Skip to main content

Polymers in Ophthalmology

  • Chapter
  • First Online:
Advanced Polymers in Medicine

Abstract

Ophthalmological sciences are disciplines focused in the health of the eyes and related structures, as well as vision, visual systems, and vision information processing in humans; dealing with the anatomy, physiology and diseases of the eye. Along time a wide variety of materials, including metals, ceramics and polymers, have been developed and used in different ophthalmic applications. Although, modern ophthalmic devices and drug platforms are made with polymeric materials. Applications of polymers in ophthalmology include vitreous replacement fluids, contact lenses, intraocular lenses, artificial orbital walls, artificial corneas, artificial lacrimal ducts, glaucoma drainage devices, viscoelastic replacements, drug delivery systems, sclera buckles, retinal tacks and adhesives, and ocular endotamponades. Both synthetic and natural polymeric biomaterials are used in ophthalmological applications, although in the lasts years most efforts were focused in natural and biocompatible materials, such as gelatin, hyaluronan, chitosan, gums, etc.; developing, tablets, films, suspensions, nanosystems, inserts, etc. This chapter attempts to offers an insight into the importance of polymers in the design and development of pharmaceuticals platforms used in ocular therapeutics.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

MC:

Methylcellulose

HEC:

Hydroxyethylcellulose

HPC:

Hydroxypropycellulose

HPMC:

Hydroxypropylmethylcellulose

CMC Na:

Sodium carboxymethylcellulose

PVA:

Poly(vinyl alcohol)

SH:

Sodium hyaluronate

AUC:

Area under the curve

HEMA:

Hydroxy ethyl metacrylate

PVP:

Polyvinyl pyrrolidone

EGDM:

Ethylene glycol dimethacrylic acid

DDS:

Drug delivery system

PLA:

Polylactic acid

PGA:

Polyglycolic acid

PLGA:

Copolymer polylactic-co-glycolic acid

NEs:

Nanoemulsions

PEO:

Polyethylene oxide

PPO:

Polypropylene oxide

References

  1. Sieg, J.W., Robinson, J.R.: Vehicle effects on ocular drug bioavailability i: evaluation of fluorometholone. J. Pharm. Sci. 64(6), 931–936 (1975)

    CAS  Google Scholar 

  2. Patton, T.F., Robinson, J.R.: Ocular evaluation of polyvinyl alcohol vehicle in rabbits. J. Pharm. Sci. 64(8), 1312–1316 (1975)

    CAS  Google Scholar 

  3. Robinson, J.R., Mlynek, G.M.: Bioadhesive and phase-change polymers for ocular drug delivery. Adv. Drug. Deliv. Rev. 16, 45–50 (1975)

    Google Scholar 

  4. Salminen, L., et al.: Prolonged pulse-entry of pilocarpine with a soluble drug insert. Graefes. Arch. Clin. Exp. Ophthalmol. 221(2), 96–99 (1983)

    CAS  Google Scholar 

  5. Wilson, C.G., et al.: Structure and physiological functions. In: Touitou, E., Barry, B.W. (eds.) Enhancement in Drug Delivery. pp. 473–487. (2007)

    Google Scholar 

  6. Snell, R.S., Lemp, M.A.: Clinical Anatomy of the Eye, 2nd edn, p. 423. Blackwell Science, Malden (1998)

    Google Scholar 

  7. Norn, M.S.: Tear secretion in normal eyes. estimated by a new method: the lacrimal streak dilution test. Acta. Ophthalmol. (Copenh) 43(4), 567–573 (1965)

    CAS  Google Scholar 

  8. Records, R.E: The tear film. In: Tasman, W., Jaeger, E.A.(eds.) Duane’s Foundations of Clinical Ophthalmology, Lippincott Williams & Wilkins, Philadelphia (2005)

    Google Scholar 

  9. Patton, T.F., Robinson, J.R.: Quantitative precorneal disposition of topically applied pilocarpine nitrate in rabbit eyes. J. Pharm. Sci. 65(9), 1295–1301 (1976)

    CAS  Google Scholar 

  10. Plazonnet, B., et al.: Pharmacokinetics and biopharmaceutical aspects of some anti-glaucoma drugs. In: Saettone, M.F., Bucci, M., Speiser, P. (eds.) Ophthalmic Drug Delivery; Biopharmaceutical, Technological and Clinical Aspects, pp. 117–139. Liviana Press/Springer Verlag, Padova/New york (1987)

    Google Scholar 

  11. Gurny, R., Ibrahim, H., Buri, P.: The development and use of in situ formed gels, triggered by pH. In: Edman, P. (ed.) Biopharmaceutics of Ocular Drug Delivery, pp. 81–90. CRC Press, Florida (1993)

