)

k∑
j=0

(−1)j
(
k

j

)
(x− j)α0

+ , (4.14)

hi(x) := fi(θi)
k∑
j=0

(−1)j
(
k

j

)
|x− j|αi , i = 1, . . . , l,

where x+ := max{x, 0}. The following results determines the asymptotic behaviour of
the power variation V (Y, p, k; ∆n)t for p = 2 and l ≥ 1. We refer to [32, Proposition 3.1,
Theorems 3.2 and 3.3] for further details.

Theorem 4.4 Assume that the condition (A) holds.

(i) It holds that

πn,k
d−→ πk,

for any k ≥ 1, where the probability measure πk is given as

supp(πk) = {θi}i∈A, πk(θi) =
‖hi‖2L2(R)1i∈A∑l
j=0 ‖hj‖2L2(R)

1j∈A
, (4.15)

where the set A has been defined at (4.7).

(ii) We obtain the convergence

∆n

τk(∆n)2
V (Y, 2, k; ∆n)t

u.c.p.
=⇒ QV (Y, k)t :=

∫ ∞
0

(∫ t−θ

−θ
σ2
sds

)
πk(dθ). (4.16)

(iii) Assume that the intermittency process σ is Hölder continuous of order γ > 1/2.
When k = 1 we further assume that αj ∈ (−1

2 , 0) for all 0 ≤ j ≤ l. Then, under
condition

αi − α > 1/4 for all i 6∈ A, (4.17)
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we obtain the stable convergence

∆−1/2
n

(
∆n

τk(∆n)2
V (Y, 2, k; ∆n)t −QV (X, k)t

)
dst−→

∫ t

0
v1/2
s dBs (4.18)

on D([0,min1≤j≤l(θj−θj−1)]) equipped with the uniform topology, where B is a Brow-
nian motion, independent of F , defined on an extension of the original probability
space (Ω,F ,P). The stochastic process v is given by

vs = Λk

(∫ ∞
0

σ2
s−θπk(dθ)

)2

, (4.19)

where Λk is defined by

Λk = lim
n→∞

∆−1
n var

( ∆n

τ̂k(∆n)2
V (BH , 2, k; ∆n)1

)
with BH being a fractional Brownian motion with Hurst parameter H = α+1/2 and
τ̂k(∆n)2 := E[(∆n

i,kB
H)2].

In order to explain the mathematical intuition behind the results of Theorem 4.4 we
present some remarks.

Remark 4.5 We notice that supp(πk) = {θi}i∈A, which means that only those singularity
points contribute to the limit, which correspond to the minimal index α. This fact is not
surprising from the statistical point of view, since a process with the roughest path always
dominates when considering a power variation.

When l = 0 it holds that πn,k
d−→ δ{0}, hence the convergence in (4.8) is a particular

case of (4.16). Otherwise, the limiting measure πk is a discrete probability measure. It is
an open problem whether the result of (4.16) can be deduced for a continuous probability
measure πk. 2

Remark 4.6 Although the singularity points θi with i 6∈ A do not contribute to the
limit at (4.16), they cause a certain bias, which might explode in the central limit the-
orem. Condition (4.17) ensures that it does not happen. We also remark that the
functional stable convergence at (4.18) does not hold on any interval [0, T ], but just on
[0,min1≤j≤l(θj − θj−1)]. One may still show a stable central limit theorem with an F-
conditional Gaussian process as the limit on a larger interval, but only when θj−θj−1 ∈ N
for all j, since otherwise the covariance structure of the original statistic does not converge.
2

Notice that the minimal parameter α defined at (4.7) still determines the Hölder continuity
of the process Y (and the Gaussian core G). The estimator α̂n defined at (4.11) remains
consistent, i.e.

α̂n =
1

2

(
log2

V (Y, 2, k; 2∆n)t
V (Y, 2, k; ∆n)t

− 1

)
P−→ α.
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One may also construct a standardized version of the statistic α̂n, which satisfies a standard
central limit theorem (see [32, Section 4] for a detailed exposition). But in this case the
time t < min1≤j≤l(θj − θj−1) must be used, which requires the knowledge of singularity
points θi.

