Skip to main content

Polymer-Assisted Cartilage and Tendon Repair

  • Chapter
  • First Online:
A Tissue Regeneration Approach to Bone and Cartilage Repair

Part of the book series: Mechanical Engineering Series ((MES))

  • 1683 Accesses

Abstract

Intrinsic repair of traumatic cartilage injuries is generally poor; in a similar manner, the repair of ruptured tendons can be associated with unwanted results such as scar formation and altered biomechanical tissue properties. Therefore, further research utilizing tissue engineering (TE) techniques should help to reduce healing times and to restore natural structure of cartilage and tendon in response to injury. Natural and synthetic polymers play a pivotal role as artificial matrices for cartilage and tendon tissue engineering. Some TE-based therapeutical approaches have already found entry in the clinical praxis. This chapter discusses which peculiarities of cartilage and tendon have to be addressed for the use of synthetic polymers for TE, which kinds of polymers have been tested so far, and which unmet medical needs remain for cartilage and tendon TE. The important issue of reestablishing the tendon-to-bone interface for stable polymer-based TE tendon reconstruction strategies will also be discussed. Future directions for TE-assisted cartilage and tendon reconstruction are to develop biomimetic polymer scaffolds, to fully restore tissue zonality and achieve implant integration, mechanocompetence, and last but not least, to establish one step strategies for clinical application. Additionally, polymers could be used to help achieve more rapid expansion of chondrocyte and tenocyte numbers in culture, and for preculturing procedures.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

2D:

Two-dimensional

3D:

Three-dimensional

BMP:

Bone morphogenetic protein

COMP:

Cartilage oligomeric protein

CS:

Chondroitin sulfate

ECM:

Extracellular matrix

FDA:

Food and drug administration

FGF:

Fibroblast growth factor

GAG:

Glycosaminoglycans

HA:

Hyaluronan

HD:

High-density culture

IGF:

Insulin-like growth factor

iPS:

Induced pluripotent stem cells

MSC:

Mesenchymal stem cells

PCL:

Polycaprolacton

PDGF:

Platelet-derived growth factor

PDS:

Polydioxanone

PEG:

Polyethylenglycol

PET:

Polyethylene terephthalate

PGA:

Polyglycolic acid

PLA:

Polylactic acid

P(LLA-CL):

Poly(l-lactide-co-ε-caprolactone)

PTFE:

Poly(tetrafluoro ethylene)

PUU:

Polyurethran

PVA:

Polyvinylalkohol

RGD:

Arginin, glycin und asparaginsäure

SDF:

Stromal cell-derived factor

TE:

Tissue engineering

TGF:

Transforming growth factor

References

  • Abousleiman RI, Reyes Y, McFetridge P, Sikavitsas V (2009) Tendon tissue engineering using cell-seeded umbilical veins cultured in a mechanical stimulator. Tissue Eng Part A 15:787–795

    Google Scholar 

  • Al-Sadi O, Schulze-Tanzil G, Kohl B, Lohan A, Lemke M, Ertel W, John T (2011) Tenocytes, pro-inflammatory cytokines and leukocytes: a relationship? Muscles Ligaments Tendons J 1:68–76

    Google Scholar 

  • Archer CW, Francis-West P (2003) The chondrocyte. Int J Biochem Cell Biol 35:401–404

    Google Scholar 

  • Aspenberg P (2007) Stimulation of tendon repair: mechanical loading, GDFs and platelets. A Mini-Rev Int Orthop 31:783–789

    Google Scholar 

  • Beane OS, Darling EM (2012) Isolation, characterization, and differentiation of stem cells for cartilage regeneration. Ann Biomed Eng 40:2079–2097

    Google Scholar 

  • Benjamin M, Ralphs JR (1998) Fibrocartilage in tendons and ligaments–an adaptation to compressive load. J Anat 193(Pt 4):481–494

    Google Scholar 

  • Benjamin M, Toumi H, Ralphs JR, Bydder G, Best TM, Milz S (2006) Where tendons and ligaments meet bone: attachment sites (‘entheses’) in relation to exercise and/or mechanical load. J Anat 208:471–490

    Google Scholar 

  • Benjamin M, Kaiser E, Milz S (2008) Structure-function relationships in tendons: a review. J Anat 212:211–228

    Google Scholar 

  • Benya PD, Shaffer JD (1982) Dedifferentiated chondrocytes reexpress the differentiated collagen phenotype when cultured in agarose gels. Cell 30:215–224

    Google Scholar 

  • Blum MM, Ovaert TC (2013) Low friction hydrogel for articular cartilage repair: evaluation of mechanical and tribological properties in comparison with natural cartilage tissue. Mater Sci Eng C Mater Biol Appl 33:4377–4383

    Google Scholar 

  • Bobick BE, Chen FH, Le AM, Tuan RS (2009) Regulation of the chondrogenic phenotype in culture. Birth Defects Res C 87:351–371

    Google Scholar 

  • Bosworth LA, Alam N, Wong JK, Downes S (2013) Investigation of 2D and 3D electrospun scaffolds intended for tendon repair. J Mater Sci Mater Med 24:1605–1614

    Google Scholar 

  • Brady MA, Vaze R, Amin HD, Overby DR, Ethier CR (2013) The design and development of a high-throughput magneto-mechanostimulation device for cartilage tissue engineering. Tissue Eng Part C Methods 20(2):149–159

