Skip to main content

Functionalized Lipid Particulates in Targeted Drug Delivery

  • Chapter
  • First Online:

Part of the book series: Advances in Delivery Science and Technology ((ADST))

Abstract

Lipid particulates as the name suggests are a breed of novel delivery systems consisting of lipids or lipid based excipients as its major components. Functionalized lipid particulates are designed preferably by incorporation of specific lipid based excipients which can confer targeting ability. The chapter focuses on functionalized lipid particulates like passively targeted liposomes via PEGylation; actively targeted liposomes functionalized via use of monoclonal antibodies, carbohydrates, charged lipids, or other type of targeting ligands; solid lipid nanoparticles and nanostructured lipid carriers functionalized with a targeting ligand; cationic emulsions and other functionalized lipid systems.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Mehnert W, Mader K (2001) Solid lipid nanoparticles: production, characterization and applications. Adv Drug Del Rev 64(Suppl):83–101

    Google Scholar 

  2. Muller RH, Mader K, Gohla S (2000) Solid lipid nanoparticles (SLN) for controlled drug delivery—a review of the state of the art. Eur J Pharm Biopharm 50(1):161–177

    CAS  PubMed  Google Scholar 

  3. Tranum, K. and S. Roderick, Solid Lipid Nanoparticles: Tuneable Anti-Cancer Gene/Drug Delivery Systems, in Novel Gene Therapy Approaches. 2013, INTECH. p. 53–73

    Google Scholar 

  4. Wong HL et al (2007) Chemotherapy with anticancer drugs encapsulated in solid lipid nanoparticles. Adv Drug Deliv Rev 59(6):491–504

    CAS  PubMed  Google Scholar 

  5. Pandey R, Sharma S, Khuller GK (2005) Oral solid lipid nanoparticle-based antitubercular chemotherapy. Tuberculosis 85(5–6):415–420

    CAS  PubMed  Google Scholar 

  6. Jain AS et al (2013) Lipid colloidal carriers for improvement of anticancer activity of orally delivered quercetin: formulation, characterization and establishing in vitro-in vivo advantage. J Biomed Nanotechnol 9:1230–1240

    CAS  PubMed  Google Scholar 

  7. Pathak P, Nagarsenker M (2009) Formulation and evaluation of lidocaine lipid nanosystems for dermal delivery. AAPS Pharm Sci Tech 10(3):985–992

    CAS  Google Scholar 

  8. Joshi MD, Müller RH (2009) Lipid nanoparticles for parenteral delivery of actives. Eur J Pharm Biopharm 71(2):161–172

    CAS  PubMed  Google Scholar 

  9. Muller RH et al (2007) Nanostructured lipid carriers (NLC) in cosmetic dermal products. Adv Drug Deliv Rev 59(6):522–530

    CAS  PubMed  Google Scholar 

  10. Pardeike J, Hommoss A, Muller RH (2009) Lipid nanoparticles (SLN, NLC) in cosmetic and pharmaceutical dermal products. Int J Pharm 366(1–2):170–184

    CAS  PubMed  Google Scholar 

  11. Teeranachaideekul V et al (2007) Cetyl palmitate-based NLC for topical delivery of Coenzyme Q10—development, physicochemical characterization and in vitro release studies. Eur J Pharm Biopharm 67(1):141–148

    CAS  PubMed  Google Scholar 

  12. Date AA, Nagarsenker MS (2008) Parenteral microemulsions: an overview. Int J Pharm 355(1–2):19–30

    CAS  PubMed  Google Scholar 

  13. Nagarsenker M, Tayade N (2010) Development and evaluation of artemether parenteral microemulsion. Indian J Pharm Sci 72:637–640

    PubMed Central  PubMed  Google Scholar 

  14. Dixit RP, Nagarsenker MS (2008) Formulation and in vivo evaluation of self-nanoemulsifying granules for oral delivery of a combination of ezetimibe and simvastatin. Drug Dev Ind Pharm 34(12):1285–1296

    CAS  PubMed  Google Scholar 

  15. Date AA et al (2010) Self-nanoemulsifying drug delivery systems: formulation insights, applications and advances. Nanomedicine (Lond) 5(10):1595–1616