Remark 4.7 For potential applications in turbulence the asymptotic results need to be
extended to ambit fields X driven by a Gaussian random measure, i.e.

Xt(x) = µ+

∫
At(x)

g(t, s, x, ξ)σs(ξ)W (ds, dξ), t ≥ 0, x ∈ R3,

where W is a Gaussian random measure. This type of high frequency limit theory has
not been yet investigated neither for observations of X on a grid in time-space nor for
observations of X along a curve. In the multiparameter setting there exist a related work
on generalized variation of fractional Brownian sheet (see e.g. [43]) and integral processes
(see e.g. [42, 48]). 2

4.2 LSS processes driven by a pure jump Lévy motion

In this section we will mainly study the power variation of a Lévy moving average process
defined via

Yt = µ+

∫ t

−∞
g(t− s)dLs,

where L is a two sided pure jump Lévy motion without drift. Notice that this is a subclass
of LSS processes with σ = 1, and hence it plays a similar role as the Gaussian core G
defined at (4.4). The asymptotic theory for power variation of Y is likely to transfer to
limit theory for general LSS processes as it was indicated in Remark 2.15. In contrast to
Gaussian moving averages, little is known about power variation of Lévy moving average
processes driven by a pure jump Lévy motion. Below we present some recent results from
[17], which completely determine the first order structure of power variation of Y . We
need to impose a somewhat similar set of assumptions as presented in (A) for case l = 0
(in particular, they insure the existence of Yt, cf. Remark 2.9).

(A’): It holds that

(i) g(x) = xαf(x) for x ≥ 0 and g(x) = 0 for x < 0 with α > 0.

(ii) The function f is in Ck(R≥0). For α ∈ (0, 1/2) we have |f (j)(x)| ≤ cj |x|−j for x ≥ 1,
while for α ≥ 1/2 there exists a v > 0 such that α− 1/2 < v and |f (j)(x)| ≤ cj |x|−j−v for
x ≥ 1 (0 ≤ j ≤ k).

(iii) L is a symmetric Lévy processes with Lévy measure ν and without Gaussian part.
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Lévy measure ν satisfies∫
|x|≥1

|x|1/(1−α)ν(dx) <∞ for α ∈ (0, 1/2),∫
|x|≥1

|x|1/(v+1−α)ν(dx) <∞ for α ≥ 1/2.

Another important parameter in our limit theory is the Blumenthal-Getoor index of the
driving Lévy motion L, which is defined by

β := inf

r ≥ 0 :
∑
s∈[0,1]

|∆Ls|r <∞

 , ∆Ls = Ls − Ls−. (4.20)

Obviously, finite activity Lévy processes have Blumenthal-Getoor index β = 0 while Lévy
processes with finite variation satisfy β ≤ 1. In general, the Blumenthal-Getoor index is
a non-random number β ∈ [0, 2] and it can characterized by the Lévy measure ν of L as
follows:

β = inf

{
r ≥ 0 :

∫ 1

−1
|x|rν(dx) <∞

}
.

The latter implies that β-stable Lévy processes with β ∈ (0, 2) have Blumenthal-Getoor
index β.

We recall the definition of kth order increments ∆n
i,kY introduced at (4.1) and consider

the power variation

V (Y, p, k; ∆n)t =

[t/∆n]∑
i=k

|∆n
i,kY |p.

The following theorem from [17] determines the first order structure of the statistic
V (Y, p, k; ∆n)t. Notice that the results below are stated for a fixed t > 0.

Theorem 4.8 Assume that condition (A’) holds and fix t > 0.