    Google Scholar 

  • Bruckner P, van der Rest M (1994) Structure and function of cartilage collagens. Microsc Res Tech 28:378–384

    Google Scholar 

  • Bush PG, Hall AC (2003) The volume and morphology of chondrocytes within non-degenerate and degenerate human articular cartilage. Osteoarthritis and Cartilage/OARS Osteoarthritis Res Soc 11:242–251

    Google Scholar 

  • Caliari SR, Harley BA (2011) The effect of anisotropic collagen-GAG scaffolds and growth factor supplementation on tendon cell recruitment, alignment, and metabolic activity. Biomaterials 32:5330–5340

    Google Scholar 

  • Caliari SR, Harley BA (2013) Composite growth factor supplementation strategies to enhance tenocyte bioactivity in aligned collagen-GAG scaffolds. Tissue Eng Part A 19:1100–1112

    Google Scholar 

  • Canseco JA, Kojima K, Penvose AR, Ross JD, Obokata H, Gomoll AH, Vacanti CA (2012) Effect on ligament marker expression by direct-contact co-culture of mesenchymal stem cells and anterior cruciate ligament cells. Tissue Eng Part A 18:2549–2558

    Google Scholar 

  • Cao D, Liu W, Wei X, Xu F, Cui L, Cao Y (2006) In vitro tendon engineering with avian tenocytes and polyglycolic acids: a preliminary report. Tissue Eng 12:1369–1377

    Google Scholar 

  • Cetinkaya G, Kahraman AS, Gumusderelioglu M, Arat S, Onur MA (2011) Derivation, characterization and expansion of fetal chondrocytes on different microcarriers. Cytotechnology 63:633–643

    Google Scholar 

  • Chawla K, Yu TB, Stutts L, Yen M, Guan Z (2012) Modulation of chondrocyte behavior through tailoring functional synthetic saccharide-peptide hydrogels. Biomaterials 33:6052–6060

    Google Scholar 

  • Chen J, Altman GH, Karageorgiou V, Horan R, Collette A, Volloch V, Colabro T, Kaplan DL (2003) Human bone marrow stromal cell and ligament fibroblast responses on RGD-modified silk fibers. J Biomed Mater Res Part A 67:559–570

    Google Scholar 

  • Chung C, Burdick JA (2008) Engineering cartilage tissue. Adv Drug Deliv Rev 60:243–262

    Google Scholar 

  • de Wreede R, Ralphs JR (2009) Deposition of collagenous matrices by tendon fibroblasts in vitro: a comparison of fibroblast behavior in pellet cultures and a novel three-dimensional long-term scaffoldless culture system. Tissue Eng Part A 15:2707–2715

    Google Scholar 

  • Deng M, James R, Laurencin CT, Kumbar SG (2012) Nanostructured polymeric scaffolds for orthopaedic regenerative engineering. IEEE Trans Nanobiosci 11:3–14

    Google Scholar 

  • Dhandayuthapani B, Yoshida Y, Maekawa T, Kumar DS (2011) Polymeric scaffolds in tissue engineering application: a review. Int J Polym Sci 2011

    Google Scholar 

  • Dickerson DA, Misk TN, van Sickle DC, Breur GJ, Nauman EA (2013) In vitro and in vivo evaluation of orthopedic interface repair using a tissue scaffold with a continuous hard tissue-soft tissue transition. J Orthop Surg Res 8:18

    Google Scholar 

  • Domm C, Schunke M, Christesen K, Kurz B (2002) Redifferentiation of dedifferentiated bovine articular chondrocytes in alginate culture under low oxygen tension. Osteoarthritis Cartilage/OARS Osteoarthritis Res Soc 10:13–22

    Google Scholar 

  • Dorozhkin SV (2010) Bioceramics of calcium orthophosphates. Biomaterials 31:1465–1485

    Google Scholar 

  • dos Santos F, Andrade PZ, Eibes G, da Silva CL, Cabral JM (2011) Ex vivo expansion of human mesenchymal stem cells on microcarriers. Methods Mol Biol 698:189–198

    Google Scholar 

  • Drira Z, Yadavalli VK (2013) Nanomechanical measurements of polyethylene glycol hydrogels using atomic force microscopy. J Mech Behav Biomed Mater 18:20–28

    Google Scholar 

  • Egerbacher M, Arnoczky SP, Caballero O, Lavagnino M, Gardner KL (2008) Loss of homeostatic tension induces apoptosis in tendon cells: an in vitro study. Clin Orthop Relat Res 466:1562–1568

    Google Scholar 

  • Ekdahl M, Wang JH, Ronga M, Fu FH (2008) Graft healing in anterior cruciate ligament reconstruction. Knee Surg Sports Traumatol Arthrosc Official J ESSKA 16:935–947

    Google Scholar 

  • Elloumi-Hannachi I, Yamato M, Okano T (2010) Cell sheet engineering: a unique nanotechnology for scaffold-free tissue reconstruction with clinical applications in regenerative medicine. J Intern Med 267:54–70

    Google Scholar 

  • Forsey RW, Tare R, Oreffo RO, Chaudhuri JB (2012) Perfusion bioreactor studies of chondrocyte growth in alginate-chitosan capsules. Biotechnol Appl Biochem 59:142–152

