Skip to main content

Lipid Matrices for Nanoencapsulation in Food: Liposomes and Lipid Nanoparticles

  • Chapter
  • First Online:

Part of the book series: Food Engineering Series ((FSES))

Abstract

The use of food encapsulation systems using lipid-based matrices, like emulsions, liposomes and lipid particles can help overcome two drawbacks often related to hydrophobic bioactive substances: (i) the difficulty of their dispersion in food formulations, which are predominantly water-based and (ii) low bioavailability in the gastrointestinal tract, especially in relation to the complexity of absorption in the small intestine. Lipids can help to increase the bioaccessibility and bioavailability of such bioactives because they can increase gastric retention time, slowing delivery to the absorption site, affect the physical and biochemical barrier function of gastrointestinal tract and also stimulate the secretion of lipid salts and endogenous biliary lipids. Among the colloidal encapsulation systems, which can be produced using lipid matrices, there are the liposomes and lipid particles (micro and nano). In this chapter, liposomes and lipid nanoparticles, two systems in which the interest of food scientists and technologists has been increasing in the last 10 years, are described in terms of structure. Also, their various methods of production are shown, as well as their possible utilization in food formulations.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Anton N, Vandamme TF (2009) The universality of low-energy emulsification. Int J Pharm 377:142–147

    CAS  Google Scholar 

  • Antunes FE, Marques EF, Miguel MG, Lindman B (2009) Polymer-vesicle association. Adv Colloid Interface Sci 147–148:18–35

    Google Scholar 

  • Arifin DR, Palmer AF (2003) Determination of size distribution and encapsulation efficiency of liposome-encapsulated hemoglobin blood substitutes using asymmetric flow field-flow fractionation coupled with multi-angle static light scattering. Biotechnol Prog 19:1798–1811

    CAS  Google Scholar 

  • Attama AA, Müller-Goymann CC (2007) Investigation of surface-modified solid lipid nanocontainers formulated with a heterolipid-templated homolipid. Int J Pharm 334:179–189

    CAS  Google Scholar 

  • Awad TS, Helgason T, Weiss J, Decker EA, McClements DJ (2009) Effect of omega-3 fatty acids on crystallization, polymorphic transformation and stability of tripalmitin solid lipid nanoparticle suspensions. Crys Grow Des 9:3405–3411

    CAS  Google Scholar 

  • Balbino TA, Gasperini A, Oliveira CLP, Cavalcati LP, Azzoni AR, de la Torre LG (2012) Correlation between physicochemical and structural properties with in vitro transfection of pDNA/cationic liposomes complexes. Langmuir 28:11535–11545

    CAS  Google Scholar 

  • Balbino TA, Aoki NT, Gasperini A, Oliveira CLP, Cavalcanti LP, Azzoni AR, de la Torre LG (2013) Continuous flow production of cationic liposomes at high lipid concentration in microfluidic devices for gene delivery applications. Chem Eng J 226:423–433

    CAS  Google Scholar 

  • Bangham AD (1992) Liposomes—Realizing their promise. Hosp Pract 27:51–56, 61–62

    CAS  Google Scholar 

  • Bangham AD, Standish MM, Watkins JC (1965) Diffusion of univalent ions across lamellae of swollen phospholipids. J Mol Biol 13:238–252

    CAS  Google Scholar 

  • Batzri S, Korn ED (1973) Single bilayer liposomes prepared without sonication. Biochim Biophys Acta 298:1015–1019

    CAS  Google Scholar 

  • Baxter S, Zivanovic S, Weiss J (2005) Molecular weight and degree of acetylation of high-intensity ultrasonicated chitosan. Food Hydrocoll 19:821–830

    CAS  Google Scholar 

  • Bibi S, Kaur R, Henriksen-Lacey M, McNeil SE, Wilkhu J, Lattmann E et al (2011) Microscopy imaging of liposomes: From cover slips to environmental SEM. Int J Pharm 417:138–150

    CAS  Google Scholar 

  • Bondi ML, Azzolina A, Capraro EF et al (2007) Novel cationic solid lipid nanoparticles as non-viral vectors for gene delivery. J Drug Target 15:295–301

    CAS  Google Scholar 

  • Boode K, Walstra P (1993) Partial coalescence in oil-in-water emulsions 1. Nature of the aggregation. Coll Surf A: Phys Eng Asp 81:121–137

    CAS  Google Scholar 

  • Boode K, Walstra PA, de Groot-Mostert EA (1993) Partial coalescence in oil-in-water emulsions 2. Influence of the properties of the fat. Coll Surf A: Phys Eng Asp 81:139–151

    CAS  Google Scholar 

  • Bunjes H (2011) Structural properties of solid lipid based colloidal drug delivery systems. Curr Op Coll Interface Sci 16:405–411

    CAS  Google Scholar 

  • Bunjes H, Koch, MHJ (2005) Saturated phospholipids promote crystallization but slow down polymorphic transitions in triglyceride nanoparticles. J Cont Rel 107:229–243

    CAS  Google Scholar 

  • Bunjes H, Unruh T (2007) Characterization of lipid nanoparticles by differential scanning calorimetry, X-ray and neutron scattering. Adv Drug Del Rev 59:379–402

    CAS  Google Scholar 

  • Bunjes H, Westesen K, Koch MHJ (1996) Crystallization tendency and polymorphic transitions in triglyceride particles. Int J Pharm 129:159–173

