Skip to main content

Bioactive Glass-Biopolymer Composites for Applications in Tissue Engineering

  • Reference work entry
  • First Online:
Handbook of Bioceramics and Biocomposites

Abstract

Tissue engineering (TE) is a biomedical field in continuous expansion. However, there are still many challenges to be tackled. The further development of TE approaches requires interdisciplinary interaction and collaboration among various research areas with a notable contribution expected from biomaterials science. In the last couple of decades, significant advances in the development of biomaterial-based scaffolds for hard and soft tissue regeneration have been accomplished, including the manufacture of biocomposites that combine natural or synthetic polymers with bioactive glasses or glass-ceramics. These novel biomaterials present the possibility of tailoring a variety of parameters and properties such as degradation kinetics, mechanical properties, and chemical composition according to the aimed application. This chapter presents a concise update of the field of biopolymer–bioactive glass composite scaffold development for TE covering several popular processing techniques for biocomposite fabrication, namely, microsphere processing, solvent casting-particulate leaching method, electrospinning, freeze-drying, and rapid prototyping techniques, which lead to scaffolds exhibiting a variety of 3D morphologies and different pore structures.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 699.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 699.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Rezwan K et al (2006) Biodegradable and bioactive porous polymer/inorganic composite scaffolds for bone tissue engineering. Biomaterials 27(18):3413–3431

    Article  Google Scholar 

  2. Dahlin RL, Kasper FK, Mikos AG (2011) Polymeric nanofibers in tissue engineering. Tissue Eng Part B Rev 17(5):349–364

    Article  Google Scholar 

  3. Place ES et al (2009) Synthetic polymer scaffolds for tissue engineering. Chem Soc Rev 38(4):1139–1151

    Article  Google Scholar 

  4. Ferreira AM et al (2012) Collagen for bone tissue regeneration. Acta Biomater 8(9):3191–3200

    Article  Google Scholar 

  5. Sabir MI, Xu X, Li L (2009) A review on biodegradable polymeric materials for bone tissue engineering applications. J Mater Sci 44(21):5713–5724

    Article  Google Scholar 

  6. Sun J, Tan H (2013) Alginate-based biomaterials for regenerative medicine applications. Materials 6(4):1285–1309

    Article  Google Scholar 

  7. Chu PK, Liu X (2008) Biomaterials fabrication and processing handbook. CRC press, Boca Raton

    Google Scholar 

  8. Ylänen HO (2011) Bioactive glasses: materials, properties and applications. Elsevier, Cambridge

    Google Scholar 

  9. Rahaman MN et al (2011) Bioactive glass in tissue engineering. Acta Biomater 7(6):2355–2373

    Article  Google Scholar 

  10. Kaur G et al (2014) A review of bioactive glasses: their structure, properties, fabrication and apatite formation. J Biomed Mater Res A 102(1):254–274

    Article  Google Scholar 

  11. Loh QL, Choong C (2013) Three-dimensional scaffolds for tissue engineering applications: role of porosity and pore size. Tissue Eng Part B Rev 19(6):485–502

    Article  Google Scholar 

  12. Thavornyutikarn B et al (2014) Bone tissue engineering scaffolding: computer-aided scaffolding techniques. Prog Biomater 3(2–4):61–102

    Article  Google Scholar 

  13. Hench LL (2015) Opening paper 2015–Some comments on Bioglass: Four Eras of Discovery and Development. Biomedical glasses 1(1):1–11

    Google Scholar 

  14. Guarino V, Causa F, Ambrosio L (2007) Bioactive scaffolds for bone and ligament tissue. Expert Rev Med Devices 4(3):405–418

    Google Scholar 

  15. Hench LL (1998) Bioceramics. J Am Ceram Soc 81(7):1705–1728

    Article  Google Scholar 

  16. Miguez-Pacheco V, Hench LL, Boccaccini AR (2015) Bioactive glasses beyond bone and teeth: emerging applications in contact with soft tissues. Acta Biomater 13:1–15

    Article  Google Scholar 

  17. Gentleman E et al (2010) The effects of strontium-substituted bioactive glasses on osteoblasts and osteoclasts in vitro. Biomaterials 31(14):3949–3956

    Article  Google Scholar 

  18. Durand LAH et al (2014) In vitro endothelial cell response to ionic dissolution products from boron-doped bioactive glass in the SiO2–CaO–P2O5–Na2O system. J Mater Chem B 2(43):7620–7630