    CAS  Google Scholar 

  16. Dixit RP, Nagarsenker MS (2010) Optimized microemulsions and solid microemulsion systems of simvastatin: characterization and in vivo evaluation. J Pharm Sci 99(12):4892–4902

    CAS  PubMed  Google Scholar 

  17. Ankitkumar S Jain et al (2011) Nanoemulsions: a potential delivery system. Pharma Rev.:113–119

    Google Scholar 

  18. Date AA et al (2011) Lecithin-based novel cationic nanocarriers (LeciPlex) I: fabrication, characterization and evaluation. Nanomedicine (Lond) 6(8):1309–1325

    CAS  Google Scholar 

  19. Date AA et al (2013) Lecithin-based novel cationic nanocarriers (leciplex) II: improving therapeutic efficacy of quercetin on oral administration. Mol Pharm 8(3):716–726

    Google Scholar 

  20. Benival DM, Devarajan PV (2011) Lipomer of doxorubicin hydrochloride for enhanced oral bioavailability. Int J Pharm 423(2):554–561

    PubMed  Google Scholar 

  21. Dhumal R et al (2011) Evaluation of safety of lipomer doxycycline hydrochloride (lipomer DH). J Biomed Nanotechnol 7(1):146–147

    CAS  PubMed  Google Scholar 

  22. Wong HL et al (2007) In vivo evaluation of a new polymer-lipid hybrid nanoparticle (PLN) formulation of doxorubicin in a murine solid tumor model. Eur J Pharm Biopharm 65(3):300–308

    CAS  PubMed  Google Scholar 

  23. Xu Z et al (2009) The performance of docetaxel-loaded solid lipid nanoparticles targeted to hepatocellular carcinoma. Biomaterials 30(2):226–232

    PubMed  Google Scholar 

  24. Matsumura Y, Maeda H (1986) A new concept for macromolecular therapeutics in cancer chemotherapy: mechanism of tumoritropic accumulation of proteins and the antitumor agent smancs. Cancer Res 46(12 (Part 1)):6387–6392

    CAS  PubMed  Google Scholar 

  25. Danhier F, Feron O, Preat V (2010) To exploit the tumor microenvironment: passive and active tumor targeting of nanocarriers for anti-cancer drug delivery. J Control Release 148(2):135–146

    CAS  PubMed  Google Scholar 

  26. Roerdink FH, Dijkstra J, Spanjer HH, Scherphof GL (1984) Interaction of liposomes with hepatocytes and Kupffer cells in vivo and in vitro. Biochem Soc Trans 12:335–336

    CAS  PubMed  Google Scholar 

  27. Palmer TN et al (1984) The mechanism of liposome accumulation in infarction. Biochim Biophys Acta 797(3):363–368

    CAS  PubMed  Google Scholar 

  28. Jain RK (1989) Delivery of novel therapeutic agents in tumors: physiological barriers and strategies. J Natl Cancer Inst 81(8):570–576

    CAS  PubMed  Google Scholar 

  29. Torchilin VP (2000) Drug targeting. Eur J Pharm Sci 11(Suppl 2):S81–S91

    CAS  PubMed  Google Scholar 

  30. Maeda H, Sawa T, Konno T (2001) Mechanism of tumor-targeted delivery of macromolecular drugs, including the EPR effect in solid tumor and clinical overview of the prototype polymeric drug SMANCS. J Control Release 74(1–3):47–61

    CAS  PubMed  Google Scholar 

  31. Maeda H, Bharate GY, Daruwalla J (2009) Polymeric drugs for efficient tumor-targeted drug delivery based on EPR-effect. Eur J Pharm Biopharm 71(3):409–419

    CAS  PubMed  Google Scholar 

  32. Ishida T et al (2001) Targeted delivery and triggered release of liposomal doxorubicin enhances cytotoxicity against human B lymphoma cells. Biochim Biophys Acta 1515(2):144–158

    CAS  PubMed  Google Scholar 

  33. Marcucci F, Lefoulon FO (2004) Active targeting with particulate drug carriers in tumor therapy: fundamentals and recent progress. Drug Discov Today 9(5):219–228