    CAS  Google Scholar 

  • Bunjes H, Koch MHJ, Westesen, K (2003) Influence of emulsifiers on the crystallization of solid lipid nanoparticles. J Pharm Sci 92:1509–1519

    CAS  Google Scholar 

  • Bunjes H, Steiniger F, Richter W (2007) Visualizing the structure of triglyceride nanoparticles in different crystal modifications. Langmuir 23:4005–4011

    CAS  Google Scholar 

  • Castor TP (1994) Methods and apparatus for liposomes preparation. World Wide patent WO9427581

    Google Scholar 

  • Cavalli R, Caputo O, Gasco MR (1993) Solid lipospheres of doxorubicin and idarubicin. Int J Pharm 89:R9–R12

    CAS  Google Scholar 

  • Cavalli R, Caputo O, Carlotti ME, Trotta M, Scarnecchia C, Gasco MR (1997) Sterlization and freeze-drying of drug-free and drug-loaded solid lipid nanoparticles. Int J Pharm 148:47–54

    CAS  Google Scholar 

  • Colas J-C, Shi W, Rao VSNM, Omri A, Mozafari MR, Singh (2007) Microscopical investigations of nisin-loaded nanoliposomes prepared by Mozafari method and their bacterial targeting. Micron 38:841–847

    Google Scholar 

  • Cornacchia L, Roos YH (2011) Stability of b-carotene in protein-stabilized oil-in-water delivery systems. J Agric Food Chem 59:7013–7020

    CAS  Google Scholar 

  • de la Torre LG, Rosada RS, Trombone APF, Frantz FG, Coelho-Castelo AAM, Silva CL, Santana MHA (2009) Synergy between structural stability and DNA-binding controls the antibody production in EPC/DOTAP/DOPE vesicles and DOTAP/DOPE lipoplexes. Colloids and Surfaces B: Biointerfaces 73:175–184

    Google Scholar 

  • de Paz E, Martin A, Jose CM (2012) Formulation of beta-carotene with soybean lecithin by PGSS (particles from gas saturated solutions)-drying. J Supercrit Fluids 72:125–33

    Google Scholar 

  • Dickinson E, Stainsby G (eds) (1988). Advances in food emulsions and foam. Elsevier, London

    Google Scholar 

  • Dickinson E, McClements DJ (1996). Fat crystallization in oil-in-water emulsions. In: Dickinson E, McClements DJ (eds) Advances in food colloids. Blackie Academic & Professional, Glasgow, p 211

    Google Scholar 

  • Dillehay DL, Webb SK, Schmelz EM, Merrill AH (1994) Dietary sphingomyelin inhibits 1,2-dimethylhydrazine-induced colon-cancer in CF1 mice. J Nutr 124:615–20

    CAS  Google Scholar 

  • Dillow AK, Dehghani F, Hrkach JS, Foster NR, Langer R (1999) Bacterial inactivation by using near- and supercritical carbon dioxide. Proc Natl Acad Sci U S A 96:10344–10348

    CAS  Google Scholar 

  • Ding B, Zhang X, Hayat K, Xia S, Jia C, Xie M et al (2011) Preparation, characterization and the stability of ferrous glycinate nanoliposomes. J Food Eng 102:202–208

    CAS  Google Scholar 

  • Egelhaaf SU, Wehrli E, Muller M, Adrian M, Schurtenberger P (1996) Determination of the size distribution of lecithin liposomes: a comparative study using freeze fracture, cryoelectron microscopy and dynamic light scattering. J Microsc 184:214–228

    CAS  Google Scholar 

  • Eldridge JH, Staas JK, Meulbroek JA, McGhee JR, Tice TR, Gilley RM (1991) Biodegradable microspheres as a vaccine delivery system. Mol Immunol 28:287–294

    CAS  Google Scholar 

  • Esposito E, Fantin M, Marti M, Dreschsler M, Paccamiccio L, Mariani P, Sivieri E, Lain F, Menegatti E, Morari M, Cortesi R (2008). Solid lipid nanoparticles as delivery systems for bromocriptine. Pharm Res 25:1521–1530

    CAS  Google Scholar 

  • Evans DF, Wennerström H (1999) The colloidal domain where physics, chemistry, biology and technology meet. Wiley-VCH, Canada

    Google Scholar 

  • Farhang B, Kakuda Y, Corredig M (2012) Encapsulation of ascorbic acid in liposomes prepared with milk fat globule membrane-derived phospholipids. Dairy Sci Technol 92:353–366

    CAS  Google Scholar 

  • Fathi M, Mozafari MR, Mohebbi M (2012) Nanoencapsulation of food ingredients using lipid based delivery systems. Trends Food Sci Technol 23:13–27

    CAS  Google Scholar 

  • Fernandez P, André V, Rieger J, Kühnle A (2004) Nano-emulsion formation by emulsion phase inversion. Coll Surf A:Phys Eng Asp 251:53–58

    CAS  Google Scholar 

  • Filipovic-Grcic J, Skalko-Basnet N, Jalsenjak I (2001) Mucoadhesive chitosan-coated liposomes: characteristics and stability. J Microencapsul 18:3–12

    CAS  Google Scholar 

  • Finke JH, Schur J, Richter C, Gothsch T, Kwade A, Büttgenbach S, Müller-Goymann CC (2012) The influence of customized geometries and process parameters on nanoemulsion and solid lipid nanoparticle production in microsystems. Chem Eng J 209:126–137