    Google Scholar 

  12. Tanaka, T.: Collapse of gels and the critical endpoint. Phys. Rev. Lett. 40(12), 820–823 (1978)

    CAS  Google Scholar 

  13. Ahn, S.-K., et al.: Stimuli-responsive polymer gels. Soft. Matter. 4(6), 1151–1157 (2008)

    CAS  Google Scholar 

  14. Swan, K.C.: Use of methyl cellulose in ophthalmology. Arch. Ophthalmol. 33(5), 378–380 (1945)

    Google Scholar 

  15. Zaki, I., et al.: A comparison of the effect of viscosity on the precorneal residence of solutions in rabbit and man. J. Pharm. Pharmacol. 38(6), 463–466 (1986)

    CAS  Google Scholar 

  16. Tous, S.S., Abd-El Nasser, K.: Acetazolamide topical formulation and ocular effect. STP Pharm Sci. 2, 125–131 (1992)

    Google Scholar 

  17. Grove, J., et al.: The effect of vehicle viscosity on the ocular bioavailability of L-653,328. Int. J. Pharm. 66(1–3), 23–28 (1990)

    CAS  Google Scholar 

  18. Ludwig, A., Van Ooteghem, M.: Influence of viscolysers on the residence of ophthalmic solutions evaluated by slit lamp fluorophotometry. STP. Pharma. Sci. 2, 81–87 (1992)

    CAS  Google Scholar 

  19. Mueller, W.H., Deardorff, D.L.: Ophthalmic vehicles: the effect of methylcellulose on the penetration of homatropine hydrobromide through the cornea. J. Am. Pharm. Assoc. (Baltim) 45(5), 334–341 (1956)

    CAS  Google Scholar 

  20. Haas, J.S., Merrill, D.L.: The effect of methyl-cellulose on responses to solutions of pilocarpine. Am. J. Ophthalmol. 54, 21–24 (1962)

    CAS  Google Scholar 

  21. Hardberger, R., Hanna, C., Boyd, C.M.: Effects of drug vehicles on ocular contact time. Arch. Ophthalmol. 93(1), 42–45 (1975)

    CAS  Google Scholar 

  22. Schoenwald, R.D., et al.: Inlfuence of high-viscosity vehicles on miotic effect of pilocarpine. J. Pharm. Sci. 67(9), 1280–1283 (1978)

    CAS  Google Scholar 

  23. Saettone, M.F., et al.: Polymer effects on ocular bioavailability—the influence of different liquid vehicles on the mydriatic response of tropicamide in humans and rabbits. Int. J. Pharm. 20, 187–202 (1984)

    CAS  Google Scholar 

  24. Deshpande, S.G., Shirolkar, S.: Sustained release ophthalmic formulations of pilocarpine. J. Pharm. Pharmacol. 41(3), 197–200 (1989)

    CAS  Google Scholar 

  25. Patchan, M., et al.: Synthesis and properties of regenerated cellulose-based hydrogels with high strength and transparency for potential use as an ocular bandage. Mater. Sci. Eng. C. Mater. Biol. Appl. 33(5), 3069–3076 (2013)

    CAS  Google Scholar 

  26. Peppas, N.A.: Hydrogels. In: Peppas, N.A.(ed.) Medicine and Pharmacy. CRC Press, Boca Raton (1987)

    Google Scholar 

  27. Davies, N.M., et al.: Evaluation of mucoadhesive polymers in ocular drug delivery. I. Viscous solutions. Pharm. Res. 8(8), 1039–1043 (1991)

    CAS  Google Scholar 

  28. Balazs, E.A.: Ultrapure hyaluronic acid and the use thereof. US Patent #4,141,973 (1979)

    Google Scholar 

  29. Bernatchez, S.F., et al.: Use of hyaluronic acid. In: Edman P.(ed.) Biopharmaceutics of Ocular Drug Delivery, pp. 105–120. CRC Press, Boca Raton (1993)

    Google Scholar 

  30. Wysenbeek, Y.S., et al.: The effect of sodium hyaluronate on the corneal epithelium. An ultrastructural study. Invest. Ophthalmol. Vis. Sci. 29(2), 194–199 (1988)

    CAS  Google Scholar 

  31. Camber, O., Edman, P., Gurny, R.: Influence of sodium hyaluronate on the meiotic effect of pilocarpine in rabbits. Curr. Eye. Res. 6(6), 779–784 (1987)

    CAS  Google Scholar 

  32. Saettone, M.F., et al.: Mucoadhesive ophthalmic vehicles: evaluation of polymeric low-viscosity formulations. J. Ocul. Pharmacol. 10(1), 83–92 (1994)

    CAS  Google Scholar 

  33. Saettone, M.F., et al.: Evaluation of muco-adhesive properties and in vivo activity of ophthalmic vehicles based on hyaluronic acid. Int. J. Pharm. 51, 203–212 (1989)