    CAS  PubMed  Google Scholar 

  34. Sant V, Nagarsenker M (2011) Synthesis of monomethoxypolyethyleneglycol-cholesteryl ester and effect of its incorporation in liposomes. AAPS Pharm Sci Tech 12(4):1056–1063

    CAS  Google Scholar 

  35. Papahadjopoulos D et al (1991) Sterically stabilized liposomes: improvements in pharmacokinetics and antitumor therapeutic efficacy. Proc Natl Acad Sci U S A 88(24):11460–11464

    CAS  PubMed Central  PubMed  Google Scholar 

  36. Shah SM et al (2012) Synthesis, characterization, and in vitro evaluation of palmitoylated arabinogalactan with potential for liver targeting. Carbohydr Res 367:41–47

    PubMed  Google Scholar 

  37. Saul JM et al (2003) Controlled targeting of liposomal doxorubicin via the folate receptor in vitro. J Control Release 92(1–2):49–67

    CAS  PubMed  Google Scholar 

  38. Turk MJ, Waters DJ, Low PS (2004) Folate-conjugated liposomes preferentially target macrophages associated with ovarian carcinoma. Cancer Lett 213(2):165–172

    CAS  PubMed  Google Scholar 

  39. Alukda D, Sturgis T, Youan B-BC (2011) Formulation of tenofovir-loaded functionalized solid lipid nanoparticles intended for HIV prevention. J Pharm Sci 100(8):3345–3356

    CAS  PubMed Central  PubMed  Google Scholar 

  40. Kashanian S, Azandaryani AH, Derakhshandeh K (2011) New surface-modified solid lipid nanoparticles using N-glutaryl phosphatidylethanolamine as the outer shell. Int J Nanomedicine 6:2393–2401

    CAS  PubMed Central  PubMed  Google Scholar 

  41. Maruyama K et al (1999) Possibility of active targeting to tumor tissues with liposomes. Adv Drug Deliv Rev 40(1–2):89–102

    CAS  PubMed  Google Scholar 

  42. Wu J, Nantz MH, Zern MA (2002) Targeting hepatocytes for drug and gene delivery: emerging novel approaches and applications. Front Biosci 7:d717–d725

    CAS  PubMed  Google Scholar 

  43. Mauk MR, Gamble RC, Gamble JD (1980) Targeting of lipid vesicles: specificity of carbohydrate receptor analogues for leukocytes in mice. Proc Natl Acad Sci U S A 77(8):4430–4434

    CAS  PubMed Central  PubMed  Google Scholar 

  44. Vyas SP et al (2000) Ligand directed macrophage targeting of amphotericin B loaded liposomes. Int J Pharm 210(1–2):1–14

    CAS  PubMed  Google Scholar 

  45. Nobs L et al (2004) Current methods for attaching targeting ligands to liposomes and nanoparticles. J Pharm Sci 93(8):1980–1992

    CAS  PubMed  Google Scholar 

  46. Choi J et al (2008) Surface immobilization of biocompatible phospholipid polymer multilayered hydrogel on titanium alloy. Colloids Surf B Biointerfaces 67(2):216–223

    CAS  PubMed  Google Scholar 

  47. Lim SB, Rubinstein I, Onyuksel H (2008) Freeze drying of peptide drugs self-associated with long-circulating, biocompatible and biodegradable sterically stabilized phospholipid nanomicelles. Int J Pharm 356(1–2):345–350

    CAS  PubMed Central  PubMed  Google Scholar 

  48. Moro T et al (2008) 553 biocompatible phospholipid polymer grafting on liner surface of artificial hip joints enhances the wear resistance independently of liner cross-linking or femoral head material. Osteoarthr Cartilage 16(Suppl 4):S234

    Google Scholar 

  49. Moro T et al (2010) Surface grafting of biocompatible phospholipid polymer MPC provides wear resistance of tibial polyethylene insert in artificial knee joints. Osteoarthr Cartilage 18(9):1174–1182

    CAS  Google Scholar 

  50. Nguyen TTL et al (2010) Biocompatible lecithin-based microemulsions with rhamnolipid and sophorolipid biosurfactants: formulation and potential applications. J Colloid Interface Sci 348(2):498–504