    CAS  Google Scholar 

  • Fukui Y, Fujimoto K (2009) The preparation of sugar polymer-coated nanocapsules by the layer-by-layer deposition on the liposome. Langmuir 25:10020–10025

    CAS  Google Scholar 

  • Garcia-Fuentes M, Prego C, Torres D, Alonso MJ (2005) A comparative study of the potential of solid triglyceride nanostructures coated with chitosan or poly(ethyleneglycol) as carriers for oral calcitonin delivery. Eur J Pharm Sci 25:133–143

    CAS  Google Scholar 

  • Gasco MR, Morel S, Carpigno R (1992) Optimization of the incorporation of desoxycortisone acetate in lipospheres. Eur. J Pharm Biopharm 38:7–10

    CAS  Google Scholar 

  • Gentine P, Bubel A, Crucifix C, Bourel-Bonnet L, Frisch B (2012) Manufacture of liposomes by isopropanol injection: characterization of the method. J Liposome Res 22:18–30

    CAS  Google Scholar 

  • Gokce EH, Korkmaz E, Dellera E, Sandri G, Bonferone MC, Ozer, O. (2012a) Resveratrol-loaded solid lipid nanoparticles versus nanostructured lipid carriers: evaluation of antioxidant potential for dermal applications. Int J Nanom 7:1841–1850

    CAS  Google Scholar 

  • Gokce EH, Korkmaz E, Tuncay-Tanrıverdi S, Dellera E, Sandri G, Bonferone MC, Ozer O (2012b) A comparative evaluation of coenzyme Q10-loaded liposomes and solid lipid nanoparticles as dermal antioxidant carriers. Int J Nanom 7:5109–5117

    CAS  Google Scholar 

  • Gonzalez-Rodriguez ML, Barros LB, Palmaa J, Gonzalez-Rodriguez PL, Rabasco AM (2007) Application of statistical experimental design to study the formulation variables influencing the coating process of lidocaine liposomes. Int J Pharm 337:336–345

    CAS  Google Scholar 

  • Gratton SEA, Ropp PA, Pohlhaus PD, Luft JC, Madden VJ, Napier ME et al (2008) The effect of particle design on cellular internalization pathways. Proc Natl Acad Sci U S A 105:11613–11618

    CAS  Google Scholar 

  • Guo J, Ping Q, Jiang G, Huang L, Tong Y (2003) Chitosan-coated liposomes: characterization and interaction with leuprolide. Int J Pharm 260:167–173

    CAS  Google Scholar 

  • Haidar ZS, Hamdy RC, Tabrizian M (2008) Protein release kinetics for core-shell hybrid nanoparticles based on the layer-by-layer assembly of alginate and chitosan on liposomes. Biomaterials 29:1207–1215

    CAS  Google Scholar 

  • Helgason T, Awad TS, Kristbergsson K, McClements DJ, Weiss J (2008) Influence of polymorphic transformations on gelation of tripalmitin solid lipid nanoparticle suspensions. J Am Oil Chem Soc 85:501–511

    CAS  Google Scholar 

  • Helgason T, Awad TS, Kristbergsson K, McClements DJ, Weiss J (2009) Effect of surfactant surface coverage on formation of solid lipid nanoparticles (SLN). J Coll Int Science 334:75–81

    CAS  Google Scholar 

  • Hentschel A, Gramdorf S, Muller RH, Kurz T (2008) b-Carotene-loaded nanostructured lipid carriers. J. Food Sci. 73:1–6

    Google Scholar 

  • Hiemenz PC (1986) Principles of colloid and surface chemistry, 2nd edn. Marcel Dekker, New York

    Google Scholar 

  • Hiemenz PC, Rajagopalan R (1997) Principles of colloid and surface chemistry, 3rd edn. Marcel Dekker, New York

    Google Scholar 

  • Himawan C, Starov VM, Stapley AGF (2006) Thermodynamic and kinetic aspects of fat crystallization. Adv Coll Int Sci 122:3–33

    CAS  Google Scholar 

  • Ho J-aA, Zeng S-C, Tseng W-H, Lin Y-J, Chen C-H (2008) Liposome-based immunostrip for the rapid detection of Salmonella. Anal Bioanal Chem 391:479–485

    CAS  Google Scholar 

  • Hu FQ, Hong Y, Yuan H (2004) Preparation and characterization of solid lipid nanoparticles containing peptide. Int J Pharm 273:29–35

    CAS  Google Scholar 

  • Huang CH, Li SS (1999) Calorimetric and molecular mechanics studies of the thermotropic phase behavior of membrane phospholipids. Biochim Biophys Acta Biomembranes 1422:273–307

    CAS  Google Scholar 

  • Huang YY, Chung TW, Wu CI (1998) Effect of saturated/unsaturated phosphatidylcholine ratio on the stability of liposome-encapsulated hemoglobin. Int J Pharm 172:161–167

    CAS  Google Scholar 

  • Hung LC, Basri, M, Tejo BA, Ismail R, Nang HLL, Hassan HA, May CY (2011). An improved method for the preparations of nanostructured lipid carriers containing heat-sensitive bioactives. Coll Surf B Biointerfaces 87:180–186

    Google Scholar 

  • Illing A, Unruh T (2004) Investigation on the flow properties of dispersions of solid triglyceride nanoparticles. Int J Pharm 284:123–131