(i) If α ∈ (0, k − 1/p) and p > β, we obtain the stable convergence

∆−αpn V (Y, p, k; ∆n)t
dst−→ |f(0)|p

∑
m:Tm∈[0,t]

|∆LTm |p
( ∞∑
l=0

|h(l + Um)|p
)
, (4.21)

where (Um)m≥1 are i.i.d. U([0, 1])-distributed random variables independent of the
original σ-algebra F and the function h = h0 is defined at (4.14).

(ii) Assume that L is a symmetric β-stable Lévy process with β ∈ (0, 2). If α ∈ (0, k −
1/β) and p < β then it holds

∆1−p(α+1/β)
n V (Y, p, k; ∆n)t

P−→ tcp, cp := E[|L1(k)|p] <∞, (4.22)
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where the process Lt(k) is defined as

Lt(k) :=

∫
R
h(s)dLs

and the function h = h0 is defined at (4.14).

(iii) When α > k − 1/p, p > β or β > k − 1/β, p < β, we deduce

∆1−pk
n V (Y, p, k; ∆n)t

P−→
∫ t

0
|Fk(u)|pdu, Fk(u) :=

∫ u

−∞
g(k)(u− s)dLs. (4.23)

We remark that the result of Theorem 4.8(i) is sharp in a sense that the conditions
α ∈ (0, k − 1/p) and p > β are sufficient and (essentially) necessary to conclude (4.21).
Indeed, since |h(l + Um)| ≤ const.lα−k for l ≥ 1, we obtain that

∞∑
l=0

|h(l + Um)|p ≤ const <∞

when α ∈ (0, k − 1/p), and on the other hand
∑

m:Tm∈[0,t] |∆LTm |p <∞ for p > β, which
follows from the definition of the Blumenthal-Getoor index.

The idea behind the proof of Theorem 4.8(ii) has been described in Section 2.3. Note
that for k = 1 the random variable L1(1) coincides with the increments X̃1 − X̃0 of the
fractional β-stable Lévy motion introduced in (2.8). Following the mathematical intuition
of the aforementioned discussion, the limit in (4.22) is not really surprising. Also notice
that the limit is indeed finite since p < β.

We remark that for values of α close to k − 1/p or k − 1/β in Theorem 4.8(iii), the
function g(k) explodes at 0. This leads to unboundedness of the process Fk defined at
(4.23). Nevertheless, under conditions of Theorem 4.8(iii), the limiting process is still
finite.

Remark 4.9 Notice that the critical cases, i.e. α = k−1/p, p > β and α = k−1/, p < β,
are not described in Theorem 4.8. In this cases an additional log factor appears, and
for α = k − 1/p, p > β the mode of convergence changes from stable convergence to
convergence in probability (clearly the limits change too). We refer to [17] for a detailed
discussion of critical cases. 2

Remark 4.10 The asymptotic results of Theorem 4.8 uniquely identify the parameters α
and β. First of all, note that the convergence rates in (4.21)-(4.23) are all different under
the corresponding conditions. Indeed, it holds that

p(α+ 1/β)− 1 < αp < pk − 1,

since in case (i) we have α < k − 1/p and in case (ii) we have p < β. Hence, computing
the statistic V (Y, p, k; ∆n)t at log scale for all p ∈ [0, 2] identifies the parameters α and β.
2
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Remark 4.11 A related study of the asymptotic theory is presented in [20], who investi-
gated the fine structure of Lévy moving average processes driven by a truncated β-stable
Lévy motion. The authors showed the result of Theorem 4.8(ii) (see Theorem 5.1 therein),
whose prove was however incorrect, since it was based on the computation of the variance
that diverges to infinity.

In a recent work [33] extended the law of large numbers in Theorem 4.8(ii) to integral
processes driven by fractional Lévy motion. The main idea relies on the mathematical
intuition described in Remark 2.15. 2

The next theorem demonstrates a central limit theorem associated with Theorem 4.8(ii)
(see [17]).