    Google Scholar 

  • Freeman JW (2009) Tissue engineering options for ligament healing. Bone Tissue Regeneration Insights 2:13–23

    Google Scholar 

  • Funakoshi T, Schmid T, Hsu HP, Spector M (2008) Lubricin distribution in the goat infraspinatus tendon: a basis for interfascicular lubrication. J Bone Joint Surg Am 90:803–814

    Google Scholar 

  • Gardner OF, Archer CW, Alini M, Stoddart MJ (2013) Chondrogenesis of mesenchymal stem cells for cartilage tissue engineering. Histol Histopathol 28:23–42

    Google Scholar 

  • Gloria A, de Santis R, Ambrosio L (2010) Polymer-based composite scaffolds for tissue engineering. J Appl Biomater Biomech JABB 8:57–67

    Google Scholar 

  • Gomoll AH, Madry H, Knutsen G, van Dijk N, Seil R, Brittberg M, Kon E (2010) The subchondral bone in articular cartilage repair: current problems in the surgical management. Knee Surg Sports Traumatol Arthrosc Official J ESSKA 18:434–447

    Google Scholar 

  • Grad S, Loparic M, Peter R, Stolz M, Aebi U, Alini M (2012) Sliding motion modulates stiffness and friction coefficient at the surface of tissue engineered cartilage. Osteoarthritis Cartilage/OARS Osteoarthritis Res Soc 20:288–295

    Google Scholar 

  • Gross G, Hoffmann A (2013) Therapeutic strategies for tendon healing based on novel biomaterials, factors and cells. Pathobiology J Immunopathol Mol Cell Biol 80:203–210

    Google Scholar 

  • Hall BK, Miyake T (2000) All for one and one for all: condensations and the initiation of skeletal development. BioEssays News Rev Mol Cell Dev Biol 22:138–147

    Google Scholar 

  • Hansen U, Schunke M, Domm C, Ioannidis N, Hassenpflug J, Gehrke T, Kurz B (2001) Combination of reduced oxygen tension and intermittent hydrostatic pressure: a useful tool in articular cartilage tissue engineering. J Biomech 34:941–949

    Google Scholar 

  • Harris MT, Butler DL, Boivin GP, Florer JB, Schantz EJ, Wenstrup RJ (2004) Mesenchymal stem cells used for rabbit tendon repair can form ectopic bone and express alkaline phosphatase activity in constructs. J Orthop Res Official Publ Orthop Res Soc 22:998–1003

    Google Scholar 

  • Hayashi M, Zhao C, Thoreson AR, Chikenji T, Jay GD, An KN, Amadio PC (2013) The effect of lubricin on the gliding resistance of mouse intrasynovial tendon. PLoS ONE 8:e83836

    Google Scholar 

  • He P, Ng KS, Toh SL, Goh JC (2012) In vitro ligament-bone interface regeneration using a trilineage coculture system on a hybrid silk scaffold. Biomacromolecules 13:2692–2703

    Google Scholar 

  • Hoyer M, Drechsel N, Meyer M, Meier C, Hinüber C, Breier A et al (2014) Embroidered polymer-collagen hybrid scaffold variants for ligament tissue engineering. Mater Sci Eng C Mater Biol Appl 43:290–299 

    Google Scholar 

  • Huey DJ, Hu JC, Athanasiou KA (2012) Unlike bone, cartilage regeneration remains elusive. Science 338:917–921

    Google Scholar 

  • Hunziker EB, Rosenberg LC (1996) Repair of partial-thickness defects in articular cartilage: cell recruitment from the synovial membrane. J Bone Joint Surg Am 78:721–733

    Google Scholar 

  • Hwang CM, Park Y, Park JY, Lee K, Sun K, Khademhosseini A, Lee SH (2009) Controlled cellular orientation on PLGA microfibers with defined diameters. Biomed Microdevices 11:739–746

    Google Scholar 

  • Ippolito E, Natali PG, Postacchini F, Accinni L, de Martino C (1980) Morphological, immunochemical, and biochemical study of rabbit achilles tendon at various ages. J Bone Joint Surg Am 62:583–598

    Google Scholar 

  • Jayakumar R, Chennazhi KP, Srinivasan S, Nair SV, Furuike T, Tamura H (2011) Chitin scaffolds in tissue engineering. Int J Mol Sci 12:1876–1887

    Google Scholar 

  • Kapoor A, Caporali EH, Kenis PJ, Stewart MC (2010) Microtopographically patterned surfaces promote the alignment of tenocytes and extracellular collagen. Acta Biomater 6:2580–2589

    Google Scholar 

  • Kasoju N, Bora U (2012) Silk fibroin in tissue engineering. Adv Healthc Mater 1:393–412

    Google Scholar 

  • Kew SJ, Gwynne JH, Enea D, Abu-Rub M, Pandit A, Zeugolis D, Brooks RA, Rushton N, Best SM, Cameron RE (2011) Regeneration and repair of tendon and ligament tissue using collagen fibre biomaterials. Acta Biomater 7:3237–3247

    Google Scholar 

  • Khan F, Ahmad SR (2013) Polysaccharides and their derivatives for versatile tissue engineering application. Macromol Biosci 13:395–421