    CAS  Google Scholar 

  • Illing A, Unruh T, Koch, MHJ (2002) Investigation on particle self-assembly in solid-lipid-based colloidal drug carrier system. Pharm Res 21:592–597

    Google Scholar 

  • Islam AM, Chowdhry BZ, Snowden MJ (1995) Heteroaggregation in colloidal dispersions. Adv Colloid Interface Sci 62:109–136

    CAS  Google Scholar 

  • Israelachvili JN (1985) Intermolecular and surface forces. Academic Press, San Diego

    Google Scholar 

  • Jaafar-Maalej C, Charcosset C, Fessi H (2011) A new method for liposome preparation using a membrane contactor. J Liposome Res 21:213–220

    CAS  Google Scholar 

  • Jahn A, Vreeland WN, Gaitan M, Locascio LE (2004) Controlled vesicle self-assembly in microfluidic channels with hydrodynamic focusing. J Am Chem Soc 126:2674–2675

    CAS  Google Scholar 

  • Jahn A, Vreeland WN, DeVoe DL, Locascio LE, Gaitan M (2007) Microfluidic directed formation of liposomes of controlled size. Langmuir 23:6289–6293

    CAS  Google Scholar 

  • Jahn A, Reiner JE, Vreeland WN, DeVoe DL, Locascio LE, Gaitan M (2008) Preparation of nanoparticles by continuous-flow microfluidics. J Nanopart Res 10:925–934

    CAS  Google Scholar 

  • Jahn A, Stavis SM, Hong JS, Vreeland WN, Devoe DL, Gaitan M (2010) Microfluidic mixing and the formation of nanoscale lipid vesicles. ACS Nano 4:2077–2087

    CAS  Google Scholar 

  • Jenning V, Thünemann AF, Gohla SH (2000) Characterisation of a novel solid lipid nanoparticle carrier system based on binary mixtures of liquid and solid lipids. Int J Pharm 199:167–177

    CAS  Google Scholar 

  • Jeong SH, Park JH, Park, K (2007) Formulation issues around lipid-based oral and parenteral delivery systems. In: Wasan KM (ed). Role of lipid excipients in modifying oral and parenteral drug delivery, Wiley-Interscience, Hoboken, pp. 32–47

    Google Scholar 

  • Jeppsen RB (2001) Toxicology and safety of Ferrochel and other iron amino acid chelates. Arch Latinoam Nutr 51:26–34

    CAS  Google Scholar 

  • Keller BC (2001) Liposomes in nutrition. Trends Food Sci Technol 12:25–31

    CAS  Google Scholar 

  • Khreich N, Lamourette P, Boutal H, Devilliers K, Creminon C, Volland H (2008) Detection of Staphylococcus enterotoxin B using fluorescent immunoliposomes as label for immunochromatographic testing. Anal Biochem 377:182–188

    CAS  Google Scholar 

  • Kidd PM (2000) Dietary phospholipids as anti-aging nutraceuticals. In: Klatz RA, Goldman R (eds.) Anti-aging medical therapeutics, vol. IV. Health Quest Publications, Chicago, pp 282–300

    Google Scholar 

  • Kirby C, Gregoriadis G (1984) Dehydration-rehydration vesicles - a simple method for high-yield drug entrapment in liposomes. Biotechnology 2:979–984

    CAS  Google Scholar 

  • Klang V, Matsko NB, Valenta C, Hofer F (2012). Electron microscopy of nanoemulsions:an essential tool for characterization and stability assessment. Micron 43:85–103

    CAS  Google Scholar 

  • Kremer JMH, Esker MWJ, Pathmamanoharan C, Wiersema PH (1977) Vesicles of variable diameter prepared by a modified injection method. Biochemistry 16:3932–5

    CAS  Google Scholar 

  • Kritchevsky D (1998) Fats and oils in human health. In: Akoh CC, Min DB (eds) Food lipids: chemistry, nutrition and biotechnology. Marcel Dekker, New York, pp 449–462

    Google Scholar 

  • Lai F, Wissing S, Müller RH, Fadda AM (2006). Artemisia arborescens L. essential oil-loaded solid lipid nanoparticles for potential agricultural application: preparation and characterization. AAPS Pharm 7:E1–E9

    Google Scholar 

  • Lambert JD, Yang CS (2003) Cancer chemopreventive activity and bioavailability of tea and tea polyphenols. Mutat Res Fundam Mol Mech Mutagen 523:201–208

    Google Scholar 

  • Lariviere B, El Soda M, Soucy Y, Trepanier G, Paquin P, Vuillemard JC (1991) Microfluidized liposomes for the acceleration of cheese ripening. Int Dairy J 1:111–124

    Google Scholar 

  • Lasch J, Weissig V, Brandl M (2003) Preparation of liposomes. In: V. Torchilin, V. Weissig (eds) Liposomes: a practical approach. Oxford University Press, New York, pp 3–29

    Google Scholar 

  • Lasic DD (1993) Liposomes: from physics to applications. Elsevier, Amsterdam

    Google Scholar 

  • Lasic DD (1997) Liposomes in gene delivery. CRC Press, Boca Raton

    Google Scholar 

  • Laye C, McClements DJ, Weiss J (2008) Formation of biopolymer-coated liposomes by electrostatic deposition of chitosan. J Food Sci 73:N7–N15

    CAS  Google Scholar 

  • Layrisse M, Garcia-Casal MN, Solano L, Baron MA, Arguello F, Llovera D et al (2000) Iron bioavailability in humans from breakfasts enriched with iron bis-glycine chelate, phytates and polyphenols. J Nutr 130:2195–2199