    Article  Google Scholar 

  19. Wang X et al (2011) Synthesis and characterization of hierarchically macroporous and mesoporous CaO–MO–SiO2–P2O5 (M = Mg, Zn, Sr) bioactive glass scaffolds. Acta Biomater 7(10):3638–3644

    Article  Google Scholar 

  20. Erol M, Özyuguran A, Çelebican Ö (2010) Synthesis, characterization, and in vitro bioactivity of sol-gel-derived Zn, Mg, and Zn-Mg Co-doped bioactive glasses. Chem Eng Technol 33(7):1066–1074

    Article  Google Scholar 

  21. Varmette EA et al (2009) Abrogation of the inflammatory response in LPS-stimulated RAW 264.7 murine macrophages by Zn- and Cu-doped bioactive sol–gel glasses. J Biomed Mater Res A 90(2):317–325

    Article  Google Scholar 

  22. Fooladi I et al (2013) Sol–gel-derived bioactive glass containing SiO2–MgO–CaO–P2O5 as an antibacterial scaffold. J Biomed Mater Res A 101(6):1582–1587

    Article  Google Scholar 

  23. Blaker J, Nazhat S, Boccaccini A (2004) Development and characterisation of silver-doped bioactive glass-coated sutures for tissue engineering and wound healing applications. Biomaterials 25(7):1319–1329

    Article  Google Scholar 

  24. Lohbauer U et al (2005) Antimicrobial treatment of dental osseous defects with silver doped bioglass: osteoblast cell response. Key Eng Mater 284:435–438

    Article  Google Scholar 

  25. Zhu Y et al (2013) Magnetic mesoporous bioactive glass scaffolds: preparation, physicochemistry and biological properties. J Mater Chem B 1(9):1279–1288

    Article  Google Scholar 

  26. Jayalekshmi A, Victor SP, Sharma CP (2013) Magnetic and degradable polymer/bioactive glass composite nanoparticles for biomedical applications. Colloids Surf B Biointerfaces 101:196–204

    Article  Google Scholar 

  27. Brauer DS et al (2010) Fluoride-containing bioactive glasses: effect of glass design and structure on degradation, pH and apatite formation in simulated body fluid. Acta Biomater 6(8):3275–3282

    Article  Google Scholar 

  28. Brauer DS et al (2008) Fluoride-containing bioactive glasses. Adv Mater Res 39:299–304

    Article  Google Scholar 

  29. Erol M et al (2012) Copper-releasing, boron-containing bioactive glass-based scaffolds coated with alginate for bone tissue engineering. Acta Biomater 8(2):792–801

    Article  Google Scholar 

  30. Wu C et al (2013) Copper-containing mesoporous bioactive glass scaffolds with multifunctional properties of angiogenesis capacity, osteostimulation and antibacterial activity. Biomaterials 34(2):422–433

    Article  Google Scholar 

  31. Erol M et al (2012) 3D Composite scaffolds using strontium containing bioactive glasses. J Eur Ceram Soc 32(11):2747–2755

    Article  Google Scholar 

  32. Shruti S et al (2013) Mesoporous bioactive scaffolds prepared with cerium-, gallium-and zinc-containing glasses. Acta Biomater 9(1):4836–4844

    Article  Google Scholar 

  33. Hoppe A, Güldal NS, Boccaccini AR (2011) A review of the biological response to ionic dissolution products from bioactive glasses and glass-ceramics. Biomaterials 32(11):2757–2774

    Article  Google Scholar 

  34. Azevedo M et al (2010) Synthesis and characterization of hypoxia-mimicking bioactive glasses for skeletal regeneration. J Mater Chem 20(40):8854–8864

    Article  Google Scholar 

  35. Wu C et al (2011) Proliferation, differentiation and gene expression of osteoblasts in boron-containing associated with dexamethasone deliver from mesoporous bioactive glass scaffolds. Biomaterials 32(29):7068–7078

    Article  Google Scholar 

  36. Wu C, Chang J (2014) Multifunctional mesoporous bioactive glasses for effective delivery of therapeutic ions and drug/growth factors. J Control Release 193:282–295

