Skip to main content

Targeted Drug Delivery to the Mitochondria

  • Chapter
  • First Online:
Targeted Drug Delivery : Concepts and Design

Abstract

Mitochondria are of an increasing interest in pharmaceutical and medical research since it has emerged as an intriguing target for treatment of many diseases with a great diversity of clinical appearance. The efficiency of drug action relies largely on how well it is able to reach its target or even its target inside the cell such as mitochondria. Subsequently, drug delivery to the specific intracellular organelle dramatically enhances drug action. Mitochondria play a major function in a range of cell processes and mitochondrial dysfunction contributes to several human diseases. Increasing interest in delivering large molecules such as nucleic acids, peptides, enzyme mimetics, drugs, and probes have led to the emergence of “Mitochondrial Medicine” as an entire pioneering field of biomedical exploration. Targeting of biologically active molecules to mitochondria in living cells open up ways for modifying mitochondrial functions, which may come with selective protection, repair or eradication of cells. Furthermore, nanoscience offers unique tools and materials to target therapeutic agents to mitochondria. This chapter deals with different aspects of mitochondrial drug delivery, current strategies of mitochondrial targeting and their possible therapeutic applications.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

CPPs:

Cell penetrating peptides

CsA:

Cyclosporin A

CTAB:

Cetyltrimethylammonium bromide

DOPE:

Di-oleoylphosphatidylethanolamine

DOPE:

1,2-Dioleoyl-sn-glycero-3-phosphoethanolamine

DOTAP:

Dioleoyl-1,2-diacyl-3-trimethylammoniumpropane

DOTMA:

2,3-Bis-(oleoyl)oxipropyl-trimethyl ammonium chloride

GSH:

Glutathione

Mce 6:

Photosensitizer mesochlorine 6

MEND:

Multifunctional envelope-type nano-device

MLS:

Mitochondrial targeting sequences

MPPs:

Mitochondria-penetrating peptides

mPTPCs:

Mitochondrial permeability transition pore complexes

MTS:

Mitochondrial targeting signal peptide

PAA:

Polyacrylic acid

PAMAM:

Poly(amidoamine) dendrimer

PLGA:

Poly-lactide-co-glycolide

PT:

Permeability transition

PTD:

Protein transduction domain

PTPC:

Permeability transition pore complex

SOD:

Super-oxide dismutase

SOPC:

1-Stearoyl-2-oleoylphosphatidylcholine

SOPS:

Stearoyl-oleoyl-phosphatidylserine

STPP:

Stearyl triphenyl phosphonium

TAT:

Trans-activating transcriptional activator

tBHP:

t-Butylhydroperoxide

TPP:

Triphenylphosphonium

TPP:

Triphenylphosphonium

VDAC:

Voltage dependent anion channel

ZnO:

Zinc oxide

ZnPc:

Zinc phthalocyanine

References

  1. Ferreira L, Karp JM, Nobre L, Langer R (2008) New opportunities: the use of nanotechnologies to manipulate and track stem cells. Cell Stem Cell 3:136–146

    Article  CAS  PubMed  Google Scholar 

  2. Durazo SA, Kompella UB (2012) Functionalized nanosystems for targeted mitochondrial delivery. Mitochondrion 12:190–201

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  3. D’Souza GGM, Weissig V (2009) Subcellular targeting: a new frontier for drug-loaded pharmaceutical nanocarriers and the concept of the magic bullet. Expert Opin Drug Deliv 6:1135–1148

    Article  PubMed  Google Scholar 

  4. Murphy MP, Smith RAJ (2000) Drug delivery to mitochondria: the key to mitochondrial medicine. Adv Drug Deliv Rev 41:235–250

    Article  CAS  PubMed  Google Scholar 

  5. Szewczyk A, Wojtczak L (2002) Mitochondria as a pharmacological target. Pharmacol Rev 54:101–127

    Article  CAS  PubMed  Google Scholar 

  6. Detmer SA, Chan DC (2007) Functions and dysfunctions of mitochondrial dynamics. Nat Rev Mol Cell Biol 8:870–879

    Article  CAS  PubMed  Google Scholar 

  7. Wallace KB, Starkov AA (2000) Mitochondrial targets of drug toxicity. Annu Rev Pharmacol Toxicol 40:353–388

    Article  CAS  PubMed  Google Scholar 

  8. DiMauro S (2004) Mitochondrial diseases. Biochim Biophys Acta 1658:80–88

    Google Scholar 

  9. Lowell BB, Shulman GI (2005) Mitochondrial dysfunction and type 2 diabetes. Science 307:384–387

    Article  CAS  PubMed  Google Scholar 

  10. Gibson GE, Karuppagounder SS, Shi Q (2008) Oxidant-induced changes in mitochondria and calcium dynamics in the pathophysiology of Alzheimer’s disease. Mitochon Oxid Stress Neurodegen Disord. Ann N Y Acad Sci 1147:221–232