Theorem 4.12 Assume that condition (A’) holds and fix t > 0. Let L be a symmetric
β-stable Lévy process with characteristic triplet (0, 0, c|x|−1−βdx) and β ∈ (0, 2). When
k ≥ 2, α ∈ (0, k − 2/β) and p < β/2 then it holds

∆−1/2
n

(
∆1−p(α+1/β)
n V (Y, p, k; ∆n)t − tcp

)
d−→ N (0, tη2), (4.24)

where the quantity η2 is defined via

η2 = θ(0) + 2

∞∑
i=1

θ(i),

θ(i) = a−2
p

∫
R2

1

|s1s2|1+p
ψi(s1, s2)ds1ds2,

ψi(s1, s2) = exp

(
−c|f(0)|β

∫
R
|s1h(x)− s2h(x+ i)|βdx

)
,

− exp

(
−c|f(0)|β

∫
R
|s1h(x)|β + |s2h(x+ i)|βdx

)
,

where the function h is defined at (4.14) and ap :=
∫
R(exp(iu)− 1)|u|−1−pdu.

Let us explain the various conditions of Theorem 4.12. The assumption p < β/2 ensures
the existence of variance of the statistic V (Y, p, k; ∆n)t. The validity range of the central
limit theorem (α ∈ (0, k − 2/β)) is smaller than the validity range of the law of large
numbers in Theorem 4.8(ii) (α ∈ (0, k − 1/β)). It is not clear which limit distribution
appears in case α ∈ (k−2/β, k−1/β). A more severe assumption is k ≥ 2, which excludes
the first order increments. The limit theory in this case is also unknown.

Remark 4.13 Let us explain a somewhat complex form of the variance η2. A major
problem of proving Theorems 4.8(ii) and 4.12 is that neither the expectation of |∆n

i,kY |p
nor its variance can be computed directly. However, the identity

|x|p = a−1
p

∫
R

(exp(iux)− 1)|u|−1−pdu for p ∈ (0, 1),
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which can be shown by substitution y = ux, turns out to be a useful instrument. Indeed,
for any deterministic function ϕ : R→ R satisfying the conditions of Remark 2.3, it holds
that

E
[
exp

(
iu

∫
R
ϕsdLs

)]
= exp

(
−c|u|β

∫
R
|ϕs|βds

)
.

This two identities are used to compute the variance of the statistic V (Y, p, k; ∆n)t and
they are both reflected in the formula for the quantity θ(i).

Remark 4.14 As in the case of a Gaussian driver, Theorem 4.8(ii) might be useful for
statistical applications. Indeed, for any fixed t > 0, it holds that

Sn =
V (Y, p, k; 2∆n)t
V (Y, p, k; ∆n)t

P−→ 2p(α+1/β),

under conditions of Theorem 4.8(ii). Thus, a consistent estimator of α (resp. β) can be
constructed given the knowledge of β (resp. α) and the validity of conditions α ∈ (0, k −
1/β) and p < β. A bivariate version of the central limit theorem (4.24) for frequencies ∆n

and 2∆n would give a possibility to construct feasible confidence regions. 2

Obviously, the presented limiting results still need to be extended to spatio-temporal
setting. Asymptotic theory for ambit fields observed on a grid in time-space or along a
curve would be extremely useful for statistical analysis of turbulent flows.
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[18] A. Basse and J. Pedersen (2009): Lévy driven moving averages and semimartingales.
Stochastic Processes and Their Applications 119(9), 2970–2991.

http://arxiv.org/abs/1304.6683


Ambit fields: survey and new challenges 35

[19] A. Basse-O’Connor and J. Rosinski (2012): Structure of infinitely divisible semi-
martingales. Working paper, available at arXiv:1209.1644v2.

[20] A. Benassi, S. Cohen and J. Istas (2004): On roughness indices for fractional fields.
Bernoulli 10(2), 357–373.

[21] C. Bender, A. Lindner and M. Schicks (2012): Finite variation of fractional Levy
processes. Journal of Theoretical Probability 25(2), 594–612.

[22] F.E. Benth, H. Eyjolfsson and A.E.D. Veraart (2013): Approximating Lévy semis-
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