    Google Scholar 

  • Kim IL, Mauck RL, Burdick JA (2011) Hydrogel design for cartilage tissue engineering: a case study with hyaluronic acid. Biomaterials 32:8771–8782

    Google Scholar 

  • Kim K, Lam J, Lu S, Spicer PP, Lueckgen A, Tabata Y, Wong ME, Jansen JA, Mikos AG, Kasper FK (2013) Osteochondral tissue regeneration using a bilayered composite hydrogel with modulating dual growth factor release kinetics in a rabbit model. J Control Release Official J Control Release Soc 168:166–178

    Google Scholar 

  • Ko HF, Sfeir C, Kumta PN (2010) Novel synthesis strategies for natural polymer and composite biomaterials as potential scaffolds for tissue engineering. Philos Trans Ser A Math Phys Eng Sci 368:1981–1997

    Google Scholar 

  • Kundu B, Rajkhowa R, Kundu SC, Wang X (2013) Silk fibroin biomaterials for tissue regenerations. Adv Drug Deliv Rev 65:457–470

    Google Scholar 

  • Kuo CK, Marturano JE, Tuan RS (2010) Novel strategies in tendon and ligament tissue engineering: advanced biomaterials and regeneration motifs. Sports Med Arthroscopy Rehabil Ther Technol SMARTT 2:20

    Google Scholar 

  • Kwon HJ, Yasuda K, Ohmiya Y, Honma K, Chen YM, Gong JP (2010) In vitro differentiation of chondrogenic ATDC5 cells is enhanced by culturing on synthetic hydrogels with various charge densities. Acta Biomater 6:494–501

    Google Scholar 

  • Lee CH, Shin HJ, Cho IH, Kang YM, Kim IA, Park KD, Shin JW (2005) Nanofiber alignment and direction of mechanical strain affect the ECM production of human ACL fibroblast. Biomaterials 26:1261–1270

    Google Scholar 

  • Lee J, Choi WI, Tae G, Kim YH, Kang SS, Kim SE, Kim SH, Jung Y (2011) Enhanced regeneration of the ligament-bone interface using a poly(L-lactide-co-epsilon-caprolactone) scaffold with local delivery of cells/BMP-2 using a heparin-based hydrogel. Acta Biomater 7:244–257

    Google Scholar 

  • Lee WY, Lui PP, Rui YF (2012) Hypoxia-mediated efficient expansion of human tendon-derived stem cells in vitro. Tissue Eng Part A 18:484–498

    Google Scholar 

  • Levingstone TJ, Matsiko A, Dickson G, O’brien FJ, Gleeson JP (2014) A biomimetic multi-layered collagen-based scaffold for osteochondral repair. Acta Biomater 10:1996–2014

    Google Scholar 

  • Lin Z, Willers C, Xu J, Zheng MH (2006) The chondrocyte: biology and clinical application. Tissue Eng 12:1971–1984

    Google Scholar 

  • Liu Y, Birman V, Chen C, Thomopoulos S, Genin GM (2011) Mechanisms of bimaterial attachment at the interface of tendon to bone. J Eng Mater Technol 133:011006

    Google Scholar 

  • Liu Z, Tang Y, Lu S, Zhou J, Du Z, Duan C, Li Z, Wang C (2013) The tumourigenicity of iPS cells and their differentiated derivates. J Cell Mol Med 17:782–791

    Google Scholar 

  • Lohan A, Stoll C, Albrecht M, Denner A, John T, Kruger K, Ertel W, Schulze-Tanzil G (2013) Human hamstring tenocytes survive when seeded into a decellularized porcine Achilles tendon extracellular matrix. Connect Tissue Res 54:305–312

    Google Scholar 

  • Longo UG, Lamberti A, Maffulli N, Denaro V (2011) Tissue engineered biological augmentation for tendon healing: a systematic review. Br Med Bull 98:31–59

    Google Scholar 

  • Lu HH, Spalazzi JP (2009) Biomimetic stratified scaffold design for ligament-to-bone interface tissue engineering. Comb Chem High Throughput Screening 12:589–597

    Google Scholar 

  • Lu HH, Subramony SD, Boushell MK, Zhang X (2010) Tissue engineering strategies for the regeneration of orthopedic interfaces. Ann Biomed Eng 38:2142–2154

    Google Scholar 

  • Lui PP, Rui YF, Ni M, Chan KM (2011) Tenogenic differentiation of stem cells for tendon repair-what is the current evidence? J Tissue Eng Regenerative Med 5:e144–e163

    Google Scholar 

  • Lujan TJ, Wirtz KM, Bahney CS, Madey SM, Johnstone B, Bottlang M (2011) A novel bioreactor for the dynamic stimulation and mechanical evaluation of multiple tissue-engineered constructs. Tissue Eng Part C Methods 17:367–374

    Google Scholar 

  • Lynn AK, Yannas IV, Bonfield W (2004) Antigenicity and immunogenicity of collagen. J Biomed Mater Res B Appl Biomater 71:343–354

    Google Scholar 

  • Mabvuure N, Hindocha S, Khan WS (2012) The role of bioreactors in cartilage tissue engineering. Curr Stem Cell Res Ther 7:287–292