    CAS  Google Scholar 

  • Li H, Zhao X, Ma Y, Zhai G, Li L, Lou H (2009) Enhancement of gastrointestinal absorption of quercetin by solid lipid nanoparticles. J Contr Rel 133:238–244

    Google Scholar 

  • Liu CH, Wu CT (2010) Optimization of nanostructured lipid carriers for lutein delivery. Coll Surf A Phys Eng Asp 353:149–156

    CAS  Google Scholar 

  • Lu Q, Li DC, Jiang JG (2011) Preparation of a tea polyphenol nanoliposome system and its physicochemical properties. J Agric Food Chem 59:13004–13011

    CAS  Google Scholar 

  • Lung HL, Ip WK, Wong CK, Mak NK, Chen ZY, Leung KN (2002) Anti-proliferative and differentiation-inducing activities of the green tea catechin epigallocatechin-3-gallate (EGCG) on the human eosinophilic leukemia EoL-1 cell line. Life Sci 72:257–268

    CAS  Google Scholar 

  • Luykx DMAM, Peters RJB, van Ruth SM, Bouwmeester H (2008) A review of analytical methods for the identification and characterization of nano delivery systems in food. J Agric Food Chem 56:8231–8247

    CAS  Google Scholar 

  • Maherani B, Arab-Tehrany E, Kheirolomoom A, Cleymand F, Linder M (2012) Influence of lipid composition on physicochemical properties of nanoliposomes encapsulating natural dipeptide antioxidant L-carnosine. Food Chem 134:632–640

    CAS  Google Scholar 

  • Malaki-Nik A, Langmaid S, Wrigth AJ (2012) Non-ionic surfactant and interfacial structure impact crystallinity and stability of b-carotene loaded lipid nanodispersions. J Agr Food Chem 60: 4126–4135

    Google Scholar 

  • Malheiros PdS Daroit DJ da Silveira NP Brandelli A (2010) Effect of nanovesicle-encapsulated nisin on growth of Listeria monocytogenes in milk. Food Microbiol 27:175–178

    CAS  Google Scholar 

  • Mayhew E, Conroy S, King J, Lazo R, Nikolopoulus G, Siciliano A et al (1987) High-pressure continuous-flow system for drug entrapment in liposomes. Methods Enzymol 149:64–77

    CAS  Google Scholar 

  • McClements DJ (2005) Food emulsions: principles, practice, and techniques. 2nd ed., CRC Press, Washington

    Google Scholar 

  • McClements DJ, Rao J (2011) Food grade nanoemulsions: formulation, fabrication, properties, performance, biological fate and potential toxicity. Crit Rev Food Sci Nut 51:285–330

    CAS  Google Scholar 

  • McPherson AV, Kitchen BJ (1983) Reviews of the progress of dairy science—the bovine-milk fat globule-membrane—its formation, composition, structure and behavior in milk and dairy-products. J Dairy Res 50:107–133

    CAS  Google Scholar 

  • Mehnert W, Mäder K (2001) Solid lipid nanoparticles: production, characterization and applications. Adv Drug Del Rev 47:165–169

    CAS  Google Scholar 

  • Meure LA, Foster NR, Dehghani F (2008) Conventional and dense gas techniques for the production of liposomes: a review. Aaps Pharmscitech 9:798–809

    CAS  Google Scholar 

  • Migglieta A, Cavalli R, Bocca C, Gabriel L, Gasco MR (2000) Cellular uptake and cytotoxicity of solid lipid nanoparticles (SLN) incorporating doxorubicin or paclitaxel. Int J Pharm 210:61–67

    Google Scholar 

  • Moraes M, Carvalho JMP, Silva CR, Cho S, Sola MR, Pinho SC (2013) Liposomes encapsulating beta-carotene produced by the proliposomes method: characterisation and shelf life of powders and phospholipid vesicles. Int J Food Sci Technol 48:274–282

    CAS  Google Scholar 

  • Mozafari MR (2005) Liposomes: an overview of manufacturing techniques. Cell Mol Biol Lett 10:711–719

    CAS  Google Scholar 

  • Mozafari MR, Mortazavi MS (2005) Nanoliposomes: From fundamentals to recent developments. Oxford:Trafford Publishing Ltd.

    Google Scholar 

  • Mozafari MR, Reed CJ, Rostron C, Kocum C, Piskin E (2002) Construction of stable anionic liposome-plasmid particles using the heating method: A preliminary investigation. Cell Mol Biol Lett 7:923–927

    CAS  Google Scholar 

  • Muchow M, Maincent P, Müller RH (2008) Lipid nanoparticles with a solid matrix (SLN®, NLC®, LDC®) for oral drug delivery. Drug Dev. Ind. Pharm. 34:1394–1405

    Google Scholar 

  • Müller RH, Mäder K, Gohla S (2000) Solid lipid nanoparticles (SLN) for controlled drug delivery: a review of the state of the art. Eur J Pharm Biopharm 50:161–177

    Google Scholar 

  • Müller RH, Radtke M, Wissing, SA (2002) Solid lipid nanoparticles (SLN) and nanostructured lipid carriers (NLC) in cosmetic and dermatological preparations. Adv Drug Del Rev 54:S131–S155