    Article  Google Scholar 

  37. Jones JR (2013) Review of bioactive glass: from Hench to hybrids. Acta Biomater 9(1):4457–4486

    Article  Google Scholar 

  38. Wu C, Chang J, Xiao Y (2011) Mesoporous bioactive glasses as drug delivery and bone tissue regeneration platforms. Ther Deliv 2(9):1189–1198

    Article  Google Scholar 

  39. Boccaccini AR et al (2010) Polymer/bioactive glass nanocomposites for biomedical applications: a review. Compos Sci Technol 70(13):1764–1776

    Article  Google Scholar 

  40. Luo C et al (2012) Modulating cellular behaviors through surface nanoroughness. J Mater Chem 22(31):15654–15664

    Article  Google Scholar 

  41. Misra SK et al (2010) Characterization of carbon nanotube (MWCNT) containing P (3HB)/bioactive glass composites for tissue engineering applications. Acta Biomater 6(3):735–742

    Article  Google Scholar 

  42. Boccaccini AR, Ma PX (Eds.) (2014) Tissue engineering using ceramics and polymers. Woodhead Publishing, Elsevier, Cambridge

    Google Scholar 

  43. Lu HH et al (2003) Three-dimensional, bioactive, biodegradable, polymer–bioactive glass composite scaffolds with improved mechanical properties support collagen synthesis and mineralization of human osteoblast-like cells in vitro. J Biomed Mater Res A 64(3):465–474

    Article  Google Scholar 

  44. Roether J et al (2002) Novel bioresorbable and bioactive composites based on bioactive glass and polylactide foams for bone tissue engineering. J Mater Sci Mater Med 13(12):1207–1214

    Article  Google Scholar 

  45. Liu W et al (2013) Application and performance of 3D printing in nanobiomaterials. J Nanomater 2013:13

    Google Scholar 

  46. Boccaccini AR, Maquet V (2003) Bioresorbable and bioactive polymer/Bioglass® composites with tailored pore structure for tissue engineering applications. Compos Sci Technol 63(16):2417–2429

    Google Scholar 

  47. Nooeaid P et al (2012) Osteochondral tissue engineering: scaffolds, stem cells and applications. J Cell Mol Med 16(10):2247–2270

    Article  Google Scholar 

  48. Park J-H et al (2013) Microcarriers designed for cell culture and tissue engineering of bone. Tissue Eng Part B Rev 19(2):172–190

    Article  Google Scholar 

  49. Freiberg S, Zhu X (2004) Polymer microspheres for controlled drug release. Int J Pharm 282(1):1–18

    Article  Google Scholar 

  50. Yoon B-H, Kim H-E, Kim H-W (2008) Bioactive microspheres produced from gelatin–siloxane hybrids for bone regeneration. J Mater Sci Mater Med 19(6):2287–2292

    Article  Google Scholar 

  51. Kulshreshtha AK, Singh ON, Wall GM (2010) Pharmaceutical suspensions. From formulation development to manufacturing. Springer, New York

    Google Scholar 

  52. Qiu QQ, Ducheyne P, Ayyaswamy PS (2002) Bioactive, degradable composite microspheres. Ann N Y Acad Sci 974(1):556–564

    Article  Google Scholar 

  53. Keshaw H et al (2008) Assessment of polymer/bioactive glass-composite microporous spheres for tissue regeneration applications. Tissue Eng Part A 15(7):1451–1461

    Article  Google Scholar 

  54. Wu C et al (2010) Bioactive inorganic-materials/alginate composite microspheres with controllable drug-delivery ability. J Biomed Mater Res B Appl Biomater 94(1):32–43

    Google Scholar 

  55. Mondal T et al (2012) Poly (l-lactide-co-ɛ-caprolactone) microspheres laden with bioactive glass-ceramic and alendronate sodium as bone regenerative scaffolds. Mater Sci Eng C 32(4):697–706

    Article  Google Scholar 

  56. Subia B, Kundu J, Kundu S (2010) Biomaterial scaffold fabrication techniques for potential tissue engineering applications. INTECH Open Access Publisher, Rijeka

    Google Scholar 

  57. Lu T, Li Y, Chen T (2013) Techniques for fabrication and construction of three-dimensional scaffolds for tissue engineering. Int J Nanomedicine 8:337–350

    Article  Google Scholar 

  58. Bencherif SA, Braschler TM, Renaud P (2013) Advances in the design of macroporous polymer scaffolds for potential applications in dentistry. J Periodontal Implant Sci 43(6):251–261

