Skip to main content

Synthetic Routes for the Preparation of Silver Nanoparticles

A Mechanistic Perspective

  • Chapter
  • First Online:
Silver Nanoparticle Applications

Part of the book series: Engineering Materials ((ENG.MAT.))

Abstract

In this chapter, we revise some of the most relevant and widely used synthetic routes available for the preparation of metallic silver nanoparticles. Particular emphasis has been focused in the rationale involved in the formation of the nanostructures, from the early metallic silver atoms formation, passing by atoms nucleation and concluding in the growth of silver nanostructures. We hope the reader will find in this chapter a valuable tool to better understand the relevance of the experimental conditions in the resulting silver nanoparticle size, shape and overall properties.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Rogers, K.R., et al.: Alterations in physical state of silver nanoparticles exposed to synthetic human stomach fluid. Sci. Total Environ. 420, 334–339 (2012)

    Article  Google Scholar 

  2. Alarcon, E.I., et al.: The biocompatibility and antibacterial properties of collagen-stabilized, photochemically prepared silver nanoparticles. Biomaterials 33(19), 4947–4956 (2012)

    Article  Google Scholar 

  3. Lee, P.C., Meisel, D.: Adsorption and surface-enhanced raman of dyes on silver and gold sol. J. Phys. Chem. 86, 3391–3395 (1982)

    Article  Google Scholar 

  4. Li, W., et al.: Dimers of silver nanospheres: facile synthesis and their use as hot spots for surface-enhanced raman scattering. Nano Lett. 9, 485–490 (2009)

    Article  Google Scholar 

  5. Alvarez-Puebla, R.A., Aroca, R.F.: Synthesis of silver nanoparticles with controllable surface charge and their application to surface-enhanced raman scattering. Anal. Chem. 81, 2280–2285 (2009)

    Article  Google Scholar 

  6. Stamplecoskie, K.G., Scaiano, J.: Optimal size of silver nanoparticles for surface-enhanced raman spectroscopy. J. Phys. Chem. C 115, 1403–1409 (2011)

    Article  Google Scholar 

  7. Marsich, L., et al.: Poly-l-lysine-coated silver nanoparticles as positively charged substrates for surface-enhanced raman scattering. Langmuir 28, 13166–13171 (2012)

    Google Scholar 

  8. Li, J.M., et al.: Detecting trace melamine in solution by SERS using Ag nanoparticle coated poly(styrene-co-acrylic acid) nanospheres as novel active substrates. Langmuir 27(23), 14539–14544 (2011)

    Article  Google Scholar 

  9. Wang, B., Zhang, L., Zhou, X.: Synthesis of silver nanocubes as a SERS substrate for the determination of pesticide paraoxon and thiram. Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 121, 63–69 (2014)

    Article  Google Scholar 

  10. Hornyak, G.L., et al.: Introduction to Nanosciences. CRC Press. Taylor & Francis Group, Boca Raton (2008)

    Google Scholar 

  11. Narayanan, K.B., Sakthivel, N.: Biological synthesis of metal nanoparticles by microbes. Adv. Colloid Interface Sci. 156(1–2), 1–13 (2010)

    Article  Google Scholar 

  12. Hebbalalu, D., et al.: Greener techniques for the synthesis of silver nanoparticles using plant extracts, enzymes, bacteria, biodegradable polymers, and microwaves. ACS Sustain. Chem. Eng. 1(7), 703–712 (2013)

    Google Scholar 

  13. Rycenga, M., et al.: Controlling the synthesis and assembly of silver nanostructures for plasmonic applications. Chem. Rev. 111(6), 3669–3712 (2011)

    Article  Google Scholar 

  14. Sun, Y.: Controlled synthesis of colloidal silver nanoparticles in organic solutions: empirical rules for nucleation engineering. Chem. Soc. Rev. 42, 2497–2511 (2013)

    Article  Google Scholar 

  15. Sakamoto, M., Fujistuka, M., Majima, T.: Light as a construction tool of metal nanoparticles: synthesis and mechanism. J. Photochem. Photobiol. C 10(1), 33–56 (2009)

    Article  Google Scholar 

  16. Cushing, B.L., Kolesnichenko, V.L., Oconnor, C.J.: Recent advances in the liquid-phase syntheses of inorganic nanoparticles. Chem. Rev. 104, 3893–3946 (2004)