    CAS  Google Scholar 

  34. Bernatchez, S.F., Tabatabay, C., Gurny, R.: Sodium hyaluronate 0.25 % used as a vehicle increases the bioavailability of topically administered gentamicin. Graefes. Arch. Clin. Exp. Ophthalmol. 231(3), 157–161 (1993)

    CAS  Google Scholar 

  35. Calles, J.A., et al.: Novel bioadhesive hyaluronan-itaconic acid crosslinked films for ocular therapy. Int. J. Pharm. 455(1–2), 48–56 (2013)

    CAS  Google Scholar 

  36. Edsman, K., Carlfors, J., Harju, K.: Rheological evaluation and ocular contact time of some carbomer gels for ophthalmic use. Int. J. Pharm. 137(2), 233–241 (1996)

    CAS  Google Scholar 

  37. von der Ohe, N., et al.: How can the bioavailability of timolol be enhanced? A pharmacokinetic pilot study of novel hydrogels. Graefes. Arch. Clin. Exp. Ophthalmol. 234(7), 452–456 (1996)

    Google Scholar 

  38. Schoenwald, R.D., Boltralik, J.J.: A bioavailability comparison in rabbits of two steroids formulated as high-viscosity gels and reference aqueous preparations. Invest. Ophthalmol. Vis. Sci. 18(1), 61–66 (1979)

    CAS  Google Scholar 

  39. Ludwig, A., Unlu, N., van Ooteghem, M.: Evaluation of viscous ophthalmic vehicles containing carbomer by slit-lamp fluorophotometry in humans. Int. J. Pharm. 61(1–2), 15–25 (1990)

    CAS  Google Scholar 

  40. Saettone, M.F., et al.: Semisolid ophthalmic vehicles III. An evaluation of four organic hydrogels containing pilocarpine. Int. J. Pharm. 31, 261–270 (1986)

    CAS  Google Scholar 

  41. Amin, P.D., Bhogte, C.P., Deshpande, M.A.: Studies on gel tears. Drug. Dev. Ind. Pharm. 22(7), 735–739 (1996)

    CAS  Google Scholar 

  42. Meseguer, G., et al.: Gamma scintigraphic study of precorneal drainage and assessment of miotic response in rabbits of various ophthalmic formulations containing pilocarpine. Int. J. Pharm. 95(1–3), 229–234 (1993)

    CAS  Google Scholar 

  43. Albasini, M., Ludwig, A.: Evaluation of polysaccharides intended for ophthalmic use in ocular dosage forms. Farmaco (Societa chimica italiana: 1989) 50(9), 633–642 (1995)

    CAS  Google Scholar 

  44. Burgalassi, S., Chetoni, P., Saettone, M.F.: Hydrogels for ocular delivery of pilocarpine: preliminary evaluation in rabbits of the influence of viscosity and of drug solubility. Eur. J. Pharm. Biopham. 42, 385–392 (1996)

    CAS  Google Scholar 

  45. Felt, O., Buri, P., Gurny, R.: Chitosan: a unique polysaccharide for drug delivery. Drug. Dev. Ind. Pharm. 24(11), 979–993 (1998)

    CAS  Google Scholar 

  46. Felt, O., et al.: Topical use of chitosan in ophthalmology: tolerance assessment and evaluation of precorneal retention. Int. J. Pharm. 180(2), 185–193 (1999)

    CAS  Google Scholar 

  47. Felt, O., et al.: Chitosan as tear substitute: a wetting agent endowed with antimicrobial efficacy. J. Ocul. Pharmacol. Ther. 16(3), 261–270 (2000)

    CAS  Google Scholar 

  48. Felt, O., Buri, P., Gumy, R.: Ocular bioavailability of tobramycin after topical administration of formulations based on polysaccharide. In: 2nd International Symposium on Experimental Clinical Ocular Pharmacology and Pharmaceutics (1997)

    Google Scholar 

  49. Qiu, Y., Park, K.: Environment-sensitive hydrogels for drug delivery. Adv. Drug. Deliv. Rev. 53(3), 321–339 (2001)

    CAS  Google Scholar 

  50. Ron, E.S., Bromberg, L.E.: Temperature-responsive gels and thermogelling polymer matrices for protein and peptide delivery. Adv. Drug. Deliv. Rev. 31(3), 197–221 (1998)

    Google Scholar 

  51. Kost, J., Langer, R.: Responsive polymeric delivery systems. Adv. Drug. Deliv. Rev. 46(1–3), 125–148 (2001)

    CAS  Google Scholar 

  52. Ruel-Gariepy, E., Leroux, J.C.: In situ-forming hydrogels—review of temperature-sensitive systems. Eur. J. Pharm. Biopharm. 58(2), 409–426 (2004)

    CAS  Google Scholar 

  53. Mazuel, C., Friteyre, M.C.: Ophthalmological composition of the type which undergoes liquid-gel phase transition, Google Patents (1989)