    Article  Google Scholar 

  59. Liu X, Ma P (2004) Polymeric scaffolds for bone tissue engineering. Ann Biomed Eng 32(3):477–486

    Article  Google Scholar 

  60. Li X et al (2008) A mesoporous bioactive glass/polycaprolactone composite scaffold and its bioactivity behavior. J Biomed Mater Res A 84A(1):84–91

    Article  Google Scholar 

  61. Wu J et al (2013) Improvement of PHBV scaffolds with bioglass for cartilage tissue engineering. PLoS One 8(8):e71563

    Article  Google Scholar 

  62. Niu Y et al (2015) Bioactive and degradable scaffolds of the mesoporous bioglass and poly(l-lactide) composite for bone tissue regeneration. J Mater Chem B 3:2962–2970

    Article  Google Scholar 

  63. Huang Z-M et al (2003) A review on polymer nanofibers by electrospinning and their applications in nanocomposites. Compos Sci Technol 63(15):2223–2253

    Article  Google Scholar 

  64. Bosworth L, Downes S (2011) Electrospinning for tissue regeneration. Woodhead Publishing, Elsevier, Cambridge

    Google Scholar 

  65. Li D, Xia Y (2004) Electrospinning of nanofibers: reinventing the wheel? Adv Mater 16(14):1151–1170

    Article  Google Scholar 

  66. Ding Y et al (2014) Fabrication of electrospun poly (3-hydroxybutyrate)/poly (ε-caprolactone)/silica hybrid fibermats with and without calcium addition. Eur Polym J 55:222–234

    Article  Google Scholar 

  67. Bhardwaj N, Kundu SC (2010) Electrospinning: a fascinating fiber fabrication technique. Biotechnol Adv 28(3):325–347

    Article  Google Scholar 

  68. Jang J-H, Castano O, Kim H-W (2009) Electrospun materials as potential platforms for bone tissue engineering. Adv Drug Deliv Rev 61(12):1065–1083

    Article  Google Scholar 

  69. Noh K-T et al (2010) Composite nanofiber of bioactive glass nanofiller incorporated poly (lactic acid) for bone regeneration. Mater Lett 64(7):802–805

    Article  Google Scholar 

  70. Kouhi M et al (2013) Poly (ε-caprolactone) incorporated bioactive glass nanoparticles and simvastatin nanocomposite nanofibers: preparation, characterization and in vitro drug release for bone regeneration applications. Chem Eng J 228:1057–1065

    Article  Google Scholar 

  71. Lin H-M, Lin Y-H, Hsu F-Y (2012) Preparation and characterization of mesoporous bioactive glass/polycaprolactone nanofibrous matrix for bone tissues engineering. J Mater Sci Mater Med 23(11):2619–2630

    Article  Google Scholar 

  72. Ren J et al (2014) Melt-electrospun polycaprolactone strontium-substituted bioactive glass scaffolds for bone regeneration. J Biomed Mater Res A 102(9):3140–3153

    Article  Google Scholar 

  73. Allo BA, Rizkalla AS, Mequanint K (2010) Synthesis and electrospinning of ε-polycaprolactone-bioactive glass hybrid biomaterials via a sol − gel process. Langmuir 26(23):18340–18348

    Article  Google Scholar 

  74. Han X et al (2014) One-pot synthesis of macro-mesoporous bioactive glasses/polylactic acid for bone tissue engineering. Mater Sci Eng C 43:367–374

    Article  Google Scholar 

  75. Gao C et al (2013) In vitro evaluation of electrospun gelatin-bioactive glass hybrid scaffolds for bone regeneration. J Appl Polym Sci 127(4):2588–2599

    Article  Google Scholar 

  76. Kim HW, Lee HH, Chun GS (2008) Bioactivity and osteoblast responses of novel biomedical nanocomposites of bioactive glass nanofiber filled poly (lactic acid). J Biomed Mater Res A 85(3):651–663

    Article  Google Scholar 

  77. Kim HW, Song JH, Kim HE (2006) Bioactive glass nanofiber–collagen nanocomposite as a novel bone regeneration matrix. J Biomed Mater Res A 79(3):698–705

    Article  Google Scholar 

  78. Lee H-H et al (2008) Bioactivity improvement of poly (ε-caprolactone) membrane with the addition of nanofibrous bioactive glass. Acta Biomater 4(3):622–629