    Google Scholar 

  17. Vanysek, P.: Electrochemical series. In: Lide, D.R. (ed) CRC Handbook of Chemistry and Physics, p. 8.21–8.31. CRC Press, LLC (2003–2004)

    Google Scholar 

  18. Hoonacker, A.V., Englebienne, P.: Revisiting silver nanoparticle chemical synthesis and stability by optical spectroscopy. Curr. Nanosci. 2, 359–371 (2006)

    Article  Google Scholar 

  19. Hudnall, P.M.: Hydroquinone. In: Ullmann’s Encyclopedia of Industrial Chemistry. Wiley-VCH Verlag GmbH & Co, KGaA (2000)

    Google Scholar 

  20. Turkevich, J., Stevenson, P.C., Hillier, J.: A study of the nucleation and growth processes in the synthesis of colloidal gold. Discuss. Faraday Soc. 55–75, (1951)

    Google Scholar 

  21. Pillai, Z.S., Kamat, P.V.: What factors control the size and shape of silver nanoparticles in the citrate ion reduction method? J. Phys. Chem. B 108, 945–951 (2004)

    Article  Google Scholar 

  22. Henglein, A., Giersig, M.: Formation of colloidal silver nanoparticles: capping action of citrate. J. Phys. Chem. B 103, 9533–9539 (1999)

    Article  Google Scholar 

  23. Segur, J.B., Oberstar, H.E.: Viscosity of glycerol and its aqueous solutions. Ind. Eng. Chem. 43(9), 2117–2120 (1951)

    Article  Google Scholar 

  24. Steinigeweg, D., Schlücker, S.: Monodispersity and size control in the synthesis of 20–100 nm quasi-spherical silver nanoparticles by citrate and ascorbic acid reduction in glycerol–water mixtures. Chem. Commun. 48(69), 8682–8684 (2012)

    Article  Google Scholar 

  25. Caswell, K.K., Bender, C.M., Murphy, C.J.: Seedless, surfactantless wet chemical synthesis of silver nanowires. Nano Lett. 3(5), 667–669 (2003)

    Article  Google Scholar 

  26. Van Hyning, D.L., Zukoski, C.F.: Formation mechanisms and aggregation behavior of borohydride reduced silver particles. Langmuir 14, 7034–7040 (1998)

    Article  Google Scholar 

  27. Viswanatha, R., Sarma, D.: Growth of nanocrystals in solution. In: Rao, C.N.R., Müller, A. Cheetham A.K. (eds.) Nanomaterials Chemistry, p. 139–170. WILEY-VCH, Weinheim (2007)

    Google Scholar 

  28. La Mer, V.K., Dinegar, R.H.: Theory, production and mechanism of formation of monodisperse hydrosols. J. Am. Chem. Soc. 72, 4847–4854 (1950)

    Article  Google Scholar 

  29. Polte, J., et al.: Formation mechanism of colloidal silver nanoparticles: analogies and differences to the growth of gold nanoparticles. ACS Nano 6(7), 5791–5802 (2012)

    Article  Google Scholar 

  30. Wuithschick, M., et al.: Size-controlled synthesis of colloidal silver nanoparticles based on mechanistic understanding. Chem. Mater. 25, 4679–4689 (2013)

    Article  Google Scholar 

  31. Perez, M.A., et al.: Hydroquinone synthesis of silver nanoparticles: a simple model reaction to understand the factors that determine their nucleation and growth. Cryst. Growth Des. 8, 1377–1383 (2008)

    Article  Google Scholar 

  32. Patakfalvi, R., Dekany, I.: Nucleation and growth of silver nanoparticles monitored by titration microcalorimetry. J. Therm. Anal. Calorim. 79, 587–594 (2005)

    Article  Google Scholar 

  33. Yoosaf, K., et al.: In situ synthesis of metal nanoparticles and selective naked-eye detection of lead ions from aqueous media. J. Phys. Chem. C 111, 12839–12847 (2007)

    Article  Google Scholar 

  34. Gallardo, O., et al.: Silver oxide particles/silver nanoparticles interconversion: susceptibility of forward/backward reactions to the chemical environment at room temperature. RSC Adv. 2(7), 2923 (2012)

    Article  Google Scholar 

  35. Wan, Y., et al.: Quasi-spherical silver nanoparticles: Aqueous synthesis and size control by the seed-mediated Lee-Meisel method. J. Colloid Interface Sci. 394, 263–268 (2013)