    Google Scholar 

  54. Kumar, S., Haglund, B.O., Himmelstein, K.J.: In situ-forming gels for ophthalmic drug delivery. J. Ocul. Pharmacol. 10(1), 47–56 (1994)

    CAS  Google Scholar 

  55. Kumar, S., Himmelstein, K.J.: Modification of in situ gelling behavior of carbopol solutions by hydroxypropyl methylcellulose. J. Pharm. Sci. 84(3), 344–348 (1995)

    CAS  Google Scholar 

  56. Ron, E.S.: Smart gel: a new thermogelling polymer mixture for drug delivery. Proceedings in international symposium of Controlled Rel Bioactive Materials. 23, 23–24 (1996)

    Google Scholar 

  57. Zimmer, A.K., Zerbe, H., Kreuter, J.: Evaluation of pilocarpine-loaded albumin particles as drug delivery systems for controlled delivery in the eye I. in vitro and in vivo characterisation. J. Controlled. Release. 32(1), 57–70 (1994)

    CAS  Google Scholar 

  58. Zimmer, A.K., et al.: Evaluation of pilocarpine-loaded albumin particles as controlled drug delivery systems for the eye. II. co-administration with bioadhesive and viscous polymers. J. Controlled. Release. 33(1), 31–46 (1995)

    CAS  Google Scholar 

  59. Deasy, P.B., Quigley, K.J.: Rheological evaluation of deacetylated gellan gum (gelrite) for pharmaceutical use. Int. J. Pharm. 73(2), 117–123 (1991)

    CAS  Google Scholar 

  60. Verschueren, E., Van Santvliet, L., Ludwig, A.: Evaluation of various carrageenans as ophthalmic viscolysers. S.T.P. Pharma. Sci. 6, 203–210 (1996)

    CAS  Google Scholar 

  61. Cohen, S., et al.: A novel in situ-forming ophthalmic drug delivery system from alginates undergoing gelation in the eye. J. Controlled. Release. 44(2–3), 201–208 (1997)

    CAS  Google Scholar 

  62. Kang, K.S., et al.: Agar-like polysaccharide produced by a pseudomonas species: production and basic properties. Appl. Environ. Microbiol. 43(5), 1086–1091 (1982)

    CAS  Google Scholar 

  63. Mittal, N., Kaur, G.: In situ gelling ophthalmic drug delivery system: Formulation and evaluation. J. Appl. Polym. Sci. 131(2) (2014)

    Google Scholar 

  64. Hoffman, A.S., Afrassiabi, A., Dong, L.C.: Thermally reversible hydrogels: II. delivery and selective removal of substances from aqueous solutions. J. Controlled. Release. 4, 213–222 (1986)

    CAS  Google Scholar 

  65. Hoffman, A.S.: Applications of thermally reversible polymers and hydrogels in therapeutics and diagnostics. J. Controlled. Release. 6(1), 297–305 (1987)

    CAS  Google Scholar 

  66. Bermudez, J.M., et al.: Challenges and opportunities in polymer technology applied to veterinary medicine. J. Vet. Pharmacol. Ther. 37(2), 105–124 (2014)

    CAS  Google Scholar 

  67. Gilbert, J.C., et al.: The behaviour of Pluronic F127 in aqueous solution studied using fluorescent probes. Int. J. Pharm. 40, 93–99 (1987)

    CAS  Google Scholar 

  68. Gilbert, J.C., et al.: The effect of solutes and polymers on the gelation properties of pluronic F-127 solutions for controlled drug delivery. J. Controlled. Release. 5(2), 113–118 (1987)

    CAS  Google Scholar 

  69. Gilchrist, P., et al.: The precorneal residence of a thermally sensitive hydrogel. In: 137th British Pharmaceutical Conference Scarborough (1997)

    Google Scholar 

  70. Waring, G.O., Harris, R.R.: Double-masked evaluation of a poloxamer artificial tear in keratoconjunctivitis. In: Leopold, L.H., Burns, B.P. (eds.) Symposium on Ocular Therapy, pp. 127–140. Wiley, New York (1979)

    Google Scholar 

  71. Miller, S.C., Donovan, M.D.: Effect of Poloxamer 407 gel on the mitotic activity of pilocarpine nitrate in rabbits. Int. J. Pharm. 12, 147–152 (1982)

    CAS  Google Scholar 

  72. Dumortier, G., et al.: Comparison between a thermoreversible gel and an insert in order to prolong the systemic absorption of morphine after ocular administration. S.T.P. Pharma. Sci. 2, 111–117 (1992)

    CAS  Google Scholar 

  73. Zhang, R., et al.: A novel pH- and ionic-strength-sensitive carboxy methyl dextran hydrogel. Biomaterials 26(22), 4677–4683 (2005)

    CAS  Google Scholar 

  74. El-Aasser, M.S.: Formation of polymer latexes by direct emulsification. Advances in emulsion polymerization and latex technology. In: 10th Annual Short Coarse (1979)