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  11. Pathania D, Millard M, Neamati N (2009) Opportunities in discovery and delivery of anticancer drugs targeting mitochondria and cancer cell metabolism. Adv Drug Deliv Rev 61:1250–1275

    Article  CAS  PubMed  Google Scholar 

  12. Yamada Y, Shinohara Y, Kakudo T, Chaki S, Futaki S, Kamiya H et al (2005) Mitochondrial delivery of mastoparan with transferring liposomes equipped with a pH-sensitive fusogenic peptide for selective cancer therapy. Int J Pharm 303:1–7

    Article  CAS  PubMed  Google Scholar 

  13. Muratovska A, Lightowlers RN, Taylor RW, Wilce JA, Murphy MP (2001) Targeting large molecules to mitochondria. Adv Drug Deliv Rev 49:189–198

    Article  CAS  PubMed  Google Scholar 

  14. Horobin RW, Trapp S, Weissig V (2007) Mitochondriotropics: a review of their mode of action, and their applications for drug and DNA delivery to mammalian mitochondria. J Control Release 121:125–136

    Article  CAS  PubMed  Google Scholar 

  15. Langner M (2000) The intracellular fate of non-viral DNA carriers. Cell Mol Biol Lett 5:295–313

    CAS  Google Scholar 

  16. Bulmus V (2005) Biomembrane-active molecular switches as tools for intracellular drug delivery. Aust J Chem 58:411–422

    Article  CAS  Google Scholar 

  17. Gupta B, Levchenko TS, Torchilin VP (2005) Intracellular delivery of large molecules and small particles by cell-penetrating proteins and peptides. Adv Drug Deliv Rev 57:637–651

    Article  CAS  PubMed  Google Scholar 

  18. Torchilin VP (2006) Recent approaches to intracellular delivery of drugs and DNA and organelle targeting. Annu Rev Biomed Eng 8:343–375

    Article  CAS  PubMed  Google Scholar 

  19. Luby-Phelps K (2000) Cytoarchitecture and physical properties of cytoplasm: volume, viscosity, diffusion, intracellular surface area. Int Rev Cytol 192:189–221

    Article  CAS  PubMed  Google Scholar 

  20. Ellis RJ, Minton AP (2003) Cell biology: join the crowd. Nature 425:27–28

    Article  CAS  PubMed  Google Scholar 

  21. Seksek O, Biwersi J, Verkman AS (1997) Translational diffusion of macromolecule-sized solutes in cytoplasm and nucleus. J Cell Biol 138:131–142

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  22. Salnikov V, Lukyanenko YO, Frederick CA, Lederer WJ, Lukyanenko V (2007) Probing the outer mitochondrial membrane in cardiac mitochondria with nano-particles. Biophys J 92:1058–1071

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  23. Crompton M, Virji S, Ward JM (1998) Cyclophilin-D binds strongly to complexes of the voltage-dependent anion channel and the adenine nucleotide translocase to form the permeability transition pore. Eur J Biochem 258:729–735

    Article  CAS  PubMed  Google Scholar 

  24. Jensen RE, Dunn CD (2002) Protein import into and across the mitochondrial inner membrane: role of the TIM23 and TIM22 translocons. Biochim Biophys Acta 1592:25–34

    Article  CAS  PubMed  Google Scholar 

  25. Paunesku T, Vogt S, Lai B, Maser J, Stojicevic N, Thurn KT et al (2007) Intracellular distribution of TiO2-DNA oligonucleotide nanoconjugates directed to nucleolus and mitochondria indicates sequence specificity. Nano Lett 7:596–601

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  26. Biswas S, Dodwadkar NS, Piroyan A, Torchilin VP (2012) Surface conjugation of triphenylphosphonium to target poly(amidoamine) dendrimers to mitochondria. Biomaterials 33:4773–4782