    Google Scholar 

  • Madry H, van Dijk CN, Mueller-Gerbl M (2010) The basic science of the subchondral bone. Knee Surg Sports Traumatol Arthrosc Official J ESSKA 18:419–433

    Google Scholar 

  • Madry H, Rey-Rico A, Venkatesan JK, Johnstone B, Cucchiarini M (2013) Transforming growth factor beta-releasing scaffolds for cartilage tissue engineering. Tissue Eng Part B Rev 20(106):125

    Google Scholar 

  • Maeda E, Ye S, Wang W, Bader DL, Knight MM, Lee DA (2012) Gap junction permeability between tenocytes within tendon fascicles is suppressed by tensile loading. Biomech Model Mechanobiol 11:439–447

    Google Scholar 

  • Mafi P, Hindocha S, Mafi R, Khan WS (2012) Evaluation of biological protein-based collagen scaffolds in cartilage and musculoskeletal tissue engineering—a systematic review of the literature. Curr Stem Cell Res Ther 7:302–309

    Google Scholar 

  • Maletis GB, Inacio MC, Desmond JL, Funahashi TT (2013) Reconstruction of the anterior cruciate ligament: association of graft choice with increased risk of early revision. Bone Joint J 95-B(623):628

    Google Scholar 

  • Martinek V (2003) Anatomie und Pathophysiologie des hyalinen Knorpels. Deutsche Zeitschrift für Sportmedizin 54:166–170

    Google Scholar 

  • Mascarenhas R, Macdonald PB (2008) Anterior cruciate ligament reconstruction: a look at prosthetics–past, present and possible future. McGill J Med MJM Int Forum Adv Med Sci Students 11:29–37

    Google Scholar 

  • Melero-Martin JM, Dowling MA, Smith M, Al-Rubeai M (2006) Expansion of chondroprogenitor cells on macroporous microcarriers as an alternative to conventional monolayer systems. Biomaterials 27:2970–2979

    Google Scholar 

  • Meller R, Schiborra F, Brandes G, Knobloch K, Tschernig T, Hankemeier S, Haasper C, Schmiedl A, Jagodzinski M, Krettek C, E Willbold (2009) Postnatal maturation of tendon, cruciate ligament, meniscus and articular cartilage: a histological study in sheep. Annals of anatomy = Anatomischer Anzeiger: official organ of the Anatomische Gesellschaft 191:575–585

    Google Scholar 

  • Milz S, Benjamin M, Putz R (2005) Molecular parameters indicating adaptation to mechanical stress in fibrous connective tissue. Adv Anat Embryol Cell Biol 178:1–71

    Google Scholar 

  • Milz S, Ockert B, Putz R (2009) Tenocytes and the extracellular matrix: a reciprocal relationship. Der Orthopade 38:1071–1079

    Google Scholar 

  • Mirahmadi F, Tafazzoli-Shadpour M, Shokrgozar MA, Bonakdar S (2013) Enhanced mechanical properties of thermosensitive chitosan hydrogel by silk fibers for cartilage tissue engineering. Mater Sci Eng C Mater Biol Appl 33:4786–4794

    Google Scholar 

  • Mollon B, Kandel R, Chahal J, Theodoropoulos J (2013) The clinical status of cartilage tissue regeneration in humans. Osteoarthritis Cartilage/OARS Osteoarthritis Res Soc 21:1824–1833

    Google Scholar 

  • Muller C, Marzahn U, Kohl B, el Sayed K, Lohan A, Meier C, Ertel W, Schulze-Tanzil G (2013) Hybrid pig versus Gottingen minipig-derived cartilage and chondrocytes show pig line-dependent differences. Exp Biol Med 238:1210–1222

    Google Scholar 

  • Nayak BP, Goh JC, Toh SL, Satpathy GR (2010) In vitro study of stem cell communication via gap junctions for fibrocartilage regeneration at entheses. Regenerative Med 5:221–229

    Google Scholar 

  • Neu CP, Komvopoulos K, Reddi AH (2008) The interface of functional biotribology and regenerative medicine in synovial joints. Tissue Eng Part B Rev 14:235–247

    Google Scholar 

  • Ni M, Rui YF, Tan Q, Liu Y, Xu LL, Chan KM, Wang Y, Li G (2013) Engineered scaffold-free tendon tissue produced by tendon-derived stem cells. Biomaterials 34:2024–2037

    Google Scholar 

  • Nooeaid P, Salih V, Beier JP, Boccaccini AR (2012) Osteochondral tissue engineering: scaffolds, stem cells and applications. J Cell Mol Med 16:2247–2270

    Google Scholar 

  • Oldershaw RA (2012) Cell sources for the regeneration of articular cartilage: the past, the horizon and the future. Int J Exp Pathol 93:389–400

    Google Scholar 

  • Oryan A, Moshiri A, Meimandi Parizi A, Maffulli N (2013) Implantation of a novel biologic and hybridized tissue engineered bioimplant in large tendon defect: an in vivo investigation. Tissue Eng Part A 20(447):465

    Google Scholar 

  • Outani H, Okada M, Yamashita A, Nakagawa K, Yoshikawa H, Tsumaki N (2013) Direct induction of chondrogenic cells from human dermal fibroblast culture by defined factors. PLoS ONE 8:e77365