    Google Scholar 

  75. Ibrahim, H., et al.: Concept and development of ophthalmic pseudolatexes triggered by pH. Int. J. Pharm. 77, 211–219 (1991)

    CAS  Google Scholar 

  76. Gumy, R., et al.: Recent developments in controlled drug delivery to the eye. In: Proceedings in International Symposium Controlled Rel Bioactive Materials (1985)

    Google Scholar 

  77. Ibrahim, H., et al.: Aqueous nanodispersions prepared by a salting-out process. Int. J. Pharm. 87(1–3), 239–246 (1992)

    CAS  Google Scholar 

  78. Singh, J., Chhabra, G., Pathak, K.: Development of acetazolamide-loaded, pH-triggered polymeric nanoparticulate in situ gel for sustained ocular delivery: in vitro. ex vivo evaluation and pharmacodynamic study. Drug Dev. Ind. Pharm. 40(9), 1223–1232 (2014)

    Google Scholar 

  79. Pathak, M.K., Chhabra, G., Pathak, K.: Design and development of a novel pH triggered nanoemulsified in-situ ophthalmic gel of fluconazole: ex-vivo transcorneal permeation, corneal toxicity and irritation testing. Drug. Dev. Ind. Pharm. 39(5), 780–790 (2013)

    CAS  Google Scholar 

  80. Gurtler, F., Gurny, R.: Patent literature review of ophthalmic inserts. Drug. Dev. Ind. Pharm. 21, 1–18 (1995)

    CAS  Google Scholar 

  81. Maichuk, Y.F.: Ophthalmic drug inserts. Invest. Ophthalmol. 14, 87–90 (1975)

    CAS  Google Scholar 

  82. Friedrich, S.W., et al.: Pharmacokinetic differences between ocular inserts and eyedrops. J. Ocul. Pharmacol. Ther. 12(1), 5–18 (1996)

    CAS  Google Scholar 

  83. Saettone, M.F.: Solid polymeric inserts/disks as drug delivery devices. In: Edman, P. (ed.) Biopharmaceutics of Ocular Drug Delivery, pp. 61–67. CRC Press, London (1993)

    Google Scholar 

  84. Saettone, M.F., Salminen, L.: Ocular inserts for topical delivery. Adv. Drug. Del. Rev. 16, 95–106 (1995)

    CAS  Google Scholar 

  85. Urquhart, J.: Development of ocusert pilocarpine ocular therapeutic systems. In: Robinson J.R. (ed) Ophthalmic Drug Delivery Systems, pp. 105–108. American Pharmaceutical Association, Washington DC (1980)

    Google Scholar 

  86. Katz, I.M.: Shaped ophthalmic inserts for treating dry eye syndrome, Google Patents (1982)

    Google Scholar 

  87. Bawa, R.: Ocular inserts. In: Mitra, A.K. (ed.) Ophthalmic Drug Delivery Systems, pp. 223–260. Dekker, New York (1993)

    Google Scholar 

  88. Fyodorov, S.N., et al.: Ophthalmological collagen coverings, Google Patents (1990)

    Google Scholar 

  89. Bloomfield, S.E., et al.: Soluble gentamicin ophthalmic inserts as a drug delivery system. Arch. Ophthalmol. 96(5), 885–887 (1978)

    CAS  Google Scholar 

  90. Friedberg, M.L., Pleyer, U., Mondino, B.J.: Device drug delivery to the eye. Collagen shields, iontophoresis, and pumps. Ophthalmology 98(5), 725–732 (1991)

    CAS  Google Scholar 

  91. Phinney, R.B., et al.: Collagen-shield delivery of gentamicin and vancomycin. Arch. Ophthalmol. 106(11), 1599–1604 (1988)

    CAS  Google Scholar 

  92. Sawusch, M.R., et al.: Use of collagen corneal shields in the treatment of bacterial keratitis. Am. J. Ophthalmol. 106(3), 279–281 (1988)

    CAS  Google Scholar 

  93. Hwang, D.G., et al.: Collagen shield enhancement of topical dexamethasone penetration. Arch. Ophthalmol. 107(9), 1375–1380 (1989)

    CAS  Google Scholar 

  94. Sawusch, M.R., O’Brien, T.P., Updegraff, S.A.: Collagen corneal shields enhance penetration of topical prednisolone acetate. J. Cataract. Refract. Surg. 15(6), 625–628 (1989)

    CAS  Google Scholar 

  95. Gussler, J.R., et al.: Collagen shield delivery of trifluorothymidine. J. Cataract. Refract. Surg. 16(6), 719–722 (1990)

    CAS  Google Scholar 

  96. Milani, J.K., et al.: Collagen shields impregnated with gentamicin-dexamethasone as a potential drug delivery device. Am. J. Ophthalmol. 116(5), 622–627 (1993)