    Google Scholar 

  • Mun S, Decker EA, Park Y, Weiss J, McClements DJ (2006) Influence of interfacial composition on in vitro digestibility of emulsified lipids: Potential mechanism for chitosan’s ability to inhibit fat digestion. Food Biophys 1:21–29

    Google Scholar 

  • Nagayasu A, Uchiyama K, Kiwada H (1999) The size of liposomes: a factor which affects their targeting efficiency to tumors and therapeutic activity of liposomal antitumor drugs. Adv Drug Deliv Rev 40:75–87

    CAS  Google Scholar 

  • Ostro MJ, Cullis PR (1989) Use of liposomes as injectable-drug delivery systems. Am J Hosp Pharm 46:1576–1587

    CAS  Google Scholar 

  • Pardeike J, Hommoss A, Müller RH (2009) Lipid nanoparticles (SLN, NLC) in cosmetic and pharmaceutical dermal products. Int J Pharm 266:170–184

    Google Scholar 

  • Park JW, Benz CC, Martin FJ (2004) Future directions of liposome- and immunoliposome-based cancer therapeutics. Semin Oncol 31:196–205

    CAS  Google Scholar 

  • Patel MR, San Martin-Gonzalez, MF (2012). Characterization of ergocalciferol loaded solid lipid nanoparticle. J Food Sci 71:N8–N13

    Google Scholar 

  • Pons M, Foradada M, Estelrich J (1993) Liposomes obtained by the ethanol injection method. Int J Pharm 95:51–56

    CAS  Google Scholar 

  • Prombutara P, Kulwatthanasal Y, Supaka N, Sramala I, Chareonpornwattana S (2012) Production of nisin-loaded solid lipid nanoparticles for sustained antimicrobial activity. Food Control 24:184–190

    CAS  Google Scholar 

  • Qi C, Chen Y, Huang JH, Jina QZ, Wanga, XG (2012). Preparation and characterization of catalase-loaded solid lipid nanoparticles based on soybean phosphatidylcholine. J Sci Food Agric 92:787–793

    CAS  Google Scholar 

  • Quintanar-Guerrero D, Tamayo-Esquivel D, Ganem-Quintanar A, Allémann E, Doelker E (2005) Adaptation and optimization of the emulsification-diffusion technique to prepare lipidic nanopheres. Eur J Pharm Sci 26:211–218

    CAS  Google Scholar 

  • Rasti B, Jinap S, Mozafari MR, Yazid AM (2012) Comparative study of the oxidative and physical stability of liposomal and nanoliposomal polyunsaturated fatty acids prepared with conventional and Mozafari methods. Food Chem 135:2761–2770

    CAS  Google Scholar 

  • Rigoletto, TP; Silva CL, Santana MHA, Rosada RS, de la Torre, LG (2012) Effects of extrusion, lipid concentration and purity on physico-chemical and biological properties of cationic liposomes for gene vaccine applications. Journal of microencapsulation 29, 759–769. DOI:10.3109/02652048.2012.686530

    Google Scholar 

  • Re MI, Santana MHA, Davila MA (2009) Encapsulation technologies for modifying food performance: new techniques and products. In: Passos ML, Ribeiro CP Jr. (eds) Innovation in food engineering: new techniques and products. CRC Press, Boca Raton. pp 224–275

    Google Scholar 

  • Riley J (2005). Charge in colloidal systems. In: Cosgrove T (ed) Colloid science:principles, methods and applications. Blackwell Publishing, Oxford

    Google Scholar 

  • Rosada RS, Silva CL, Andrade Santana MH, Nakaie CR, de la Torre LG (2012) Effectiveness, against tuberculosis, of pseudo-ternary complexes: Peptide-DNA-cationic liposome. J Colloid Interface Sci 373:102–109

    CAS  Google Scholar 

  • Rosenblatt KM, Bunjes H (2009) Poly(vinyl alcohol) as emulsifier stabilizes solid triglyceride drug carrier nanoparticles in the a-modification. Mol Pharm 6:105–120

    CAS  Google Scholar 

  • Salager JL (2006) Emulsion phase inversion phenomena. In Sjöblom J (ed.) Emulsions and emulsion stability. CRC Press, Boca Raton, p 185–226

    Google Scholar 

  • Sawant KK, Dodiya SS (2008) Recent advances and patents on solid lipid nanoparticles. Rec Pat Drug Del Form 2:120–135

    CAS  Google Scholar 

  • Schmelz EM, Dillehay DL, Webb SK, Reiter A, Adams J, Merrill AH (1996) Sphingomyelin consumption suppresses aberrant colonic crypt foci and increases the proportion of adenomas versus adenocarcinomas in CF1 mice treated with 1,2-dimethylhydrazine: Implications for dietary sphingolipids and colon carcinogenesis. Cancer Res 56:4936–4941

    CAS  Google Scholar 

  • Schubert MA, Müller-Goymann CC (2003) Solvent injection as a new approach for manufacturing lipid nanoparticles—evaluation of the method and process parameters. Eur J Pharm Biopharm 55:125–131

    CAS  Google Scholar 

  • Senior J, Gregoriadis G (1982) Stability of small unilamellar liposomes in serum and clearance from the circulation—the effect of the phospholipid and cholesterol components. Life Sci 30:2123–2136

    CAS  Google Scholar 

  • Severino P, Andreani T, Macedo AS, Fangueiro JF, Santana MHA, Souto EB (2012). Current state of art and new trends on lipid nanoparticles (SLN and NLC) for oral drug delivery. J Drug Del. doi:10.1155/2012/750891