    Google Scholar 

  • Ouyang HW, Goh JCH, Mo XM, Teoh SH, Lee EH (2002) Characterization of anterior cruciate ligament cells and bone marrow stromal cells on various biodegradable polymeric films. Mater Sci Eng C 20:63–69

    Google Scholar 

  • Paxton JZ, Donnelly K, Keatch RP, Baar K (2009) Engineering the bone-ligament interface using polyethylene glycol diacrylate incorporated with hydroxyapatite. Tissue Eng Part A 15:1201–1209

    Google Scholar 

  • Pettersson S, Wettero J, Tengvall P, Kratz G (2011) Cell expansion of human articular chondrocytes on macroporous gelatine scaffolds-impact of microcarrier selection on cell proliferation. Biomed Mater 6:065001

    Google Scholar 

  • Raghunath J, Rollo J, Sales KM, Butler PE, Seifalian AM (2007) Biomaterials and scaffold design: key to tissue-engineering cartilage. Biotechnol Appl Biochem 46:73–84

    Google Scholar 

  • Rawson S, Cartmell S, Wong J (2013) Suture techniques for tendon repair; a comparative review. Muscles Ligaments Tendons J 3:220–228

    Google Scholar 

  • Rhee DK, Marcelino J, Baker M, Gong Y, Smits P, Lefebvre V, Jay GD, Stewart M, Wang H, Warman ML, Carpten JD (2005) The secreted glycoprotein lubricin protects cartilage surfaces and inhibits synovial cell overgrowth. J Clin Invest 115:622–631

    Google Scholar 

  • Rodrigues MT, Reis RL, Gomes ME (2013) Engineering tendon and ligament tissues: present developments towards successful clinical products. J Tissue Eng Regenerative Med 7:673–686

    Google Scholar 

  • Rossi F, van Griensven M (2013) Polymer functionalization as a powerful tool to improve scaffold performances. Tissue Eng Part A

    Google Scholar 

  • Rothenfluh DA, Bermudez H, O’Neil CP, Hubbell JA (2008) Biofunctional polymer nanoparticles for intra-articular targeting and retention in cartilage. Nat Mater 7:248–254

    Google Scholar 

  • Sahoo S, Toh SL, Goh JC (2010) PLGA nanofiber-coated silk microfibrous scaffold for connective tissue engineering. J Biomed Mater Res B Appl Biomater 95:19–28

    Google Scholar 

  • Sassoon AA, Ozasa Y, Chikenji T, Sun YL, Larson DR, Maas ML, Zhao C, Jen J, Amadio PC (2012) Skeletal muscle and bone marrow derived stromal cells: a comparison of tenocyte differentiation capabilities. J Orthop Res Official Publ Orthop Res Soc 30:1710–1718

    Google Scholar 

  • Sayed KE, Zreiqat H, Ertel W, Schulze-Tanzil G (2012) Stimulated chondrogenesis via chondrocytes co-culturing. J Biochip Tissue chip S 2: 2153 0777

    Google Scholar 

  • Schiele NR, Koppes RA, Chrisey DB, Corr DT (2013) Engineering cellular fibers for musculoskeletal soft tissues using directed self-assembly. Tissue Eng Part A 19:1223–1232

    Google Scholar 

  • Schrobback K, Klein TJ, Crawford R, Upton Z, Malda J, Leavesley DI (2012) Effects of oxygen and culture system on in vitro propagation and redifferentiation of osteoarthritic human articular chondrocytes. Cell Tissue Res 347:649–663

    Google Scholar 

  • Schulze-Tanzil G (2009) Activation and dedifferentiation of chondrocytes: implications in cartilage injury and repair. Annals of anatomy = Anatomischer Anzeiger: official organ of the Anatomische Gesellschaft 191(325):338

    Google Scholar 

  • Schulze-Tanzil G, De Souza P, Villegas Castrejon H, John T, Merker HJ, Scheid A, Shakibaei M (2002) Redifferentiation of dedifferentiated human chondrocytes in high-density cultures. Cell Tissue Res 308(371):379

    Google Scholar 

  • Schulze-Tanzil G, Mobasheri A, Clegg PD, Sendzik J, John T, Shakibaei M (2004a) Cultivation of human tenocytes in high-density culture. Histochem Cell Biol 122:219–228

    Google Scholar 

  • Schulze-Tanzil G, Mobasheri A, de Souza P, John T, Shakibaei M (2004b) Loss of chondrogenic potential in dedifferentiated chondrocytes correlates with deficient Shc-Erk interaction and apoptosis. Osteoarthritis Cartilage/OARS Osteoarthritis Res Soc 12:448–458

    Google Scholar 

  • Schulze-Tanzil G, Al-Sadi O, Ertel W, Lohan A (2012) Decellularized tendon extracellular matrix—a valuable approach for tendon reconstruction? Cells 1:1010–1028

    Google Scholar 

  • Schwarz S, Koerber L, Elsaesser AF, Goldberg-Bockhorn E, Seitz AM, Durselen L, Ignatius A, Walther P, Breiter R, Rotter N (2012) Decellularized cartilage matrix as a novel biomatrix for cartilage tissue-engineering applications. Tissue Eng Part A 18:2195–2209