    CAS  Google Scholar 

  97. Fyodorov, S.N.: Efficiency of collagen covers: application in cases in keratotomy. In: Fydorov, S.N. (ed.) Eye Microsurgery, Research Institute of Eye Microsurgery, Moscow (1984)

    Google Scholar 

  98. O’Brien, T.P., et al.: Use of collagen corneal shields versus soft contact lenses to enhance penetration of topical tobramycin. J. Cataract. Refract. Surg. 14(5), 505–507 (1988)

    Google Scholar 

  99. Pleyer, U., et al.: Use of collagen shields containing amphotericin B in the treatment of experimental Candida albicans-induced keratomycosis in rabbits. Am. J. Ophthalmol. 113(3), 303–308 (1992)

    CAS  Google Scholar 

  100. Hobden, J.A., et al.: Treatment of experimental Pseudomonas keratitis using collagen shields containing tobramycin. Arch. Ophthalmol. 106(11), 1605–1607 (1988)

    CAS  Google Scholar 

  101. Silbiger, J., Stern, G.A.: Evaluation of corneal collagen shields as a drug delivery device for the treatment of experimental Pseudomonas keratitis. Ophthalmology 99(6), 889–892 (1992)

    CAS  Google Scholar 

  102. Callegan, M.C., et al.: Efficacy of tobramycin drops applied to collagen shields for experimental staphylococcal keratitis. Curr. Eye. Res. 13(12), 875–878 (1994)

    CAS  Google Scholar 

  103. Chen, Y.F., et al.: Cyclosporine-containing collagen shields suppress corneal allograft rejection. Am. J. Ophthalmol. 109(2), 132–137 (1990)

    CAS  Google Scholar 

  104. Simamora, P., et al.: Controlled delivery of pilocarpine. 2. In-vivo evaluation of Gelfoam device. Int. J. Pharm. 170, 209–214 (1998)

    CAS  Google Scholar 

  105. Lee, Y.C., et al.: Formulation and in vivo evaluation of ocular insert containing phenylephrine and tropicamide. Int. J. Pharm. 182(1), 121–126 (1999)

    CAS  Google Scholar 

  106. Negvesky, G.J., et al.: Ocular gelfoam disc-applicator for pupillary dilation in humans. J. Ocul. Pharmacol. Ther. 16(4), 311–315 (2000)

    CAS  Google Scholar 

  107. Saettone, M.F., et al.: Controlled release of pilocarpine from coated polymeric ophthalmic inserts prepared by extrusion. Int. J. Pharm. 86, 159–166 (1992)

    CAS  Google Scholar 

  108. Attia, M.A., Kassem, M.A., Safwat, S.M.: In vivo performance of [3H]dexamethasone ophthalmic film delivery systems in the rabbit eye. Int. J. Pharm. 47(1–3), 21–30 (1988)

    CAS  Google Scholar 

  109. Kaga, Y., et al.: Ultraviolet-hardenable adhesive, Google Patents (1992)

    Google Scholar 

  110. Gurtler, F., et al.: Long-acting soluble bioadhesive ophthalmic drug insert (BODI) containing gentamicin for veterinary use: optimization and clinical investigation. J. Controlled. Release. 33(2), 231–236 (1995)

    CAS  Google Scholar 

  111. Saettone, M.F., et al.: Application of the compression technique to the manufacture of pilocarpine inserts. Acta. Pharm. Technol. 1, 15–19 (1990)

    Google Scholar 

  112. Harwood, R.J., Schwartz, J.B.: Drug release from compression molded films: preliminary studies with pilocarpine. Drug. Dev. Ind. Pharm. 8(5), 663–682 (1982)

    CAS  Google Scholar 

  113. Baeyens, V., et al.: Optimized release of dexamethasone and gentamicin from a soluble ocular insert for the treatment of external ophthalmic infections. J. Controlled. Release. 52(1–2), 215–220 (1998)

    CAS  Google Scholar 

  114. Gale, R.M., Ben-Dor, M., Keller, N.: Ocular therapeutic system for dispensing a medication formulation, Google Patents (1980)

    Google Scholar 

  115. Robinson, J.R.: Ocular drug delivery: mechanism(s) of corneal drug transport and mucoadhesive delivery systems. STP. Pharm. Sci. 5(12), 839–846 (1989)

    Google Scholar 

  116. Drance, S.M., Mitchell, D.W., Schulzer, M.: The duration of action of pilocarpine ocusert on intraocular pressure in man. Can. J. Ophthalmol. 10(4), 450–452 (1975)

    CAS  Google Scholar 

  117. Chien, Y.W.: Novel Drug Delivery Systems. Marcel Dekker, New York (1992)

    Google Scholar 

  118. Torron, C., et al.: Use of a new ocular insert versus conventional mydriasis in cataract surgery. Biomed. Res. Int. p. 849349 (2013)