    Google Scholar 

  • Shukat R, Relkin P (2011) Lipid nanoparticles as vitamin matrix carriers in liquid food systems: on the role of high-pressure homogenisation, droplet size and adsorbed materials. Coll Surf B Biointerfaces 86:119–124

    CAS  Google Scholar 

  • Shukat R, Bourgaux C, Relkin P (2012) Crystallisation behaviour of palm oil nanoemulsions carrying vitamin E. J Therm Anal Calorim 108:153–161

    CAS  Google Scholar 

  • Siekmann B, Westesen K (1996) Investigations on solid lipid nanoparticles prepared by precipitation in o/w emulsions. Eur J Pharm Biopharm 43:104–109

    Google Scholar 

  • Sjöström B, Bergenståhl B (1992) Preparation of submicron drug particles in lecithinstabilized o/w emulsions. I. Model studies of the precipitation of cholesteryl acetate. Int J Pharm 88:53–62

    Google Scholar 

  • Small DM (1986) The physical chemistry of lipids. Plenum Press, New York

    Google Scholar 

  • Solans C, Solé I, Fernandéz-Arteaga A, Nolla J, Azemar N, Gutierrez J, Maestro A, González C, Pey CM (2010) Nano-emulsion formation by low-energy methods and functional properties. In: Hidalgo-Alvarez R (ed) Structure and functional properties of colloidal systems. CRC Press, Boca Raton, pp 457–482

    Google Scholar 

  • Soriani M, Rice-Evans C, Tyrrell RM (1998) Modulation of the UVA activation of haem oxygenase, collagenase and cyclooxygenase gene expression by epigallocatechin in human skin cells. FEBS Lett 439:253–257

    CAS  Google Scholar 

  • Sou K, Naito Y, Endo T, Takeoka S, Tsuchida E (2003) Effective encapsulation of proteins into size-controlled phospholipid vesicles using freeze-thawing and extrusion. Biotechnol Prog 19:1547–1552

    CAS  Google Scholar 

  • Souto EMB (2005) SLN and NLC for topical delivery of antifungals. Dissertation, Free University of Berlin

    Google Scholar 

  • Szoka F, Papahadjopoulos D (1978) Procedure for preparation of liposomes with large internal aqueous space and high capture by reverse-phase evaporation. Proc Natl Acad Sci U S A 75:4194–4198

    CAS  Google Scholar 

  • Takahashi M, Kitamoto D, Imura T, Oku H, Takara K, Wada K (2008) Characterization and bioavailability of liposomes containing a ukon extract. Biosci Biotechnol Biochem 72:1199–1205

    CAS  Google Scholar 

  • Taylor KMG, Morris RM (1995) Thermal-analysis of phase-transition behavior in liposomes. Thermochim Acta 248:289–301

    CAS  Google Scholar 

  • Taylor KMG, Taylor G, Kellaway IW, Stevens J (1990) The stability of liposomes to nebulization. Int J Pharm 58:57–61

    CAS  Google Scholar 

  • Taylor TM, Davidson PM, Bruce BD, Weiss J (2005) Liposomal nanocapsules in food science and agriculture. Crit Rev Food Sci Nutr 45:587–605

    CAS  Google Scholar 

  • Taylor TM, Gaysinsky S, Davidson PM, Bruce BD, Weiss J (2007) Characterization of antimicrobial-bearing liposomes by zeta-potential, vesicle size, and encapsulation efficiency. Food Biophys 2:1–9

    Google Scholar 

  • Teixeira ML, dos Santos J, Silveira NP, Brandelli A (2008) Phospholipid nanovesicles containing a bacteriocin-like substance for control of Listeria monocytogenes. Innov Food Sci Emerg Technol 9:49–53

    CAS  Google Scholar 

  • Thompson AK, Singh H (2006) Preparation of liposomes from milk fat globule membrane phospholipids using a microfluidizer. J Dairy Sci 89:410–419

    CAS  Google Scholar 

  • Thompson AK, Haisman D, Singh H (2006) Physical stability of liposomes prepared from milk fat globule membrane and soya phospholipids. J Agric Food Chem 54:6390–6397

    CAS  Google Scholar 

  • Thompson AK, Couchoud A, Singh H (2009) Comparison of hydrophobic and hydrophilic encapsulation using liposomes prepared from milk fat globule-derived phospholipids and soya phospholipids. Dairy Sci Technol 89:99–113

    CAS  Google Scholar 

  • Timms RE (1984) Phase behaviour of fats and their mixtures. Prog Lip Res 23:1–38

    CAS  Google Scholar 

  • Torchilin V, Weissig V (Eds) (2003) Liposomes: a practical approach. Oxford University Press, Oxford

    Google Scholar 

  • Trevisan JE, Cavalcanti LP, Oliveira CLP, Torre LGdL, Santana MHA (2011) Technological aspects of scalable processes for the production of functional liposomes for gene therapy. In: Yuan XB (ed) Non-viral gene therapy. InTech, Rijeka, pp 267–292

    Google Scholar 

  • Triplett II MD, Rathman JF (2009) Optimization of b-carotene loaded solid lipid nanoparticles preparation using a high shear homogenization technique. J Nanop Res 11:601–614

    CAS  Google Scholar 

  • Trombino S, Cassano R, Muzzalupo R, Pingitore A, Cione E, Picci N (2009) Stearyl ferulate-based solid lipid nanoparticles for the encapsulation and stabilization of b-carotene and a-tocopherol. Coll. Surf. B: Biointerfaces 72:181–187