    CAS  PubMed  Google Scholar 

  51. Rubinstein I, Onyuksel H (2007) Biocompatible, biodegradable and sterically stabilized phospholipid nanomicelles improve cryopreservation of oral keratinocytes: a preliminary investigation. Int J Pharm 338(1–2):333–335

    CAS  PubMed  Google Scholar 

  52. Azuma K et al (2002) Combination of lipids and emulsifiers enhances the absorption of orally administered quercetin in rats. J Agric Food Chem 50(6):1706–1712

    CAS  PubMed  Google Scholar 

  53. Chen C-C et al (2010) Effects of lipophilic emulsifiers on the oral administration of lovastatin from nanostructured lipid carriers: physicochemical characterization and pharmacokinetics. Eur J Pharm Biopharm 74(3):474–482

    CAS  PubMed  Google Scholar 

  54. Gershanik T, Benzeno S, Benita S (1998) Interaction of a self-emulsifying lipid drug delivery system with the everted rat intestinal mucosa as a function of droplet size and surface charge. Pharm Res 15(6):863–869

    CAS  PubMed  Google Scholar 

  55. Freitas C, Muller RH (1998) Spray-drying of solid lipid nanoparticles (SLNTM). Eur J Pharm Biopharm 46(2):145–151

    CAS  PubMed  Google Scholar 

  56. Domb AJ (1995) Long acting injectable oxytetracycline-liposphere formulations. Int J Pharm 124(2):271–278

    CAS  Google Scholar 

  57. Westesen K, Bunjes H (1995) Do nanoparticles prepared from lipids solid at room temperature always possess a solid lipid matrix? Int J Pharm 115(1):129–131

    CAS  Google Scholar 

  58. Almeida AJ, Runge S, Muller RH (1997) Peptide-loaded solid lipid nanoparticles (SLN): influence of production parameters. Int J Pharm 149(2):255–265

    CAS  Google Scholar 

  59. Gasco MR, Cavalli CME (1992) Timolol in lipospheres. Pharmazie 47(2):119–121

    CAS  PubMed  Google Scholar 

  60. Dahan A, Hoffman A (2006) Use of a dynamic in vitro lipolysis model to rationalize oral formulation development for poor water soluble drugs: correlation with in vivo data and the relationship to intra-enterocyte processes in rats. Pharm Res 23(9):2165–2174

    CAS  PubMed  Google Scholar 

  61. Porter CH et al (2004) Susceptibility to lipase-mediated digestion reduces the oral bioavailability of danazol after administration as a medium-chain lipid-based microemulsion formulation. Pharm Res 21(8):1405–1412

    CAS  PubMed  Google Scholar 

  62. Dahan A, Hoffman A (2007) The effect of different lipid based formulations on the oral absorption of lipophilic drugs: The ability of in vitro lipolysis and consecutive ex vivo intestinal permeability data to predict in vivo bioavailability in rats. Eur J Pharm Biopharm 67(1):96–105

    CAS  PubMed  Google Scholar 

  63. Sek L et al (2002) Evaluation of the in-vitro digestion profiles of long and medium chain glycerides and the phase behaviour of their lipolytic products. J Pharm Pharmacol 54(1):29–41

    CAS  PubMed  Google Scholar 

  64. Larsen AT, Sassene P, Müllertz A (2011) In vitro lipolysis models as a tool for the characterization of oral lipid and surfactant based drug delivery systems. Int J Pharm 417(1–2):245–255

    CAS  PubMed  Google Scholar 

  65. Vodovozova EL et al (2000) Antitumour activity of cytotoxic liposomes equipped with selectin ligand SiaLeX, in a mouse mammary adenocarcinoma model. Eur J Cancer (Oxf, Eng 1990) 36(7):942–949

    CAS  Google Scholar 

  66. Hashida M, Sato K et al (1988) Characterization of a lipophilic prodrug of 5-fluorouracil with a cholesterol promoiety and its application to liposomes. Chem Pharm Bull (Tokyo) 36(8):3186–3189

    CAS  Google Scholar 

  67. Sun W et al (2008) Preparation and evaluation of N3-O-toluyl-fluorouracil-loaded liposomes. Int J Pharm 353(1–2):243–250