    Article  Google Scholar 

  79. Jo JH et al (2009) In vitro/in vivo biocompatibility and mechanical properties of bioactive glass nanofiber and poly (ε-caprolactone) composite materials. J Biomed Mater Res B Appl Biomater 91(1):213–220

    Article  Google Scholar 

  80. Castaño O et al (2014) Angiogenesis in bone regeneration: tailored calcium release in hybrid fibrous scaffolds. ACS Appl Mater Interfaces 6(10):7512–7522

    Article  Google Scholar 

  81. Ezekwo G, Tong H-M, Gryte CC (1980) On the mechanism of dewatering colloidal aqueous solutions by freeze-thaw processes. Water Res 14(8):1079–1088

    Article  Google Scholar 

  82. Zhang R, Ma PX (1999) Poly (α-hydroxyl acids)/hydroxyapatite porous composites for bone-tissue engineering. I. Preparation and morphology. J Biomed Mater Res 44(4):446–455

    Google Scholar 

  83. Sultana N, Wang M (2008) PHBV/PLLA-based composite scaffolds containing nano-sized hydroxyapatite particles for bone tissue engineering. J Exp Nanosci 3(2):121–132

    Article  Google Scholar 

  84. O’Brien FJ et al (2004) Influence of freezing rate on pore structure in freeze-dried collagen-GAG scaffolds. Biomaterials 25(6):1077–1086

    Article  Google Scholar 

  85. Thitiset T et al (2013) Development of collagen/demineralized bone powder scaffolds and periosteum-derived cells for bone tissue engineering application. Int J Mol Sci 14(1):2056–2071

    Article  Google Scholar 

  86. Eslaminejad MB et al (2007) Bone differentiation of marrow-derived mesenchymal stem cells using β-tricalcium phosphate–alginate–gelatin hybrid scaffolds. J Tissue Eng Regen Med 1(6):417–424

    Article  Google Scholar 

  87. Gelinsky M, Eckert M, Despang F (2007) Biphasic, but monolithic scaffolds for the therapy of osteochondral defects. Int J Mater Res 98(8):749–755

    Article  Google Scholar 

  88. Pon-On W et al (2014) Mechanical properties, biological activity and protein controlled release by poly (vinyl alcohol)–bioglass/chitosan–collagen composite scaffolds: a bone tissue engineering applications. Mater Sci Eng C 38:63–72

    Article  Google Scholar 

  89. Peter M et al (2010) Novel biodegradable chitosan–gelatin/nano-bioactive glass ceramic composite scaffolds for alveolar bone tissue engineering. Chem Eng J 158(2):353–361

    Article  Google Scholar 

  90. Gentile P et al (2012) Bioactive glass/polymer composite scaffolds mimicking bone tissue. J Biomed Mater Res A 100(10):2654–2667

    Article  Google Scholar 

  91. Voicu G et al (2014) Synthesis, characterization and bio-evaluation of bioactive composites scaffolds based on collagen and glass ceramic. Dig J Nanomater Biostruct 9(1):99

    Google Scholar 

  92. Wu J, Meredith JC (2014) Assembly of chitin nanofibers into porous biomimetic structures via freeze drying. ACS Macro Lett 3(2):185–190

    Article  Google Scholar 

  93. Boccaccini AR et al (2005) Preparation and characterisation of poly (lactide-co-glycolide)(PLGA) and PLGA/Bioglass® composite tubular foam scaffolds for tissue engineering applications. Mater Sci Eng C 25(1):23–31

    Article  Google Scholar 

  94. Albu MG, Radev LN, Titorenku ID, Vladkova TG (2014) Fibrillar collagen/bioactive calcium phosphate silicate glass-ceramic composites for bone tissue engineering. Curr Tissue Eng 2(2):14

    Google Scholar 

  95. Wu C et al (2011) A comparative study of mesoporous glass/silk and non-mesoporous glass/silk scaffolds: physiochemistry and in vivo osteogenesis. Acta Biomater 7(5):2229–2236

    Google Scholar 

  96. Hunger PM, Donius AE, Wegst UGK (2013) Structure–property-processing correlations in freeze-cast composite scaffolds. Acta Biomater 9(5):6338–6348

    Article  Google Scholar 

  97. Guan J, Stankus JJ, Wagner WR (2007) Biodegradable elastomeric scaffolds with basic fibroblast growth factor release. J Control Release 120(1–2):70–78