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  27. Smith RAJ, Murphy MP (2011) Mitochondria-targeted antioxidants as therapies. Discov Med 11:106–114

    PubMed  Google Scholar 

  28. Liberman E, Skulachev V (1970) Conversion of biomembrane-produced energy into electric form. IV. Biochim Biophys Acta 216:30–42

    Google Scholar 

  29. Jauslin ML, Meier T, Smith RA, Murphy MP (2003) Mitochondria-targeted antioxidants protect Friedreich Ataxia fibroblasts from endogenous oxidative stress more effectively than untargeted antioxidants. FASEB J 17:1972–1974

    CAS  PubMed  Google Scholar 

  30. Sheu SS, Nauduri D, Anders MW (2006) Targeting antioxidants to mitochondria: a new therapeutic direction. Biochim Biophys Acta 1762:256–265

    Article  CAS  PubMed  Google Scholar 

  31. Fernandez-Carneado J, VanGool M, Martos V, Castel S, Prados P, de Mendoza J, Giralt E (2005) Highly efficient, nonpeptidic oligoguanidinium vectors that selectively internalize into mitochondria. J Am Chem Soc 127:869–874

    Article  CAS  PubMed  Google Scholar 

  32. Yousif LF, Stewart KM, Horton KL, Kelley SO (2009) Mitochondria-penetrating peptides: sequence effects and model cargo transport. Chembiochem 10:2081–2088

    Article  CAS  PubMed  Google Scholar 

  33. Zhao K, Zhao GM, Wu D, Soong Y, Birk AV, Schiller PW et al (2004) Cell-permeable peptide antioxidants targeted to inner mitochondrial membrane inhibit mitochondrial swelling, oxidative cell death, and reperfusion injury. J Biol Chem 279:34682–34690

    Article  CAS  PubMed  Google Scholar 

  34. Szeto HH (2006) Mitochondria-targeted peptide antioxidants: novel neuroprotective agents. AAPS J 8:E277–E283

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  35. Horton KL, Stewart KM, Fonseca SB, Guo Q, Kelley SO (2008) Mitochondria-penetrating peptides. Chem Biol 15:375–382

    Article  CAS  PubMed  Google Scholar 

  36. Sebbage V (2009) Cell-penetrating peptides and their therapeutic applications. Bioscience Horizons 2:64–72

    Google Scholar 

  37. Richard JP, Melikov K, Vives E, Ramos C, Verbeure B, Gait MJ et al (2002) Cell-penetrating peptides. A reevaluation of the mechanism of cellular uptake. J Biol Chem 278:585–590

    Article  PubMed  Google Scholar 

  38. Pfanner N, Geissler A (2001) Versatility of the mitochondrial protein import machinery. Nat Rev Mol Cell Biol 2:339–349

    Article  CAS  PubMed  Google Scholar 

  39. Schatz G (1996) The protein import system of mitochondria. J Biol Chem 271:31763–31766

    Article  CAS  PubMed  Google Scholar 

  40. Zhang C, Sriratana A, Minamikawa T, Nagley P (1998) Photosensitisation properties of mitochondrially localised green fluorescent protein. Biochem Biophys Res Commun 242:390–395

    Article  CAS  PubMed  Google Scholar 

  41. Weissig V (2003) Mitochondrial-targeted drug and DNA delivery. Crit Rev Ther Drug Carrier Syst 20:1–62

    Article  CAS  PubMed  Google Scholar 

  42. Sneh-Edri H, Likhtenshtein D, Stepensky D (2011) Intracellular targeting of PLGA nanoparticles encapsulating antigenic peptide to the endoplasmic reticulum of dendritic cells and its effect on antigen cross-presentation in vitro. Mol Pharm 8:1266–1275

    Article  CAS  PubMed  Google Scholar 

  43. Zhou J, Zhao W-Y, Ma X, Ju R-J, Li X-Y, Li N, Sun M-G, Shi J-F, Zhang C-X, Lu W-L (2013) The anticancer efficacy of paclitaxel liposomes modified with mitochondrial targeting conjugate in resistant lung cancer. Biomaterials 34:3626–3638