    CAS  Google Scholar 

  • Trotta M, Debernardi F, Caputo O (2003) Preparation of solid lipid nanoparticles by a solvent emulsification-diffusion technique. Int J Pharm 257:153–160

    CAS  Google Scholar 

  • Valdivieso-Garcia A, Riche E, Abubakar O, Waddell TE, Brooks BW (2001) A double antibody sandwich enzyme-linked immunosorbent assay for the detection of Salmonella using biotinylated monoclonal antibodies. J Food Prot 64:1166–1171

    CAS  Google Scholar 

  • Vitor MT, Bergami-Santos PC, Barbuto JAM, De La Torre LG (2013) Cationic Liposomes as Non-viral Vector for RNA Delivery in Cancer Immunotherapy. Recent Pat Drug Deliv Formul 7:99–110

    CAS  Google Scholar 

  • Wagner A, Vorauer-Uhl K, Kreismayr G, Katinger H (2002) The crossflow injection technique: An improvement of the ethanol injection method. J Liposome Res 12:259–270

    CAS  Google Scholar 

  • Wagner A, Platzgummer M, Kreismayr G, Quendler H, Stiegler G, Ferko B et al (2006) GMP production of liposomes - A new industrial approach. J Liposome Res 16:311–3119

    CAS  Google Scholar 

  • Wambura P, Yang W, Mwakatage NR (2011) Effects of sonication and edible coating containing rosemary and tea extracts on reduction of peanut lipid oxidative rancidity. Food Bioprocess Technol 4:107–115

    CAS  Google Scholar 

  • Ward RE, German JB, Corredig M (2006) Composition, applications, fractionation, technological and nutritional significance of milk fat globule membrane material. In: Fox PF, McSweeney PLH (eds) Advanced dairy chemistry: lipids, vol 2, 3rd edn. Springer, New York, pp 213–244

    Google Scholar 

  • Watkins SM, German JB (1998) Omega fatty acids. In: Akoh CC, Min DB (eds) Food lipids: chemistry, nutrition and biotechnology. Marcel Dekker, New York, pp 463–494

    Google Scholar 

  • Wechtersbach L, Ulrih NP, Cigic B (2012) Liposomal stabilization of ascorbic acid in model systems and in food matrices. Lebenson Wiss Technol 45:43–49

    CAS  Google Scholar 

  • Weiss J, Decker EA, McClements DJ, Kristbergsson K, Helgason T, Awad T (2008) Solid lipid nanoparticles as delivery systems for bioactive food components. Food Biophys 3:146–154

    Google Scholar 

  • Were LM, Bruce BD, Davidson PM, Weiss J (2003) Size, stability, and entrapment efficiency of phospholipid nanocapsules containing polypeptide antimicrobials. J Agric Food Chem 51:8073–8079

    CAS  Google Scholar 

  • Were LM, Bruce B, Davidson PM, Weiss J (2004) Encapsulation of nisin and lysozyme in liposomes enhances efficacy against Listeria monocytogenes. J Food Prot 67, 922–927

    CAS  Google Scholar 

  • Westesen K, Siekmann B (1997) Investigation of the gel formation of phospholipid-stabilized solid lipid nanoparticles. Int J Pharm 151:35–45

    CAS  Google Scholar 

  • Whitesides GM (2006) The origins and the future of microfluidics. Nature 442:368–373

    CAS  Google Scholar 

  • Yamada H, Ohashi K, Atsumi T, Okabe H, Shimizu T, Nishio S et al (2003) Effects of tea catechin inhalation on methicillin-resistant Staphylococcus aureus in elderly patients in a hospital ward. J Hosp Infect 53:229–231

    CAS  Google Scholar 

  • Yang T, Cui F-D, Choi M-K, Cho J-W, Chung S-J, Shim C-K et al (2007) Enhanced solubility and stability of PEGylated liposomal paclitaxel: in vitro and in vivo evaluation. Int J Pharm 338:317–326

    CAS  Google Scholar 

  • Yokota D, Moraes M, Pinho SC (2012). Characterization of lyophilized liposomes produced wit non-purified soy lecithin: a case study of casein hydrolysate microencapsulation. Braz J Chem Eng 29:325–335

    CAS  Google Scholar 

  • Yoshida P, Yokota D, Foglio MA, Rodrigues RAF, Pinho SC (2010) Liposomes incorporating essential oil of Brazilian cherry (Eugenia uniflora L.): characterization of aqueous dispersions and lyophilized formulations. J Microencapsul 27:416–425

    CAS  Google Scholar 

  • Yu D-G, Branford-White C, Williams GR, Bligh SWA, White K, Zhu L-M et al (2011) Self-assembled liposomes from amphiphilic electrospun nanofibers. Soft Matter 7:8239–8247

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Samantha Cristina de Pinho .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer Science + Business Media New York

About this chapter

Cite this chapter

de La Torre, L., de Pinho, S. (2015). Lipid Matrices for Nanoencapsulation in Food: Liposomes and Lipid Nanoparticles. In: Hernández-Sánchez, H., Gutiérrez-López, G. (eds) Food Nanoscience and Nanotechnology. Food Engineering Series. Springer, Cham. https://doi.org/10.1007/978-3-319-13596-0_7

Download citation

Publish with us

Policies and ethics