    Article  Google Scholar 

  98. Mouriño V et al (2013) Composite polymer-bioceramic scaffolds with drug delivery capability for bone tissue engineering. Expert Opin Drug Deliv 10(10):1353–1365

    Article  Google Scholar 

  99. Qu T, Liu X (2013) Nano-structured gelatin/bioactive glass hybrid scaffolds for the enhancement of odontogenic differentiation of human dental pulp stem cells. J Mater Chem B 1(37):4764–4772

    Article  Google Scholar 

  100. Seol Y-J, Kang T-Y, Cho D-W (2012) Solid freeform fabrication technology applied to tissue engineering with various biomaterials. Soft Matter 8(6):1730–1735

    Article  Google Scholar 

  101. Jacot-Descombes L et al (2012) Fabrication of epoxy spherical microstructures by controlled drop-on-demand inkjet printing. J Micromech Microeng 22(7):074012

    Article  Google Scholar 

  102. Padilla S, Sánchez-Salcedo S, Vallet-Regí M (2007) Bioactive glass as precursor of designed-architecture scaffolds for tissue engineering. J Biomed Mater Res A 81(1):224–232

    Article  Google Scholar 

  103. Li Z et al (2013) Stiff macro-porous bioactive glass–ceramic scaffold: fabrication by rapid prototyping template, characterization and in vitro bioactivity. Mater Chem Phys 141(1):76–80

    Article  Google Scholar 

  104. Gmeiner R et al (2015) Stereolithographic ceramic manufacturing of high strength bioactive glass. Int J Appl Ceram Technol 12(1):38–45

    Article  Google Scholar 

  105. Tesavibul P et al (2012) Processing of 45S5 Bioglass® by lithography-based additive manufacturing. Mater Lett 74:81–84

    Article  Google Scholar 

  106. Elomaa L et al (2013) Porous 3D modeled scaffolds of bioactive glass and photocrosslinkable poly (ε-caprolactone) by stereolithography. Compos Sci Technol 74:99–106

    Article  Google Scholar 

  107. Wiria F et al (2007) Poly-ε-caprolactone/hydroxyapatite for tissue engineering scaffold fabrication via selective laser sintering. Acta Biomater 3(1):1–12

    Article  Google Scholar 

  108. Bergmann C et al (2010) 3D printing of bone substitute implants using calcium phosphate and bioactive glasses. J Eur Ceram Soc 30(12):2563–2567

    Article  Google Scholar 

  109. Zhao S et al (2014) Three dimensionally printed mesoporous bioactive glass and poly (3-hydroxybutyrate-co-3-hydroxyhexanoate) composite scaffolds for bone regeneration. J Mater Chem B 2(36):6106–6118

    Article  Google Scholar 

  110. Serra T, Planell JA, Navarro M (2013) High-resolution PLA-based composite scaffolds via 3-D printing technology. Acta Biomater 9(3):5521–5530

    Article  Google Scholar 

  111. Serra T et al (2014) Relevance of PEG in PLA-based blends for tissue engineering 3D-printed scaffolds. Mater Sci Eng C 38:55–62

    Article  Google Scholar 

  112. Almeida CR et al (2014) Impact of 3-D printed PLA-and chitosan-based scaffolds on human monocyte/macrophage responses: unraveling the effect of 3-D structures on inflammation. Acta Biomater 10(2):613–622

    Article  Google Scholar 

  113. Zhang J et al (2014) Three-dimensional printing of strontium-containing mesoporous bioactive glass scaffolds for bone regeneration. Acta Biomater 10(5):2269–2281

    Article  Google Scholar 

  114. Korpela J et al (2013) Biodegradable and bioactive porous scaffold structures prepared using fused deposition modeling. J Biomed Mater Res B Appl Biomater 101(4):610–619

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Judith A. Roether .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this entry

Cite this entry

Ding, Y., Souza, M.T., Li, W., Schubert, D.W., Boccaccini, A.R., Roether, J.A. (2016). Bioactive Glass-Biopolymer Composites for Applications in Tissue Engineering. In: Antoniac, I. (eds) Handbook of Bioceramics and Biocomposites. Springer, Cham. https://doi.org/10.1007/978-3-319-12460-5_17

Download citation

Publish with us

Policies and ethics