    Article  CAS  PubMed  Google Scholar 

  44. Li N, Zhang CX, Wang XX, Zhang L, Ma X, Zhou J, Ju RJ, Li XY, Zhao WY, Lu WL (2013) Development of targeting lonidamine liposomes that circumvent drug-resistant cancer by acting on mitochondrial signaling pathways. Biomaterials 34:3366–3380

    Article  CAS  PubMed  Google Scholar 

  45. Yu Y, Wang Z-H, Zhang L, Yao H-J, Zhang Y, Li R-J, Ju R-J, Wang X-X, Zhou J, Li N, Lu W-L (2012) Mitochondrial targeting topotecan-loaded liposomes for treating drug-resistant breast cancer and inhibiting invasive metastases of melanoma. Biomaterials 33:1808–1820

    Article  CAS  PubMed  Google Scholar 

  46. Malhi SS, Budhiraja A, Arora S, Chaudhari KR, Nepali K, Kumar R, Sohi H, Murthy RS (2012) Intracellular delivery of redox cycler-doxorubicin to the mitochondria of cancer cell by folate receptor targeted mitocancerotropic liposomes. Int J Pharm 432:63–74

    Article  CAS  PubMed  Google Scholar 

  47. Biswas S, Dodwadkar NS, Deshpande PP, Torchilin VP (2012) Liposomes loaded with paclitaxel and modified with novel triphenylphosphonium-PEG-PE conjugate possess low toxicity, target mitochondria and demonstrate enhanced antitumor effects in vitro and in vivo. J Control Release 159:393–402

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  48. Solomon MA, Shah AA, D’Souza GG (2013) In Vitro assessment of the utility of stearyl triphenyl phosphonium modified liposomes in overcoming the resistance of ovarian carcinoma Ovcar-3 cells to paclitaxel. Mitochondrion 134:64–72

    Google Scholar 

  49. Wang L, Liu Y, Li W, Jiang X, Ji Y, Wu X et al (2011) Selective targeting of gold nanorods at the mitochondria of cancer cells: implications for cancer therapy. Nano Lett 11:772–780

    Article  CAS  PubMed  Google Scholar 

  50. Wang X-X, Li Y-B, Yao H-J, Ju R-J, Zhang Y, Li R-J, Yu Y, Zhang L, Lu W-L (2011) The use of mitochondrial targeting resveratrol liposomes modified with a dequalinium polyethylene glycol-distearoylphosphatidyl ethanolamine conjugate to induce apoptosis in resistant lung cancer cells. Biomaterials 32:5673–5687

    Article  CAS  PubMed  Google Scholar 

  51. Patel NR, Hatziantoniou S, Georgopoulos A, Demetzos C, Torchilin VP, Weissig V et al (2010) Mitochondria-targeted liposomes improve the apoptotic and cytotoxic action of sclareol. J Liposome Res 20:244–249

    Article  CAS  PubMed  Google Scholar 

  52. Liguori L, Marques B, Villegas-Mendez A, Rothe R, Lenormand J-L (2008) Liposomes-mediated delivery of pro-apoptotic therapeutic membrane proteins. J Control Release 126:217–227

    Article  CAS  PubMed  Google Scholar 

  53. Yamada Y, Akita H, Kamiya H, Kogure K, Yamamoto T, Shinohara Y, Yamashita K, Kobayashi H, Kikuchi H, Harashima H (2008) MITO-Porter: a liposome-based carrier system for delivery of macromolecules into mitochondria via membrane fusion. Biochim Biophys Acta 1778:423–432

    Article  CAS  PubMed  Google Scholar 

  54. Boddapati SV, D’Souza GG, Erdogan S, Torchilin VP, Weissig V (2008) Organelle-targeted nanocarriers: specific delivery of liposomal ceramide to mitochondria enhances its cytotoxicity in vitro and in vivo. Nano Lett 8:2559–2563

    Article  CAS  PubMed  Google Scholar 

  55. Hoshino K, Fujioka T, Oku S, Nakamura M, Suga Y, Yamaguchi K et al (2004) Quantum dots targeted to the assigned organelle in living cells. Microbiol Immunol 48:985–994

    Article  CAS  PubMed  Google Scholar 

  56. Foley S, Crowley C, Smaihi M, Bonfils C, Erlanger BF, Seta P et al (2002) Cellular localization of a water-soluble fullerene derivative. Biochem Biophys Res Commun 294:116–119