    Google Scholar 

  • Seidi A, Ramalingam M, Elloumi-Hannachi I, Ostrovidov S, Khademhosseini A (2011) Gradient biomaterials for soft-to-hard interface tissue engineering. Acta Biomater 7:1441–1451

    Google Scholar 

  • Sharma P, Maffulli N (2005) Basic biology of tendon injury and healing. Surg J Roy Coll Surg Edinb Irel 3:309–316

    Google Scholar 

  • Sharma P, Maffulli N (2006) Biology of tendon injury: healing, modeling and remodeling. J Musculoskelet Neuronal Interact 6:181–190

    Google Scholar 

  • Shearn JT, Kinneberg KR, Dyment NA, Galloway MT, Kenter K, Wylie C, Butler DL (2011) Tendon tissue engineering: progress, challenges, and translation to the clinic. J Musculoskelet Neuronal Interact 11:163–173

    Google Scholar 

  • Silva SS, Popa EG, Gomes ME, Oliveira MB, Nayak S, Subia B, Mano JF, Kundu SC, Reis RL (2013) Silk hydrogels from non-mulberry and mulberry silkworm cocoons processed with ionic liquids. Acta Biomater 9:8972–8982

    Google Scholar 

  • Smith L, Xia Y, Galatz LM, Genin GM, Thomopoulos S (2012) Tissue-engineering strategies for the tendon/ligament-to-bone insertion. Connect Tissue Res 53:95–105

    Google Scholar 

  • Sontjens SH, Nettles DL, Carnahan MA, Setton LA, Grinstaff MW (2006) Biodendrimer-based hydrogel scaffolds for cartilage tissue repair. Biomacromolecules 7:310–316

    Google Scholar 

  • Spiller KL, Liu Y, Holloway JL, Maher SA, Cao Y, Liu W, Zhou G, Lowman AM (2012) A novel method for the direct fabrication of growth factor-loaded microspheres within porous nondegradable hydrogels: controlled release for cartilage tissue engineering. J Controlled Release Official J Controlled Release Soc 157:39–45

    Google Scholar 

  • Steele JA, Mccullen SD, Callanan A, Autefage H, Accardi MA, Dini D, Stevens MM (2013) Combinatorial scaffold morphologies for zonal articular cartilage engineering. Acta biomaterialia 10(2065):2075

    Google Scholar 

  • Steinwachs MR, Waibl B, Niemeyer P (2011) Use of human progenitor cells in the treatment of cartilage damage. Bundesgesundheitsblatt, Gesundheitsforschung, Gesundheitsschutz 54:797–802

    Google Scholar 

  • Stich S, Schulze-Tanzil G, Ibold Y, Stoll C, Abbas A, Kohl B, Ullah M, John T, Sittinger M, Ringe J (2013) Continuous cultivation of human hamstring tenocytes on microcarriers in a spinner flask bioreactor system. Biotechnol Prog 30(142):151

    Google Scholar 

  • Stockwell RA (1971) The interrelationship of cell density and cartilage thickness in mammalian articular cartilage. J Anat 109:411–421

    Google Scholar 

  • Stoll C, John T, Endres M, Rosen C, Kaps C, Kohl B, Sittinger M, Ertel W, Schulze-Tanzil G (2010) Extracellular matrix expression of human tenocytes in three-dimensional air-liquid and PLGA cultures compared with tendon tissue: implications for tendon tissue engineering. J Orthop Res Official Publ Orthop Res Soc 28:1170–1177

    Google Scholar 

  • Stoll C, John T, Conrad C, Lohan A, Hondke S, Ertel W, Kaps C, Endres M, Sittinger M, Ringe J, Schulze-Tanzil G (2011) Healing parameters in a rabbit partial tendon defect following tenocyte/biomaterial implantation. Biomaterials 32:4806–4815

    Google Scholar 

  • Stoltz JF, Huselstein C, Schiavi J, Li YY, Bensoussan D, Decot V, de Isla N (2012) Human stem cells and articular cartilage tissue engineering. Curr Pharm Biotechnol 13:2682–2691

    Google Scholar 

  • Sun JY, Zhao X, Illeperuma WR, Chaudhuri O, Oh KH, Mooney DJ, Vlassak JJ, Suo Z (2012) Highly stretchable and tough hydrogels. Nature 489:133–136

    Google Scholar 

  • Sung HJ, Meredith C, Johnson C, Galis ZS (2004) The effect of scaffold degradation rate on three-dimensional cell growth and angiogenesis. Biomaterials 25:5735–5742

    Google Scholar 

  • Szentivanyi AL, Zernetsch H, Menzel H, Glasmacher B (2011) A review of developments in electrospinning technology: new opportunities for the design of artificial tissue structures. Int J Artif Organs 34:986–997

    Google Scholar 

  • Tan SL, Ahmad RE, Ahmad TS, Merican AM, Abbas AA, Ng WM, Kamarul T (2012) Effect of growth differentiation factor 5 on the proliferation and tenogenic differentiation potential of human mesenchymal stem cells in vitro. Cells Tissues Organs 196:325–338

    Google Scholar 

  • Thaker H, Sharma AK (2012) Engaging stem cells for customized tendon regeneration. Stem cells Int 2012:309187

    Google Scholar 

  • Theobald PS, Dowson D, Khan IM, Jones MD (2012) Tribological characteristics of healthy tendon. J Biomech 45:1972–1978