    Google Scholar 

  119. Refojo, M.F.: Polymers in contact lenses: an overview. Curr. Eye. Res. 4(6), 719–723 (1985)

    CAS  Google Scholar 

  120. Maddox, Y.T., Bernstein, H.N.: An evaluation of the Bionite hydrophilic contact lens for use in a drug delivery system. Ann. Ophthalmol. 4(9), 789–790 (1972)

    CAS  Google Scholar 

  121. Praus, R., et al.: Hydrophilic contact lenses as a new therapeutic approach for the topical use of chloramphenicol and tetracycline. Ophthalmologica 165(1), 62–70 (1972)

    CAS  Google Scholar 

  122. Hull, D.S., Edelhauser, H.F., Hyndiuk, R.A.: Ocular penetration of prednisolone and the hydrophilic contact lens. Arch. Ophthalmol. 92(5), 413–416 (1974)

    CAS  Google Scholar 

  123. Wajs, G., Meslard, J.C.: Release of therapeutic agents from contact lenses. Crit. Rev. Ther. Drug. Carrier. Syst. 2(3), 275–289 (1986)

    CAS  Google Scholar 

  124. Weiner, A.L.: Polymeric drug delivery systems for the eye. In: Domb, A.J. (ed.) Polymeric Site-Specific Pharmacotherapy, pp. 315–346. Wiley, Chichester (1994)

    Google Scholar 

  125. McMahon, T.T., Zadnik, K.: Twenty-five years of contact lenses: the impact on the cornea and ophthalmic practice. Cornea 19(5), 730–740 (2000)

    CAS  Google Scholar 

  126. Jung, H.J., Chauhan, A.: Temperature sensitive contact lenses for triggered ophthalmic drug delivery. Biomaterials 33(7), 2289–2300 (2012)

    CAS  Google Scholar 

  127. Kimura, H., Ogura, Y.: Biodegradable polymers for ocular drug delivery. Ophthalmologica 215(3), 143–155 (2001)

    CAS  Google Scholar 

  128. Liu, W., Griffith, M., Li, F.: Alginate microsphere-collagen composite hydrogel for ocular drug delivery and implantation. J. Mater. Sci. Mater. Med. 19(11), 3365–3371 (2008)

    CAS  Google Scholar 

  129. Bernards, D.A., et al.: Ocular biocompatibility and structural integrity of micro- and nanostructured poly(caprolactone) films. J. Ocul. Pharmacol. Ther. 29(2), 249–257 (2013)

    CAS  Google Scholar 

  130. Gurny, R., Boye, T., Ibrahim, H.: Ocular therapy with nanoparticulate systems for controlled drug delivery. J. Controlled. Release. 2, 353–361 (1985)

    CAS  Google Scholar 

  131. Lee, V.H., et al.: Ocular drug bioavailability from topically applied liposomes. Surv. Ophthalmol. 29(5), 335–348 (1985)

    CAS  Google Scholar 

  132. Marchal-Heussler, L., et al.: Poly(epsilon-caprolactone) nanocapsules in carteolol ophthalmic delivery. Pharm. Res. 10(3), 386–390 (1993)

    CAS  Google Scholar 

  133. Smolin, G., et al.: Idoxuridine-liposome therapy for herpes simplex keratitis. Am. J. Ophthalmol. 91(2), 220–225 (1981)

    CAS  Google Scholar 

  134. Schaeffer, H.E., Krohn, D.L.: Liposomes in topical drug delivery. Invest. Ophthalmol. Vis. Sci. 22(2), 220–227 (1982)

    CAS  Google Scholar 

  135. Law, S.L., Huang, K.J., Chiang, C.H.: Acyclovir-containing liposomes for potential ocular delivery. Corneal penetration and absorption. J. Controlled. Release. 63(1–2), 135–140 (2000)

    CAS  Google Scholar 

  136. Seyfoddin, A., Al-Kassas, R.: Development of solid lipid nanoparticles and nanostructured lipid carriers for improving ocular delivery of acyclovir. Drug. Dev. Ind. Pharm. 39(4), 508–519 (2013)

    CAS  Google Scholar 

  137. Lutfi, G., Muzeyyen, D.: Preparation and characterization of polymeric and lipid nanoparticles of pilocarpine HCl for ocular application. Pharm. Dev. Technol. 18(3), 701–709 (2013)

    Google Scholar 

  138. Zimmer, A., Kreuter, J.: Microspheres and nanoparticles used in ocular delivery systems. Adv. Drug. Deliv. Rev. 16(1), 61–73 (1995)

    CAS  Google Scholar 

  139. Losa, C., et al.: Design of new formulations for topical ocular administration: polymeric nanocapsules containing metipranolol. Pharm. Res. 10(1), 80–87 (1993)