    Article  CAS  PubMed  Google Scholar 

  57. Cuchelkar V, Kopeckova P, Kopecek J (2008) Novel HPMA copolymer-bound constructs for combined tumor and mitochondrial targeting. Mol Pharm 5:776–786

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  58. García-Péreza AI, Galeanob E, Nietoa E, Sancho P (2011) Dequalinium induces human leukemia cell death by affecting the redox balance. Leuk Res 35:1395–1401

    Article  Google Scholar 

  59. D’Souza GG, Cheng SM, Boddapati SV, Horobin RW, Weissig V (2008) Nanocarrier-assisted sub-cellular targeting to the site of mitochondria improves the pro-apoptotic activity of paclitaxel. J Drug Target 16:578–585

    Article  PubMed  Google Scholar 

  60. D’Souza GG, Rammohan R, Cheng SM, Torchilin VP, Weissig V (2003) DQAsome-mediated delivery of plasmid DNA toward mitochondria in living cells. J Control Release 92:1–2

    Article  Google Scholar 

  61. Gao X, Kim KS, Liu D (2007) Nonviral gene delivery: what we know and what is next. AAPS J 9:E92–E104

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  62. Vaidya B, Paliwal R, Rai S, Khatri K, Goyal AK, Mishra N, Vyas SP (2009) Cell-selective mitochondrial targeting: a new approach for cancer therapy. Cancer Ther 7:141–148

    CAS  Google Scholar 

  63. Inoki Y (2000) Proteoliposomes colocalized with endogenous mitochondria in mouse fertilized egg. Biochem Biophys Res Commun 278:183–191

    Article  CAS  PubMed  Google Scholar 

  64. Miller BR, Cumsky MG (1991) An unusual mitochondrial import pathway for the precursor to yeast cytochromec oxidase subunit Va. J Cell Biol 112:833–841

    Article  CAS  PubMed  Google Scholar 

  65. Herrmann JM, Koll H, Cook RA, Neupert W, Stuart RA (1995) Topogenesis of cytochrome oxidase subunit II. Mechanisms of protein export from themitochondrial matrix. J Biol Chem 270:27079–27086

    Article  CAS  PubMed  Google Scholar 

  66. Rajendran L, Knölker HJ, Simons K (2010) Subcellular targeting strategies for drug design and delivery. Nat Rev Drug Discov 9:29–42

    Article  CAS  PubMed  Google Scholar 

  67. Stover TC, Sharma A, Robertson GP, Kester M (2005) Systemic delivery of liposomal short-chain ceramide limits solid tumor growth in murine models of breast adenocarcinoma. Clin Cancer Res 11:3465–3474

    Article  CAS  PubMed  Google Scholar 

  68. Yamada Y, Furukawa R, Yasuzaki Y, Harashima H (2011) Dual function MITO-Porter, a nano carrier integrating both efficient cytoplasmic delivery and mitochondrial macromolecule delivery. Mol Ther 19:1449–1456

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  69. Yamada Y (2007) Mitochondrial drug delivery and mitochondrial disease therapy – an approach to liposome-based delivery targeted to mitochondria. Mitochondrion 7:63–71

    Article  CAS  PubMed  Google Scholar 

  70. Brand MD, Nicholls DG (2011) Assessing mitochondrial dysfunction in cells. Biochem J 435:297–312

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  71. Felgner PL, Gadek TR, Holm M, Roman R, Chan HW, Wenz M et al (1987) Lipofection: a highly efficient, lipid-mediated DNA-transfection procedure. Proc Natl Acad Sci 84:7413–7417

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  72. Reddy MK, Wu L, Kou W, Ghorpade A, Labhasetwar V (2008) Superoxide dismutase-loaded PLGA nanoparticles protect cultured human neurons under oxidative stress. Appl Biochem Biotechnol 151:565–577

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  73. Marrache S, Tundup S, Harn DA, Dhar S (2013) Ex vivo programming of dendritic cells by mitochondria-targeted nanoparticles to produce interferon-gamma for cancer immunotherapy. ACS Nano 7(8):7392–7402

    Article  CAS  PubMed  Google Scholar 

  74. Nishiyama N (2009) Enhanced photodynamic cancer treatment by supramolecular nanocarriers charged with dendrimer phthalocyanine. J Control Release 133:245–251