    Article  Google Scholar 

  36. Wiley, B., Sun, Y., Xia, Y.: Synthesis of silver nanostructures with controlled shapes and properties. Acc. Chem. Res. 40(10), 1067–1076 (2007)

    Article  Google Scholar 

  37. Burda, C., et al.: Chemistry and properties of nanocrystals of different shapes. Chem. Rev. 105(4), 1025–1102 (2005)

    Article  Google Scholar 

  38. Pastoriza-Santos, I., Liz-Marzán, L.M.: Formation and stabilization of silver nanoparticles through reduction by N,N-Dimethylformamide. Langmuir 15, 948–951 (1999)

    Article  Google Scholar 

  39. Pastoriza-Santos, I., Liz-Marzán, L.M.: Synthesis of silver nanoprisms in DMF. Nano Lett. 2(8), 903–905 (2002)

    Article  Google Scholar 

  40. Rodríguez-Gattorno, G., et al.: Metallic nanoparticles from spontaneous reduction of silver(I) in DMSO. Interaction between nitric oxide and silver nanoparticles. J. Phys. Chem. B 106, 2482–2487 (2002)

    Article  Google Scholar 

  41. Sun, Y., Xia, Y.: Shape-controlled synthesis of gold and silver nanoparticles. Science 298(5601), 2176–2179 (2002)

    Article  Google Scholar 

  42. Sun, Y., et al.: Polyol synthesis of uniform silver nanowires: a plausible growth mechanism and the supporting evidence. Nano Lett. 3(7), 955–960 (2003)

    Article  Google Scholar 

  43. Sun, Y., et al.: Uniform silver nanowires synthesis by reducing AgNO3 with ethylene glycol in the presence of seeds and poly(Vinyl Pyrrolidone). Chem. Mater. 14, 4736–4745 (2002)

    Article  Google Scholar 

  44. Wiley, B., et al.: Polyol synthesis of silver nanoparticles: use of chloride and oxygen to promote the formation of single-crystal, truncated cubes and tetrahedrons. Nano Lett. 4(9), 1733–1739 (2004)

    Article  Google Scholar 

  45. Lin, J.-Y., Hsueh, Y.-L., Huang, J.-J.: The concentration effect of capping agent for synthesis of silver nanowire by using the polyol method. J. Solid State Chem. (2014)

    Google Scholar 

  46. Tao, A., Habas, S., Yang, P.: Shape control of colloidal metal nanocrystals. Small 4(3), 310–325 (2008)

    Article  Google Scholar 

  47. Wiley, B., et al.: Shape-controlled synthesis of metal nanostructures: the case of silver. Chem. Eur. J. 11(2), 454–463 (2005)

    Article  Google Scholar 

  48. Stamplecoskie, K., Scaiano, J.: Silver as an example of the applications of photochemistry to the synthesis and uses of nanomaterials. Photochem. Photobiol. 88(4), 762–768 (2012)

    Article  Google Scholar 

  49. Mafuné, F., et al.: Structure and stability of silver nanoparticles in aqueous solution produced by laser ablation. J. Phys. Chem. B 104(35), 8333–8337 (2000)

    Article  Google Scholar 

  50. Bae, C.H., Nam, S.H., Park, S.M.: Formation of silver nanoparticles by laser ablation of a silver target in NaCl solution. Appl. Surf. Sci. 197–198, 628–634 (2002)

    Article  Google Scholar 

  51. Tsuji, T., Okazaki, Y., Tsuji, M.: Photo-induced morphological conversions of silver nanoparticles prepared using laser ablation in water—Enhanced morphological conversions using halogen etching. J. Photochem. Photobiol. A 194(2–3), 247–253 (2008)

    Article  Google Scholar 

  52. Jiménez, E., et al.: A novel method of nanocrystal fabrication based on laser ablation in liquid environment. Superlattices Microstruct. 43(5–6), 487–493 (2008)

    Article  Google Scholar 

  53. Hada, H., et al.: Photoreduction of silver ion in aqueous and alcoholic solutions. J. Phys. Chem. 80(25), 2728–2731 (1976)

    Article  Google Scholar 

  54. Guang-Nian, X., et al.: Preparation and characterization of stable monodisperse silver nanoparticles via photoreduction. Colloids Surf. A 320(1–3), 222–226 (2008)