    CAS  PubMed  Google Scholar 

  68. Fonseca C et al (2005) Targeting of sterically stabilised pH-sensitive liposomes to human T-leukaemia cells. Eur J Pharm Biopharm 59(2):359–366

    CAS  PubMed  Google Scholar 

  69. Roux E et al (2004) Serum-stable and long-circulating, PEGylated, pH-sensitive liposomes. J Control Release 94(2–3):447–451

    CAS  PubMed  Google Scholar 

  70. Shi G et al (2002) Efficient intracellular drug and gene delivery using folate receptor-targeted pH-sensitive liposomes composed of cationic/anionic lipid combinations. J Control Release 80(1–3):309–319

    CAS  PubMed  Google Scholar 

  71. Ferraretto A et al (1996) Characterization of biotinylated liposomes sensitive to temperature and pH: new tools for anti-cancer drug delivery. Chem Phys Lipids 82(2):133–139

    CAS  PubMed  Google Scholar 

  72. Pradhan P et al (2010) Targeted temperature sensitive magnetic liposomes for thermo-chemotherapy. J Control Release 142(1):108–121

    CAS  PubMed  Google Scholar 

  73. Yudina A et al (2011) Ultrasound-mediated intracellular drug delivery using microbubbles and temperature-sensitive liposomes. J Control Release 155(3):442–448

    CAS  PubMed  Google Scholar 

  74. Zhang H et al (2011) Development and characteristics of temperature-sensitive liposomes for vinorelbine bitartrate. Int J Pharm 414(1–2):56–62

    CAS  PubMed  Google Scholar 

  75. Hildebrand A et al (2004) Solubilization of negatively charged DPPC/DPPG liposomes by bile salts. J Colloid Interface Sci 279(2):559–571

    CAS  PubMed  Google Scholar 

  76. Wu J et al (2007) Vascular targeting of doxorubicin using cationic liposomes. Int J Pharm 337(1–2):329–335

    CAS  PubMed  Google Scholar 

  77. Hafez IM, Cullis PR (2000) Cholesteryl hemisuccinate exhibits pH sensitive polymorphic phase behavior. Biochim Biophys Acta 1463(1):107–114

    CAS  PubMed  Google Scholar 

  78. Anthony AA, Mumuni AM, Philip FB (2012) Lipid nanoparticulate drug delivery systems: a revolution in dosage form design and development. In: Sezer AD (ed) Recent advances in novel drug carrier systems. Humana, Totowa

    Google Scholar 

  79. Allen TM et al (1995) A new strategy for attachment of antibodies to sterically stabilized liposomes resulting in efficient targeting to cancer cells. Biochim Biophy Acta 1237(2):99–108

    Google Scholar 

  80. Sapra P, Allen TM (2003) Ligand-targeted liposomal anticancer drugs. Prog Lipid Res 42(5):439–462

    CAS  PubMed  Google Scholar 

  81. Patere SN, Shah SM, Pankaj OP, Nagarsenker MS (2011) Liposomal drug delivery system for receptor based hepatic targeting. In 38th annual meeting and exposition of the controlled release society. 2011, Controlled Release Society: Gaylord National Hotel, National Harbor, Maryland, USA. p. 437

    Google Scholar 

  82. Byrne JD, Betancourt T, Brannon-Peppas L (2008) Active targeting schemes for nanoparticle systems in cancer therapeutics. Adv Drug Deliv Rev 60(15):1615–1626

    CAS  PubMed  Google Scholar 

  83. Chen X-Y et al (2013) Creation of lung-targeted dexamethasone immunoliposome and its therapeutic effect on bleomycin-induced lung injury in rats. PLoS One 8(3):e58275

    CAS  PubMed Central  PubMed  Google Scholar 

  84. Debs RJ, Heath TD, Papahadjopoulos D (1987) Targeting of anti-Thy 1.1 monoclonal antibody conjugated liposomes in Thy 1.1 mice after intraveneous administration. Biochim Biophys Acta 901(2):183–190

    CAS  PubMed  Google Scholar 

  85. Elbayoumi TA, Torchilin VP (2007) Enhanced cytotoxicity of monoclonal anticancer antibody 2C5-modified doxorubicin-loaded PEGylated liposomes against various tumor cell lines. Eur J Pharm Sci 32(3):159–168

    CAS  PubMed Central  PubMed  Google Scholar 

  86. Koning GA, Kamps JAAM, Scherphof GL (2002) Efficient intracellular delivery of 5-fluorodeoxyuridine into colon cancer cells by targeted immunoliposomes. Cancer Detect Prev 26(4):299–307

    CAS  PubMed  Google Scholar 

  87. Lukyanov AN et al (2004) Tumor-targeted liposomes: doxorubicin-loaded long-circulating liposomes modified with anti-cancer antibody. J Control Release 100(1):135–144

    CAS  PubMed  Google Scholar 

  88. Suzuki S, Uno S, Fukuda Y, Aoki Y, Masuko T, Hashimoto Y (1995) Cytotoxicity of anti-c-erbB-2 immunoliposomes containing doxorubicin on human cancer cells. Br J Cancer 72(3):663–668

    CAS  PubMed Central  PubMed  Google Scholar 

  89. Suzuki S et al (1995) Preparation of long-circulating immunoliposomes containing adriamycin by a novel method to coat immunoliposomes with poly(ethylene glycol). Biochim Biophys Acta 1245(1):9–16

    PubMed  Google Scholar 

  90. Wolff B, Gregoriadis G (1984) The use of monoclonal anti-Thy1IgG1 for the targeting of liposomes to AKR-A cells in vitro and in vivo. Biochim Biophys Acta 802(2):259–273

    CAS  PubMed  Google Scholar 

  91. Kawakami S et al (2000) Biodistribution characteristics of mannosylated, fucosylated, and galactosylated liposomes in mice. Biochim Biophys Acta 1524(2–3):258–265

    CAS  PubMed  Google Scholar 

  92. Kaneo Y, Tanaka T et al (2001) Evidence for receptor-mediated hepatic uptake of pullulan in rats. J Control Release 70(3):365–373

    CAS  PubMed  Google Scholar 

  93. Guhagarkar S et al (2011) Evaluation of pullulan-functionalized doxorubicin nanoparticles for asialoglycoprotein receptor-mediated uptake in Hep G2 cell line. Cancer Nanotechnol 2(1–6):49–55

    CAS  Google Scholar 

  94. Amir K, Jaleh V, Abbas Jafarian D (2012) Targeting etoposide to acute myelogenous leukaemia cells using nanostructured lipid carriers coated with transferrin. Nanotechnology 23(40):405101

    Google Scholar 

  95. Garanger E, Boturyn D, Dumy P (2007) Tumor targeting with RGD peptide ligands-design of new molecular conjugates for imaging and therapy of cancers. Anticancer Agents Med Chem 7(5):552–558

    CAS  PubMed  Google Scholar 

  96. Fang B, Jiang L et al (2013) A novel cell-penetrating peptide TAT-A1 delivers siRNA into tumor cells selectively. Biochemie 95(2):251–257

    CAS  Google Scholar 

  97. Biswas, S., et al., Surface functionalization of doxorubicin-loaded liposomes with octa-arginine for enhanced anticancer activity. Eur J Pharm Biopharm 84(3): 517-525.

    Google Scholar 

  98. Banerjee R, Tyagi P et al (2004) Anisamide-targeted stealth liposomes: a potent carrier for targeting doxorubicin to human prostate cancer cells. Int J Cancer 112(4):693–700

    CAS  PubMed  Google Scholar 

  99. Mukherjee A, Prasad TK et al (2005) Haloperidol-associated stealth liposomes: a potent carrier for delivering genes to human breast cancer cells. J Biol Chem 280:15619–15627

    CAS  PubMed  Google Scholar 

  100. Tsuruta W et al (2009) Application of liposomes incorporating doxorubicin with sialyl Lewis X to prevent stenosis after rat carotid artery injury. Biomaterials 30(1):118–125

    CAS  PubMed  Google Scholar 

  101. Jones MN (1994) Carbohydrate-mediated liposomal targeting and drug delivery. Adv Drug Deliv Rev 13(3):215–249

    CAS  Google Scholar 

  102. Mercadal M et al (1998) Preparation of immunoliposomes directed against CD34 antigen as target. Biochim Biophys Acta 1371(1):17–23

    CAS  PubMed  Google Scholar 

  103. Yang T et al (2007) Preparation and evaluation of paclitaxel-loaded PEGylated immunoliposome. J Control Release 120(3):169–177

    CAS  PubMed  Google Scholar 

  104. Kitagawa S, Kasamaki M, Kasamaki M (2006) Enhanced delivery of retinoic acid to skin by cationic liposomes. Chem Pharm Bull (Tokyo) 54(2):242–244

    CAS  Google Scholar 

  105. Knudsen NÃs et al (2011) Targeting of liposome-associated calcipotriol to the skin: effect of liposomal membrane fluidity and skin barrier integrity. Int J Pharm 416(2):478–485

    CAS  PubMed  Google Scholar 

  106. Geusens B et al (2009) Ultradeformable cationic liposomes for delivery of small interfering RNA (siRNA) into human primary melanocytes. J Control Release 133(3):214–220

    CAS  PubMed  Google Scholar 

  107. Goppert TM, Muller RH (2003) Plasma protein adsorption of Tween 80- and poloxamer 188-stabilized solid lipid nanoparticles. J Drug Target 11(4):225–231

    PubMed  Google Scholar 

  108. Rezazadeh M, Emami J, Varshosaz J (2012) Cellular uptake of targeted nanostructured lipid carrier (NLC) and cytotoxicity evaluation of encapsulated paclitaxel in HT29 cancer cells. Res Pharm Sci 7(5):S191

    Google Scholar 

  109. Emami J et al (2012) Formulation of LDL targeted nanostructured lipid carriers loaded with paclitaxel: a detailed study of preparation, freeze drying condition, and in vitro cytotoxicity. J Nanomater 2012:10

    Google Scholar 

  110. Liu Y, Li K et al (2010) Folic acid conjugated nanoparticles of mixed lipid monolayer shell and biodegradable polymer core for targeted delivery of Docetaxel. Biomaterials 31(2):330–338

    CAS  PubMed  Google Scholar 

  111. Vyas SP, Subhedar R, Jain S (2006) Development and characterization of emulsomes for sustained and targeted delivery of an antiviral agent to liver. J Pharm Pharmacol 58(3):321–326

    CAS  PubMed  Google Scholar 

  112. Cevc G, Blume G (2001) New, highly efficient formulation of diclofenac for the topical, transdermal administration in ultradeformable drug carriers, Transfersomes. Biochim Biophys Acta 1514(2):191–205

    CAS  PubMed  Google Scholar 

  113. Elsayed MMA et al (2006) Deformable liposomes and ethosomes: mechanism of enhanced skin delivery. Int J Pharm 322(1–2):60–66

    CAS  PubMed  Google Scholar 

  114. Cevc G, Blume G (1992) Lipid vesicles penetrate into intact skin owing to the transdermal osmotic gradients and hydration force. Biochim Biophys Acta 1104(1):226–232

    CAS  PubMed  Google Scholar 

  115. Cevc G (1996) Transfersomes, liposomes and other lipid suspensions on the skin: permeation enhancement, vesicle penetration, and transdermal drug delivery. Crit Rev Drug Carrier Syst 13(3–4):257–388

    CAS  Google Scholar 

  116. El Maghraby GMM, Williams AC, Barry BW (2000) Oestradiol skin delivery from ultradeformable liposomes: refinement of surfactant concentration. Int J Pharm 196(1):63–74

    PubMed  Google Scholar 

  117. El Maghraby GMM, Williams AC, Barry BW (2000) Skin delivery of oestradiol from lipid vesicles: importance of liposome structure. Int J Pharm 204(1–2):159–169

    CAS  PubMed  Google Scholar 

  118. Trotta M et al (2004) Deformable liposomes for dermal administration of methotrexate. Int J Pharm 270(1–2):119–125

    CAS  PubMed  Google Scholar 

  119. Jain S, Sapre R et al (2005) Proultraflexible lipid vesicles for effective transdermal delivery of levonorgestrel: development, characterization, and performance evaluation. AAPS PharmSciTech 6(3):E513–E522

    PubMed Central  PubMed  Google Scholar 

  120. Kim A et al (2004) In vitro and in vivo transfection efficiency of a novel ultradeformable cationic liposome. Biomaterials 25(2):305–313