    Article  CAS  PubMed  Google Scholar 

  75. Link S, El-Sayed MA (1999) Size and temperature dependence of the plasmon absorp-tion of colloidal gold nanoparticles. J Phys Chem B 103:4212–4217

    Article  CAS  Google Scholar 

  76. El-Sayed IH, Huang X, El-Sayed MA (2005) Surface plasmon resonance scattering and absorption of anti-EGFR antibody conjugated gold nanoparticles in cancer diagnostics: applications in oral cancer. Nano Lett 5:829–834

    Article  CAS  PubMed  Google Scholar 

  77. Flanagan MT, Pantell RH (1984) Surface plasmon resonance and immunosensors. Electron Lett 20:968–970

    Article  Google Scholar 

  78. Goodman CM, McCusker CD, Yilmaz T, Rotello VM (2004) Toxicity of gold nano-particles functionalized with cationic and anionic side chains. Bioconjug Chem 15:897–900

    Article  CAS  PubMed  Google Scholar 

  79. Esumi K, Takei N, Yoshimura T (2003) Antioxidant-potentiality of gold-chitosan nanocomposites. Colloids Surf B Biointerfaces 32:117–123

    Article  CAS  Google Scholar 

  80. Qi LF, Xu ZR, Li Y, Jiang X, Han XY (2005) In vitro effects of chitosan nanoparticles on proliferation of human gastric carcinoma cell line MGC803 cells. World J Gastroenterol 11:5136–5141

    CAS  PubMed  Google Scholar 

  81. Esumi K, Houdatsu H, Yoshimura T (2004) Antioxidant action by gold-PAMAM den-drimer nanocomposites. Langmuir 20:2536–2538

    Article  CAS  PubMed  Google Scholar 

  82. Isomaa B, Reuter J, Djupsund BM (1976) The subacute and chronic toxicity of cetyl-trimethylammonium bromide (CTAB), a cationic surfactant, in the rat. Arch Toxicol 35:91–96

    Article  CAS  PubMed  Google Scholar 

  83. Suzuki H, Toyooka T, Ibuki Y (2007) Simple and easy method to evaluate uptake potential of nanoparticles in mammalian cells using a flow cytometric light scatter analysis. Environ Sci Technol 41:3018–3024

    Article  CAS  PubMed  Google Scholar 

  84. Aiuchi T, Nakajo S, Nakaya K (2004) Reducing activity of colloidal platinum nanopar-ticles for hydrogen peroxide, 2,2-diphenyl-1-picrylhydrazyl radical and 2,6-dichlorophenol indophenol. Biol Pharm Bull 27:736–738

    Article  CAS  PubMed  Google Scholar 

  85. Elder A, Yang H, Gwiazda R, Teng X, Thurston S, He H et al (2007) Testing nanomaterials of unknown toxicity: an example based on platinum nanoparticles of different shapes. Adv Mater 19:3124–3129

    Article  CAS  Google Scholar 

  86. Hikosaka K, Kim J, Kajita M, Kanayama A, Miyamoto Y (2008) Platinum nanoparticles have an activity similar to mitochondrial NADH: ubiquinone oxidoreductase. Colloids Surf B Biointerfaces 66:195–200

    Article  CAS  PubMed  Google Scholar 

  87. Kajita M, Hikosaka K, Iitsuka M, Kanayama A, Toshima N, Miyamoto Y (2007) Platinum nanoparticle is a useful scavenger of superoxide anion and hydrogen peroxide. Free Radic Res 41:615–626

    Article  CAS  PubMed  Google Scholar 

  88. De Berardis B, Civitelli G, Condello M, Lista P, Pozzi R, Arancia G et al (2010) Exposure to ZnO nanoparticles induces oxidative stress and cytotoxicity in human colon carcinoma cells. Toxicol Appl Pharmacol 246:116–127

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Suresh P. Vyas .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Controlled Release Society

About this chapter

Cite this chapter

Agrawal, U., Sharma, R., Vyas, S.P. (2015). Targeted Drug Delivery to the Mitochondria. In: Devarajan, P., Jain, S. (eds) Targeted Drug Delivery : Concepts and Design. Advances in Delivery Science and Technology. Springer, Cham. https://doi.org/10.1007/978-3-319-11355-5_7

Download citation

Publish with us

Policies and ethics