    Google Scholar 

  55. Huang, H.H., et al.: Photochemical formation of silver nanoparticles in poly(N-vinylpyrrolidone). Langmuir 12(4), 909–912 (1996)

    Article  Google Scholar 

  56. Gaddy, G.A., et al.: Photogeneration of silver particles in PVA fibers and films. J. Clust. Sci. 12(3), 457–471 (2001)

    Article  Google Scholar 

  57. Huang, H.T., Yang, Y.: Preparation of silver nanoparticles in inorganic clay suspensions. Compos. Sci. Technol. 68(14), 2948–2953 (2008)

    Article  Google Scholar 

  58. Chegel, V., et al.: Ag nanoparticle-poly(acrylic acid) composite film with dynamic plasmonic properties. Aust. J. Chem. 65(9), 1223–1227 (2012)

    Article  Google Scholar 

  59. Scaiano, J.C., et al.: Photochemical routes to silver and gold nanoparticles. Pure Appl. Chem. 81(4), 635–647 (2009)

    Article  Google Scholar 

  60. Scaiano, J.C., et al.: Magnetic field control of photoinduced silver nanoparticle formation. J. Phys. Chem. B 110(26), 12856–12859 (2006)

    Article  Google Scholar 

  61. Alarcon, E., et al.: Human serum albumin as protecting agent of silver nanoparticles: role of the protein conformation and amine groups in the nanoparticle stabilization. J. Nanopart. Res. 15(1), 1374 (2013)

    Google Scholar 

  62. Jockusch, S., et al.: Photochemistry and photophysics of α-Hydroxy ketones. Macromolecules 34(6), 1619–1626 (2001)

    Article  Google Scholar 

  63. Gonzalez, C.M., Liu, Y., Scaiano, J.C.: Photochemical strategies for the facile synthesis of gold-silver alloy and core-shell bimetallic nanoparticles. J. Phys. Chem. C 113(27), 11861–11867 (2009)

    Article  Google Scholar 

  64. McGilvray, K.L., et al.: Photochemical strategies for the seed-mediated growth of gold and gold—silver nanoparticles. Langmuir 28(46), 16148–16155 (2012)

    Article  Google Scholar 

  65. Maretti, L., et al.: Facile photochemical synthesis and characterization of highly fluorescent silver nanoparticles. J. Am. Chem. Soc. 131(39), 13972–13980 (2009)

    Article  Google Scholar 

  66. Stamplecoskie, K.G., Scaiano, J.: Kinetics of the formation of silver dimers: early stages in the formation of silver nanoparticles. J. Am. Chem. Soc. 133(11), 3913–3920 (2011)

    Article  Google Scholar 

  67. Callegari, A., Tonti, D., Chergui, M.: Photochemically grown silver nanoparticles with wavelength-controlled size and shape. Nano Lett. 3(11), 1565–1568 (2003)

    Article  Google Scholar 

  68. Stamplecoskie, K.G., Scaiano, J.: Light emitting diode irradiation can control the morphology and optical properties of silver nanoparticles. J. Am. Chem. Soc. 132(6), 1825–1827 (2010)

    Article  Google Scholar 

  69. Rodríguez-Sánchez, L., Blanco, M.C., Lopez-Quintela, M.: Electrochemical synthesis of silver nanoparticles. J. Phys. Chem. B 104(41), 9683–9688 (2000)

    Article  Google Scholar 

  70. Tang, Z., et al.: Electrochemical synthesis of Ag nanoparticles on functional carbon surfaces. J. Electroanal. Chem. 502(1–2), 146–151 (2001)

    Article  Google Scholar 

  71. Zhu, J.-J., et al.: Preparation of silver nanorods by electrochemical methods. Mater. Lett. 49(2), 91–95 (2001)

    Article  Google Scholar 

  72. Ueda, M., et al.: Double-pulse technique as an electrochemical tool for controlling the preparation of metallic nanoparticles. Electrochim. Acta 48(4), 377–386 (2002)

    Article  Google Scholar 

  73. Ma, H., et al.: Synthesis of silver and gold nanoparticles by a novel electrochemical method. Chem. Phys. Chem. 5(1), 68–75 (2004)

    Google Scholar 

  74. Mazur, M.: Electrochemically prepared silver nanoflakes and nanowires. Electrochemi. Commun. 6(4), 400–403 (2004)

    Article  Google Scholar 

  75. Jian, Z., Xiang, Z., Yongchang, W.: Electrochemical synthesis and fluorescence spectrum properties of silver nanospheres. Microelectron. Eng. 77(1), 58–62 (2005)