    CAS  PubMed  Google Scholar 

  121. Hiruta Y et al (2006) Novel ultra-deformable vesicles entrapped with bleomycin and enhanced to penetrate rat skin. J Control Release 113(2):146–154

    CAS  PubMed  Google Scholar 

  122. Maghraby GMME, Williams AC, Barry BW (2001) Skin delivery of 5-fluorouracil from ultradeformable and standard liposomes in-vitro. J Pharm Pharmacol 53(8):1069–1077

    PubMed  Google Scholar 

  123. Gupta PN et al (2005) Non-invasive vaccine delivery in transfersomes, niosomes and liposomes: a comparative study. Int J Pharm 293(1–2):73–82

    CAS  PubMed  Google Scholar 

  124. Fang Y-P et al (2009) Topical delivery of 5-aminolevulinic acid-encapsulated ethosomes in a hyperproliferative skin animal model using the CLSM technique to evaluate the penetration behavior. Eur J Pharm Biopharm 73(3):391–398

    CAS  PubMed  Google Scholar 

  125. Dubey V, Mishra D, Jain NK (2007) Melatonin loaded ethanolic liposomes: physicochemical characterization and enhanced transdermal delivery. Eur J Pharm Biopharm 67(2):398–405

    CAS  PubMed  Google Scholar 

  126. Bhadra D et al (2004) Ethosomes: a novel vesicular carrier for enhanced transdermal delivery of an antiHIV agent. J Pharm Sci 66:72–81

    Google Scholar 

  127. Lopez-Pinto JM, Gonzalez-Rodreguez ML, Rabasco AM (2005) Effect of cholesterol and ethanol on dermal delivery from DPPC liposomes. Int J Pharm 298(1):1–12

    CAS  PubMed  Google Scholar 

  128. Paolino D et al (2005) Ethosomes for skin delivery of ammonium glycyrrhizinate: In vitro percutaneous permeation through human skin and in vivo anti-inflammatory activity on human volunteers. J Control Release 106(1–2):99–110

    CAS  PubMed  Google Scholar 

  129. Touitou E et al (2000) Ethosomes as novel vesicular carriers for enhanced delivery: characterization and skin penetration properties. J Control Release 65(3):403–418

    CAS  PubMed  Google Scholar 

  130. Dragicevic-Curic N et al (2009) Development of different temoporfin-loaded invasomes as novel nanocarriers of temoporfin: characterization, stability and in vitro skin penetration studies. Colloids Surf B Biointerfaces 70(2):198–206

    CAS  PubMed  Google Scholar 

  131. Bawa R (2008) Nanoparticle-based therapeutics in humans: a survey. Nanotechnol Law Bus 5(2):135–155

    Google Scholar 

  132. Etheridge ML et al (2013) The big picture on nanomedicine: the state of investigational and approved nanomedicine products. Nanomed Nanotechnol Biol Med 9(1):1–14

    CAS  Google Scholar 

Download references

Acknowledgments

Ankitkumar S. Jain is thankful to Amrut Mody Research Fund (AMRF), Mumbai, India and University Grants Commission (UGC), New Delhi, India for financial assistance. Sanket M. Shah is thankful to Indian Council of Medical Research (ICMR), New Delhi, India for financial assistance. We would also like to extend our acknowledgement to Mukul Ashtikar, Frank Steiniger, Jana Thamm, and Prof. Alfred Fahr from Friedrich Schiller University, Jena, Germany for expertise and support in investigating the vesicular structure of LeciPlex, as a part of Indian Council of Medical Research ICMR–Bundesministerium für Bildung und Forschung BMBF funded project.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mangal S. Nagarsenker .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Controlled Release Society

About this chapter

Cite this chapter

Nagarsenker, M.S., Jain, A.S., Shah, S.M. (2015). Functionalized Lipid Particulates in Targeted Drug Delivery. In: Devarajan, P., Jain, S. (eds) Targeted Drug Delivery : Concepts and Design. Advances in Delivery Science and Technology. Springer, Cham. https://doi.org/10.1007/978-3-319-11355-5_13

Download citation

Publish with us

Policies and ethics