    CAS  Google Scholar 

  140. Desai, S.D., Blanchard, J.: Pluronic F127-based ocular delivery system containing biodegradable polyisobutylcyanoacrylate nanocapsules of pilocarpine. Drug. Deliv. 7(4), 201–207 (2000)

    CAS  Google Scholar 

  141. Vezin, W.R., Florence, A.T.: Diffusion of small molecules in poly-N-alkyl cyanoacrylates [proceedings]. J. Pharm. Pharmacol. 30(Suppl), 2P (1978)

    CAS  Google Scholar 

  142. Lenaerts, V., et al.: Degradation of poly (isobutyl cyanoacrylate) nanoparticles. Biomaterials 5(2), 65–68 (1984)

    CAS  Google Scholar 

  143. Joshi, A.: Microparticulates for ophthalmic drug delivery. J. Ocul. Pharmacol. 10(1), 29–45 (1994)

    CAS  Google Scholar 

  144. Genta, I., et al.: Bioadhesive microspheres for ophthalmic administration of acyclovir. J. Pharm. Pharmacol. 49(8), 737–742 (1997)

    CAS  Google Scholar 

  145. Calvo, P., et al.: Polyester nanocapsules as new topical ocular delivery systems for cyclosporin A. Pharm. Res. 13(2), 311–315 (1996)

    CAS  Google Scholar 

  146. Calvo, P., Vila-Jato, J.L., Alonso, M.A.J.: Evaluation of cationic polymer-coated nanocapsules as ocular drug carriers. Int. J. Pharm. 153(1), 41–50 (1997)

    CAS  Google Scholar 

  147. Ibrahim, M.M., et al.: Natural bioadhesive biodegradable nanoparticles-based topical ophthalmic formulations for sustained celecoxib release. J. Pharm. Tech. Drug. Res. 2(1), 7 (2013)

    Google Scholar 

  148. Muchtar, S., et al.: A submicron emulsion as ocular vehicle for delta-8-tetrahydrocannabinol: effect on intraocular pressure in rabbits. Ophthalmic. Res. 24(3), 142–149 (1992)

    CAS  Google Scholar 

  149. Naveh, N., Muchtar, S., Benita, S.: Pilocarpine incorporated into a submicron emulsion vehicle causes an unexpectedly prolonged ocular hypotensive effect in rabbits. J. Ocul. Pharmacol. 10(3), 509–520 (1994)

    CAS  Google Scholar 

  150. Schulz, M.B., Daniels, R.: Hydroxypropylmethylcellulose (HPMC) as emulsifier for submicron emulsions: influence of molecular weight and substitution type on the droplet size after high-pressure homogenization. Eur. J. Pharm. Biopharm. 49(3), 231–236 (2000)

    CAS  Google Scholar 

  151. Hagigit, T., et al.: The influence of cationic lipid type on in-vitro release kinetic profiles of antisense oligonucleotide from cationic nanoemulsions. Eur. J. Pharm. Biopharm. 70(1), 248–259 (2008)

    CAS  Google Scholar 

  152. Pepic, I., Jalsenjak, N., Jalsenjak, I.: Micellar solutions of triblock copolymer surfactants with pilocarpine. Int. J. Pharm. 272(1–2), 57–64 (2004)

    CAS  Google Scholar 

  153. Loftssona, T., Jarvinen, T.: Cyclodextrins in ophthalmic drug delivery. Adv. Drug. Deliv. Rev. 36(1), 59–79 (1999)

    CAS  Google Scholar 

  154. Bibby, D.C., Davies, N.M., Tucker, I.G.: Mechanisms by which cyclodextrins modify drug release from polymeric drug delivery systems. Int. J. Pharm. 197(1), 1–11 (2000)

    CAS  Google Scholar 

  155. Gudmundsdottir, E., et al.: Methazolamide 1 % in cyclodextrin solution lowers IOP in human ocular hypertension. Invest. Ophthalmol. Vis. Sci. 41(11), 3552–3554 (2000)

    CAS  Google Scholar 

  156. Kristinsson, J.K., et al.: Dexamethasone-cyclodextrin-polymer co-complexes in aqueous eye drops. Aqueous humor pharmacokinetics in humans. Invest. Ophthalmol. Vis. Sci. 37(6), 1199–1203 (1996)

    CAS  Google Scholar 

  157. Palma, S.D., et al.: An efficient ternary complex of acetazolamide with HP-ss-CD and TEA for topical ocular administration. J. Controlled. Release. 138(1), 24–31 (2009)

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Javier Adrián Calles .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Calles, J.A., Bermúdez, J., Vallés, E., Allemandi, D., Palma, S. (2015). Polymers in Ophthalmology. In: Puoci, F. (eds) Advanced Polymers in Medicine. Springer, Cham. https://doi.org/10.1007/978-3-319-12478-0_6

Download citation

Publish with us

Policies and ethics