    Article  Google Scholar 

  76. Starowicz, M., Stypuła, B., Banaś, J.: Electrochemical synthesis of silver nanoparticles. Electrochem. Commun. 8(2), 227–230 (2006)

    Article  Google Scholar 

  77. Hu, M.Z., Easterly, C.E.: A novel thermal electrochemical synthesis method for production of stable colloids of “naked” metal (Ag) nanocrystals. Mater. Sci. Eng. C 29(3), 726–736 (2009)

    Article  Google Scholar 

  78. Khaydarov, R., et al.: Electrochemical method for the synthesis of silver nanoparticles. J. Nanopartic. Res. 11(5), 1193–1200 (2009)

    Article  Google Scholar 

  79. Surudzic, R., et al.: Electrochemical synthesis of silver nanoparticles in poly(vinyl alcohol) solution. J. Serb. Chem. Soc. 78(12), 2087–2098 (2013)

    Article  Google Scholar 

  80. Plieth, W., et al.: Electrochemical preparation of silver and gold nanoparticles: characterization by confocal and surface enhanced Raman microscopy. Surf. Sci. 597(1–3), 119–126 (2005)

    Article  Google Scholar 

  81. Sáez, V., Mason, T.: Sonoelectrochemical synthesis of nanoparticles. Molecules 14(10), 4284–4299 (2009)

    Article  Google Scholar 

  82. Compton, R.G., Eklund, J.C., Marken, F.: Sonoelectrochemical processes: a review. Electroanal 9(7), 509–522 (1997)

    Article  Google Scholar 

  83. Reisse, J., et al.: Sonoelectrochemistry in aqueous electrolyte: a new type of sonoelectroreactor. Electrochim. Acta 39(1), 37–39 (1994)

    Article  Google Scholar 

  84. Zhu, J., et al.: Shape-controlled synthesis of silver nanoparticles by pulse sonoelectrochemical methods. Langmuir 16, 6396–6399 (2000)

    Article  Google Scholar 

  85. Jiang, L.-P., et al.: A novel route for the preparation of monodisperse silver nanoparticles via a pulsed sonoelectrochemical technique. Inorg. Chem. Commun. 7(4), 506–509 (2004)

    Article  Google Scholar 

  86. Mason, T.J., Lorimer, J.P., Walton, D.J.: Sonoelectrochemistry. Ultrasonics 28(5), 333–337 (1990)

    Article  Google Scholar 

  87. Liu, J., et al.: Methods for separation, identification, characterization and quantification of silver nanoparticles. TrAC Trends Anal. Chem. 33, 95–106 (2012)

    Article  Google Scholar 

  88. Ferreira da Silva, B., et al.: Analytical chemistry of metallic nanoparticles in natural environments. TrAC, Trends Anal. Chem. 30(3), 528–540 (2011)

    Google Scholar 

  89. Zheng, X., et al.: Photochemical formation of silver nanodecahedra: structural selection by the excitation wavelength. Langmuir 25, 3802–3807 (2009)

    Article  Google Scholar 

  90. Tiede, K., et al.: Detection and characterization of engineered nanoparticles in food and the environment. Food Addit. Contam. 25, 795–821 (2008)

    Article  Google Scholar 

Download references

Acknowledgments

We want to thank to all the researchers whose work has been cited in here. C.D.B thanks the Agencia de Promoción Científica y Tecnológica (ANPCyT) and Universidad Nacional de Santiago del Estero (UNSE) for combined financial support (PICTO-UNSE-2012-0013). N.L.P and A.V.V would like to thank funding support from CONICET, ANPCyT-PICT 2011-0106, SECYT-UNC and Mincyt-Córdoba. N.P., A.V., V.R., and C.D.B. are research members of the Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET) of Argentina.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Natalia L. Pacioni or Claudio D. Borsarelli .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Pacioni, N.L., Borsarelli, C.D., Rey, V., Veglia, A.V. (2015). Synthetic Routes for the Preparation of Silver Nanoparticles. In: Alarcon, E., Griffith, M., Udekwu, K. (eds) Silver Nanoparticle Applications. Engineering Materials. Springer, Cham. https://doi.org/10.1007/978-3-319-11262-6_2

Download citation

Publish with us

Policies and ethics