    Google Scholar 

  • Thorpe SD, Nagel T, Carroll SF, Kelly DJ (2013) Modulating gradients in regulatory signals within mesenchymal stem cell seeded hydrogels: a novel strategy to engineer zonal articular cartilage. PLoS ONE 8:e60764

    Google Scholar 

  • Tozer S, Duprez D (2005) Tendon and ligament: development, repair and disease. Birth Defects Res C 75:226–236

    Google Scholar 

  • Trippel SB, Ehrlich MG, Lippiello L, Mankin HJ (1980) Characterization of chondrocytes from bovine articular cartilage: I. Metabolic and morphological experimental studies. J Bone Joint Surg Am 62:816–820

    Google Scholar 

  • Tuan RS (2009) Skin and bones (and cartilage): the dermal fibroblast connection. Nat Rev Rheumatol 5:471–472

    Google Scholar 

  • Vignon E, Arlot M, Patricot LM, Vignon G (1976) The cell density of human femoral head cartilage. Clin Orthop Relat Res 121:303–308

    Google Scholar 

  • Villanueva I, Gladem SK, Kessler J, Bryant SJ (2010) Dynamic loading stimulates chondrocyte biosynthesis when encapsulated in charged hydrogels prepared from poly(ethylene glycol) and chondroitin sulfate. Matrix Biol J Int Soc Matrix Biol 29:51–62

    Google Scholar 

  • Wagenhauser MU, Pietschmann MF, Sievers B, Docheva D, Schieker M, Jansson V, Muller PE (2012) Collagen type I and decorin expression in tenocytes depend on the cell isolation method. BMC Musculoskelet Disord 13:140

    Google Scholar 

  • Wall ME, Banes AJ (2005) Early responses to mechanical load in tendon: role for calcium signaling, gap junctions and intercellular communication. J Musculoskelet Neuronal Interact 5:70–84

    Google Scholar 

  • Wan AC, Ying JY (2010) Nanomaterials for in situ cell delivery and tissue regeneration. Adv Drug Deliv Rev 62:731–740

    Google Scholar 

  • Whitlock PW, Smith TL, Poehling GG, Shilt JS, van Dyke M (2007) A naturally derived, cytocompatible, and architecturally optimized scaffold for tendon and ligament regeneration. Biomaterials 28:4321–4329

    Google Scholar 

  • Xu Y, Wu J, Wang H, Li H, Di N, Song L, Li S, Li D, Xiang Y, Liu W, Mo X, Zhou Q (2013) Fabrication of electrospun poly(L-lactide-co-epsilon-caprolactone)/collagen nanoyarn network as a novel, three-dimensional, macroporous, aligned scaffold for tendon tissue engineering. Tissue Eng Part C Methods 19:925–936

    Google Scholar 

  • Yang PJ, Temenoff JS (2009) Engineering orthopedic tissue interfaces. Tissue Eng Part B Rev 15:127–141

    Google Scholar 

  • Yang G, Rothrauff BB, Lin H, Gottardi R, Alexander PG, Tuan RS (2013) Enhancement of tenogenic differentiation of human adipose stem cells by tendon-derived extracellular matrix. Biomaterials 34:9295–9306

    Google Scholar 

  • Yeatts AB, Choquette DT, Fisher JP (2013) Bioreactors to influence stem cell fate: augmentation of mesenchymal stem cell signaling pathways via dynamic culture systems. Biochim Biophys Acta 1830:2470–2480

    Google Scholar 

  • Yin Z, Chen X, Chen JL, Ouyang HW (2010a) Stem cells for tendon tissue engineering and regeneration. Expert Opin Biol Ther 10:689–700

    Google Scholar 

  • Yin Z, Chen X, Chen JL, Shen WL, Hieu Nguyen TM, Gao L, Ouyang HW (2010b) The regulation of tendon stem cell differentiation by the alignment of nanofibers. Biomaterials 31(2163):2175

    Google Scholar 

  • Zehbe R, Goebbels J, Ibold Y, Gross U, Schubert H (2010) Three-dimensional visualization of in vitro cultivated chondrocytes inside porous gelatine scaffolds: a tomographic approach. Acta Biomater 6:2097–2107

    Google Scholar 

  • Zhang Y, Wang B, Zhang WJ, Zhou G, Cao Y, Liu W (2010) Enhanced proliferation capacity of porcine tenocytes in low O2 tension culture. Biotechnol Lett 32:181–187

    Google Scholar 

  • Zhang Q, Lu H, Kawazoe N, Chen G (2013) Pore size effect of collagen scaffolds on cartilage regeneration. Acta biomaterialia 10:2005–2013

    Google Scholar 

Download references

Acknowledgment

The author is grateful to the support of Mr. Benjamin Kohl and Dr. Christiane Stoll.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gundula Schulze-Tanzil .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Schulze-Tanzil, G. (2015). Polymer-Assisted Cartilage and Tendon Repair. In: Zreiqat, H., Dunstan, C., Rosen, V. (eds) A Tissue Regeneration Approach to Bone and Cartilage Repair. Mechanical Engineering Series. Springer, Cham. https://doi.org/10.1007/978-3-319-13266-2_13

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-13266-2_13

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-13265-5

  • Online ISBN: 978-3-319-13266-2

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics