Skip to main content

Noninvasive Electromagnetic Methods for Brain Monitoring: A Technical Review

  • Chapter
  • First Online:
Brain-Computer Interfaces

Part of the book series: Intelligent Systems Reference Library ((ISRL,volume 74))

Abstract

Human brain is a large, complex and most important organ in its nervous system. The brain works as a central processing unit (CPU) of the human body and performs, coordinate, control and regulate an incredible number of tasks to keep the human body healthy and alive. Though the brain is highly protected inside the rigid skull, meninges and cerebral spinal fluid (CSF), the human brain is still sometimes gets injured, damaged and gets several number of diseases. Therefore the study of brain is important and very essential for diagnose and treatment of the diseases like stroke, brain tumors, traumatic brain injury, encephalitis, meningitis, Parkinson’s disease, intracerebral hemorrhage, brain aneurysm, multiple sclerosis, hydrocephalus etc. As the electromagnetic brain imaging methods have drawn a lot of attentions of the medical doctors, clinicians and biomedical researchers for their unique advantages. This chapter will present the review of the studies on the noninvasive electromagnetic methods for brain monitoring, diagnosis and treatment. The chapter will try to present the detail technical aspects of different electromagnetic brain monitoring modalities (EBMM), their applications and challenges. The chapter will start by introducing to the human brain and its diseases followed by a discussion on the history and the developments of the brain monitoring techniques. It will discuss about the present scenario of the conventional brain monitoring methods with their merits and demerits. The chapter will explain the electromagnetic brain monitoring techniques in detail such as Electroencephalography (EEG), Magnetoencephalography (MEG), Electrocorticography (ECoG), electroneurogram (ENG), electrical impedance tomography (EIT), Quantitative susceptibility mapping (QSM) and other advanced brain monitoring modalities. The chapter will discuss about their working principles, applications, advantages, disadvantages, present scenario. The chapter will summarize the studies on the electromagnetic methods for brain monitoring and it will conclude with a discussion on the present challenges and future trends.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Aaronson, P.I., Ward, J.P.T.: The Cardiovascular System at a Glance, 3rd edn. Wiley-Blackwell, Oxford (2007)

    Google Scholar 

  2. Aizat, R.M., Kadir, M.R.A., Rahman, S.A., Shihabudin, T.M.T.M., Robson, N., Kamarul, T.: Biomechanical comparative analyses between the anterolateral and medial distal tibia locking plates in treating, complex distal tibial fracture: a finite element study. J. Med. Imaging Health Inf. 3, 532–537 (2013)

    Google Scholar 

  3. Akoka, S., Franconi, F., Seguin, F., Lepape, A.: Radiofrequency map of an NMR coil by imaging. Magn. Reson. Imaging 11(3), 437–441 (1993)

    Google Scholar 

  4. Andria, G., Attivissimo, F., Lanzolla, A.M.L.: A statistical approach for MR and CT images comparison. Measurement 46(2013), 57–65 (2013)

    Google Scholar 

  5. Aristovich, K.Y., Santos, G.S., Packham, B.C., Holder, D.S.: A method for reconstructing tomographic images of evoked neural activity with electrical impedance tomography using intracranial planar arrays. Physiol. Meas. 35(6), 1095–1109 (2014)

    Google Scholar 

  6. Arroyo, S., Lesser, R.P., Gordon, B., Uematsu, S., Jackson, D., Webber, R.: Functional significance of the mu rhythm of human cortex: an electrophysiologic study with subdural electrodes. Electroencephalogr. Clin. Neurophysiol. 87(3), 76–87 (1993). doi:10.1016/0013-4694(93)90114-B

    Google Scholar 

  7. Azar, A.T., Balas, V.E., Olariu, T.: Classification of EEG-Based Brain-Computer Interfaces. Adv. Intell. Comput. Technol. Decis Support Systems, Stud Comput Intell 486, 97–106 (2014)

    Google Scholar 

  8. Baillet, S., Mosher, J.C., Leahy, R.M.: Electromagnetic brain mapping. IEEE Sign. Process. Mag. 18(6), 14–30 (2001)

    Google Scholar 

  9. Bagshaw, A.P., Liston, A.D., Bayford, R.H., Tizzard, A., Gibson, A.P., Tidswell A.T., Sparkes, M.K., Dehghani, H., Binnie, C.D., Holder, D.S.: Electrical impedance tomography of human brain function using reconstruction algorithms based on the finite element method. NeuroImage 20, 752–764 (2003)

    Google Scholar 

  10. Baillet, S., Friston, K., Oostenveld, R.: Academic software applications for electromagnetic brain mapping using MEG and EEG. Comput. Intell. Neurosci. 2011 (Article ID 972050), 4 (2011)

    Google Scholar 

  11. Bayford, R.H.: Bioimpedance tomography (electrical impedance tomography). Ann. Rev. Biomed. Eng. 8, 63–91 (2006)

    Google Scholar 

  12. Bear, M.F., Connors, B.W., Paradiso, M.A.: Neuroscience: Exploring the Brain, 3rd Revised edn. Lippincott Williams and Wilkins, Philadelphia (2006)

    Google Scholar 

  13. Bera, T.K., Nagaraju, J.: A Multifrequency constant current source for medical electrical impedance tomography. In: Proceedings of the IEEE International Conference on Systems in Medicine and Biology (ICSMB), Kharagpur, India, pp. 278–283. 16th–18th Dec 2010

    Google Scholar 

  14. Bera, T.K., Nagaraju, J.: Switching of a sixteen electrode array for wireless EIT system using A RF-based 8-Bit digital data transmission technique. Commun. Comput. Inform. Sci. Springer, Part I, CCIS 269, ObCom 2011 2012(20), 202–211 (2011)

    Google Scholar 

  15. Bera, T.K., Biswas, S.K., Rajan, K., Nagaraju, J.: Improving conductivity image quality using block matrix-based multiple regularization (BMMR) technique in EIT: a simulation study. J. Electr. Bioimpedance 2, 33–47 (2011)

    Google Scholar 

  16. Bera, T.K., Biswas, S.K., Rajan, K., Nagaraju, J.: Improving the image reconstruction in electrical impedance tomography (EIT) with block matrix-based multiple regularization (BMMR): a practical phantom study. IEEE World Congr. Inform. Commun. Technol. (WICT-2011) India 2011, 1346–1351 (2011b)

    Google Scholar 

  17. Bera, T.K., Biswas, S.K., Rajan, K., Nagaraju, J.: Improving image quality in electrical impedance tomography (eit) using projection error propagation-based regularization (pepr) technique: a simulation study. J. Electr. Bioimpedance 2, 2–12 (2011). doi:10.5617/jeb.158

    Google Scholar 

  18. Bera, T.K., Biswas, S.K., Rajan, K., Nagaraju, J.: A model based iterative image reconstruction (MoBIIR) algorithm for conductivity imaging in EIT using simulated boundary data. In: AIP Conference Proceedings, Optics: Phenomena, Materials, Devices, and Characterization: Optics 2011: International Conference on Light, Kerala, (India), pp. 489–491. 23–25 May (2011d)

    Google Scholar 

  19. Bera, T.K., Nagaraju, J.: Studying the resistivity imaging of chicken tissue phantoms with different current patterns in electrical impedance tomography (EIT). Measurement 45(2012), 663–682 (2012)

    Google Scholar 

  20. Bera, T.K., Nagaraju, J.: Surface electrode switching of A 16-electrode wireless EIT system using RF-based digital data transmission scheme with 8 channel encoder/decoder ICs. Measurement 45, 541–555 (2012)

    Google Scholar 

  21. Bera, T.K., Biswas, S.K., Rajan, K., Nagaraju, J.: Image reconstruction in electrical impedance tomography (EIT) with projection error propagation-based regularization (PEPR): a practical phantom study. In: Lect. Notes Comput Sci Springer 2012 7135/2012, 95–105, ADCONS 2011 (2012)

    Google Scholar 

  22. Bera, T.K.: Studies on multifrequency multifunction electrical impedance tomography (MfMf‐EIT) to improve bio‐impedance imaging. PhD Thesis, IISc, Bangalore, India, Department of Instrumentation and Applied Physics, Indian Institute of Science, Bangalore, India (2013)

    Google Scholar 

  23. Bera, T.K., Nagaraju, J.: A MATLAB-based boundary data simulator for studying the resistivity reconstruction using neighbouring current pattern. J. Med. Eng. 2013(Article ID 193578), 15 (2013a)

    Google Scholar 

  24. Bera, T.K., Nagaraju, J.: Electrical impedance tomography (EIT): A Harmless Medical Imaging Modality, Research Developments in Computer Vision and Image Processing: Methodologies and Applications, IGI Global, Chap 13, pp. 235–273 (2013b)

    Google Scholar 

  25. Bera, T.K., Nagaraju, J.: A LabVIEW based multifunction multifrequency electrical impedance tomography (MfMf-EIT) instrumentation for flexible and versatile impedance imaging. In: 15th international conference on electrical bio-impedance (ICEBI) and 14th conference on electrical impedance tomography (EIT), April 22–25, 2013, Germany, p. 216 (2013c)

    Google Scholar 

  26. Bera, T.K., Maity, P., Haldar, S., Nagaraju, J.: A MatLAB based virtual phantom for 2D electrical impedance tomography (MatVP2DEIT): studying the medical EIT reconstruction in computer. J. Med. Imaging Health Inform 4, 147–167 (2014)

    Google Scholar 

  27. Bera, T.K., Biswas, S.K., Rajan, K., Nagaraju, J.: Projection Error Propagation-based regularization (PEPR) method for resistivity reconstruction in electrical impedance tomography (EIT). Measurement 49, 329–350 (2014)

    Google Scholar 

  28. Bera, T.K., Mohamadou, Y., Lee, K.H., Wi, H., Oh, T.I., Woo, E.J., Soleimani, M., Seo, J.K.: Electrical impedance spectroscopy for electro-mechanical characterization of conductive fabrics. Sensors 14, 9738–9754 (2014)

    Google Scholar 

  29. Bera, T.K., Nagaraju, J.: Sensors for electrical impedance tomography, 2nd edn. In: Webster, J.G. (ed.) The measurement, instrumentation, and sensors handbook, Chap. 61, pp 61.1–61.30. CRC Press (2014)

    Google Scholar 

  30. Bera, T.K., Nagaraju, J.: Studies and evaluation of EIT image reconstruction in EIDORS with simulated boundary data. In: Proceedings of the second international conference on soft computing for problem solving (SocProS 2012) December 28–30. Advances in intelligent systems and computing, vol. 236, pp. 1573–1581 (2014b)

    Google Scholar 

  31. Blume, W.T.: EEG and the diagnosis of epilepsy. In: Kaplan, P.W., Fisher, R.S. (eds.) Imitators of epilepsy. 2nd edn. Demos Medical Publishing, New York. http://www.ncbi.nlm.nih.gov/books/NBK7442/

  32. Boone, K.G., Holder, D.S.: Current approaches to analogue instrumentation design in electrical impedance tomography. Physiol. Meas. 17, 229 (1996)

    Google Scholar 

  33. Borcea, L.: Electrical impedance tomography. Topical Rev. Inverse Probl. 18, R99–R136 (2002)

    MathSciNet  MATH  Google Scholar 

  34. Botella-Soler, V., Valderrama, M., Crépon, B., Navarro, V., Le Van Quyen, M.: Large-scale cortical dynamics of sleep slow waves. PloS one 7(2), e30757, 1–10 (2012)

    Google Scholar 

  35. Brandon, D., Alazraki, A., Halkar, R.K., Alazraki, N.P.: The role of single-photon emission computed tomography and SPECT/computed tomography in oncologic imaging. Semin. Oncol. 38(1), 87–108 (2011)

    Google Scholar 

  36. Burle, B., Bonnet, M.: High-speed memory scanning: a behavioral argument for a serial oscillatory model. Cogn. Brain. Res. 9(3), 327–337 (2000)

    Google Scholar 

  37. Buxton, R.B.: Introduction to functional magnetic resonance imaging: principles and techniques, 2 edn. Cambridge University Press, Cambridge (2009)

    Google Scholar 

  38. Caplan, D., Waters, G., DeDe, G., Michaud, J., Reddy, A.: A study of syntactic processing in aphasia I: behavioral (psycholinguistic) aspects. Brain Lang. 101(2), 103–150 (2007)

    Google Scholar 

  39. Cascino, G.: Functional MRI for language localization. Epilepsy Curr. 2(6), 178–179 (2002)

    Google Scholar 

  40. Castellanos, F.X., Giedd, J.N., Marsh, W.L., Hamburger, S.D., Vaituzis, A.C., Dickstein, D.P., Sarfatti, S.E., Vauss, Y.C., Snell, J.W., Lange, N., Kaysen, D., Krain, A.L., Ritchie, G.F., Rajapakse, J.C., Rapoport, J.L.: Quantitative brain magnetic resonance imaging in attention-deficit hyperactivity disorder. Arch. Gen. Psychiatry 53(7), 607–616 (1996)

    Google Scholar 

  41. Carter, R.: The Human Brain Book. Dorling Kindersley Ltd, Har/Dvdr edition (2009)

    Google Scholar 

  42. Szi-Wen, C., Chang-Yuan, C.: A comparison of 3D cone-beam Computed Tomography (CT) image reconstruction performance on homogeneous multi-core processor and on other processors. Measurement 44(10), 2035–2042 (2011)

    Google Scholar 

  43. Cheney, M., Isaacson, D., Newell, J.C.: Electrical impedance tomography. SIAM Rev. 41(1), 85–101 (1999)

    MathSciNet  MATH  Google Scholar 

  44. Cho, M.J., Lyoo, I.K., Lee, D.W., Kwon, J.S., Lee, J.S., Lee, D.S., Jung, J.K., Lee, M.C.: Brain single photon emission computed tomography findings in depressive pseudodementia patients. J. Affect. Disord. 69(1–3), 159–166 (2002)

    Google Scholar 

  45. Clare, S.: Functional MRI: methods and applications. PhD Thesis, University of Nottingham, UK (1997)

    Google Scholar 

  46. Clark, D.D., Sokoloff, L.: In: Siegel, G.J., Agranoff, B.W., Albers, R.W., Fisher, S.K., Uhler, M.D. (ed.) Basic neurochemistry: molecular, cellular and medical aspects. Lippincott, Philadelphia, pp. 637–670. ISBN 978-0-397-51820-3

    Google Scholar 

  47. Cohen, D.: Magnetoencephalography: evidence of magnetic fields produced by alpha rhythm currents. Science 161, 784–786 (1968)

    Google Scholar 

  48. Cohen, D.: Magnetoencephalography: detection of the brain’s electrical activity with a superconducting magnetometer. Science 175, 664–666 (1972)

    Google Scholar 

  49. Collura, T.F.: History and evolution of electroencephalographic instruments and techniques. J. Clin. Neurophysiol. 10(4), 476–504 (1993)

    Google Scholar 

  50. Collura, T.F.: History and evolution of computerized electroencephalography. J. Clin. Neurophysiol. 12(1995), 214–229 (1995)

    Google Scholar 

  51. Crone, N.E., Hao, L., Hart, J., Boatman, D., Lesser, R.P., Irizarry, R., Gordon, B.: Electrocorticographic gamma activity during word production in spoken and sign language. Neurology 57(11), 2045–2053 (2001)

    Google Scholar 

  52. Crossman, A.R., Neary, D.: Neuroanatomy: an illustrated colour text, 4e, 4 edn. Churchill Livingstone (2010)

    Google Scholar 

  53. Cryer, P.E.: Hypoglycemia, functional brain failure, and brain death, J Clin Invest. Apr 2 117(4), 868–870 (2007)

    Google Scholar 

  54. Dauwels, J., Vialatte, F., Cichocki, A.: Diagnosis of Alzheimer’s disease from EEG signals: where are we standing? Curr. Alzheimer Res. 7(6), 487–505 (2010)

    Google Scholar 

  55. Davidson, J.L., Wright, P., Ahsan, S.T., Robinson, R.L., Pomfrett, C.J.D., McCann, H.: fEITER – a new EIT instrument for functional brain imaging. J. Phys: Conf. Ser. 224, 012025 (2010)

    Google Scholar 

  56. Davis, J., Wells, P.: Computed tomography measurements on wood. Ind. Metrol. 2(3–4), 195–218 (1992)

    Google Scholar 

  57. Deistung, A., Rauscher, A., Sedlacik, J., Stadler, J., Witoszynskyj, S., Reichenbach, J.R.: Susceptibility weighted imaging at ultra high magnetic field strengths: theoretical considerations and experimental results. Magn. Reson. Med. 60(5), 1155–1168 (2008). doi:10.1002/mrm.21754

    Google Scholar 

  58. Denyer, C.W.L.: Electronics for real-time and three-dimensional electrical impedance tomographs, PhD Thesis, Oxford Brookes University (1996)

    Google Scholar 

  59. Devous, M.D.: Single-photon emission computed tomography in neurotherapeutics. NeuroRx. 2(2), 237–249 PMCID: PMC1064989 (2005)

    Google Scholar 

  60. Dias, N.S., Carmo, J.P., Mendes, P.M., Correia, J.H.: Wireless instrumentation system based on dry electrodes for acquiring EEG signals. Med. Eng. Phys. 34(7), 972–981 (2012)

    Google Scholar 

  61. Donta, S.T., Noto, R.B., Vento, J.A.: SPECT brain imaging in chronic Lyme disease. Clin. Nucl. Med. 37(9), e219–e222 (2012)

    Google Scholar 

  62. Egner, T., Gruzelier, J.H.: EEG biofeedback of low beta band components: frequency-specific effects on variables of attention and event-related brain potentials. Clin. Neurophysiol. 115(1), 131–139 (2004)

    Google Scholar 

  63. Fabrizi, L., Sparkes, M., Horesh, L., Perez-Juste, Abascal J.F., McEwan, A., Bayford, R.H., Elwes, R., Binnie, C.D., Holder, D.S.: Factors limiting the application of electrical impedance tomography for identification of regional conductivity changes using scalp electrodes during epileptic seizures in humans. Physiol. Meas. 27, S163–S174 (2006)

    Google Scholar 

  64. Facey, K., Bradbury, I., Laking, G., Payne, E.: Overview of the clinical effectiveness of positron emission tomography imaging in selected cancers. Health Technol. Assess. 11(44), iii–iv, xi–267 (2007)

    Google Scholar 

  65. Faiz, O., Blackburn, S., Moffat, D.: Anatomy at a Glance, 3rd edn. Wiley-Blackwell, Chichester (2011)

    Google Scholar 

  66. Florin, A., da Silva, F.L.: Celluluar substrates of brain rhythms. In: Schomer, D.L., da Silva Fernando L. Niedermeyer’s electroencephalography: basic principles, clinical applications, and related fields 6th edn., pp. 33–63. Lippincott Williams & Wilkins, Philadelphia (2010)

    Google Scholar 

  67. Flink, K.R.: Intraoperative electrocorticography in epilepsy surgery: useful or not? Seizure 12(8), 577–584 (2003). doi:10.1016/S1059-1311(03)00095-5

    Google Scholar 

  68. Fox, M.D., Raichle, M.E.: Spontaneous fluctuations in brain activity observed with functional magnetic resonance imaging. Nat. Rev. Neurosci. 8(9), 700–711 (2007)

    Google Scholar 

  69. Frey, K.A.: Positron emission tomography. In: Siegel, G.J, Agranoff, B.W., Albers, R.W. et al., (eds.) Basic neurochemistry: molecular, cellular and medical aspects, Chap. 54, 6th edn. Lippincott-Raven, Philadelphia

    Google Scholar 

  70. Ganis, G., Kosslyn, S.M.: ‘Neuroimaging’. In: Ramachandran V.S. (ed.) Encyclopedia of the human brain, pp. 493–505 (2002)

    Google Scholar 

  71. Gastaut, J.L., Michel, B., Hassan, S.S., Cerda, M., Bianchi, L., Gastaut, H.: Electroencephalography in brain edema (127 cases of brain tumor investigated by cranial computerized tomography). Electroencephalogr. Clin. Neurophysiol. 46(3), 239–255 (1979)

    Google Scholar 

  72. Gerrard, P., Malcolm, R.: Mechanisms of modafinil: a review of current research. Neuropsychiatr. Dis. Treat. 3(3), 349–364 (2007)

    Google Scholar 

  73. Giedd, J.N.: Structural magnetic resonance imaging of the adolescent brain. Ann. N. Y. Acad. Sci. 1021, 77–85 (2004)

    Google Scholar 

  74. Gilad, O., Holder, D.S.: Impedance changes recorded with scalp electrodes during visual evoked responses: implications for electrical impedance tomography of fast neural activity. Neuroimage 15, 47(2), 514–522 (2009)

    Google Scholar 

  75. Gillespie, J.E., Jackson, A.: MRI and CT of the Brain, 1 edn. CRC Press (2000)

    Google Scholar 

  76. Gloor, P., Ball, G., Schaul, N.: Brain lesions that produce delta waves in the EEG. Neurology 27(4), 326–333 (1977)

    Google Scholar 

  77. Götze, W., Schulze, A., Kubicki, S.: Concerning the diagnosis of epidural hematoma in the EEG. Electroencephalogr. Clin. Neurophysiol. 13(1) 111–113 (1961)

    Google Scholar 

  78. Graham, B.M.: Enhancements in electrical impedance tomography (EIT) image reconstruction for 3D Lung Imaging, PhD thesis, University of Ottawa (2007)

    Google Scholar 

  79. Greenfield, S.: The human brain: a guided tour (SCIENCE MASTERS). Phoenix, Reissued 2001 edn (1997)

    Google Scholar 

  80. Greenstein, B., Wood, D.: The endocrine system at a glance, 3 edn. Wiley-Blackwell (2011)

    Google Scholar 

  81. Gronseth, G.S., Greenberg, M.K.: The utility of the electroencephalogram in the evaluation of patients presenting with headache: a review of the literature. Neurology 45(7), 1263–1267 (1995)

    Google Scholar 

  82. Grunwald, M., Weiss, T., Krause, W., Beyer, L., Rost, R., Gutberlet, I., Gertz, H.J.: Power of theta waves in the EEG of human subjects increases during recall of haptic information. Neurosci. Lett. 260(3), 189-192

    Google Scholar 

  83. Haacke, E.M., Mittal, S., Wu, Z., Neelavalli, J., Cheng, Y.C.: Susceptibility-weighted imaging: technical aspects and clinical applications, part 1. AJNR Am. J. Neuroradiol. 30(1), 19–30 (2009). doi:10.3174/ajnr.A1400

    Google Scholar 

  84. Hauri, P.: Treating psychophysiologic insomnia with biofeedback. Arch. Gen. Psychiatry 38(7), 752 (1981)

    Google Scholar 

  85. Hiller, J., Reindl, L.M.: A computer simulation platform for the estimation of measurement uncertainties in dimensional X-ray computed tomography. Measurement 45(8), 2166–2182 (2012)

    Google Scholar 

  86. Holder, D.S.: Electrical impedance tomography of brain function. Brain Topogr. 5(2), 87–93 (1992)

    Google Scholar 

  87. Holder, D.S.: Detection of cerebral ischaemia in the anaesthetised rat by impedance measurement with scalp electrodes: implications for non-invasive imaging of stroke by electrical impedance tomography. Clin. Phys. Physial. Meas. 13(1), 63–75 (1992)

    MathSciNet  Google Scholar 

  88. Holder, D.S., Hanquan, Y., Rao, A.: Some practical biological phantoms for calibrating multifrequency electrical impedance tomography. Physiol. Meas. 17, A167–A177 (1996)

    Google Scholar 

  89. Holder, D.S., Rao, A., Hanquan, Y.: Imaging of physiologically evoked responses by electrical impedance tomography with cortical electrodes in the anaesthetized rabbit. Physiol. Meas. Nov 17(Suppl 4A), A179–A186 (1996b)

    Google Scholar 

  90. Holder, D.S., Rao, A., Hanquan, Y.: Imaging of physiologically evoked responses by electrical impedance tomography with cortical electrodes in the anaesthetized rabbit. Physiol. Meas. 17, A179–A186 (1996)

    Google Scholar 

  91. Holder, D.S., González-Correa, C.A., Tidswell, T., Gibson, A., Cusick, G., Bayford, R.H.: Assessment and calibration of a low-frequency system for electrical impedance tomography (EIT) optimized for use in imaging brain function in ambulant human subjects. Ann New York Acad. Sci. 873(1), 512–519 (1999)

    Google Scholar 

  92. Huang, W.-Y., Muo, C.-H., Lin, C.-Y., Jen, Y.-M., Yang, M.-H., Lin, J.-C., Sung, F.-C., Kao, C.-H.: Paediatric head CT scan and subsequent risk of malignancy and benign brain tumour: a nation-wide population-based cohort study. British J. Cancer Adv. 10.1038/bjc.2014.103 (2014)

  93. Hughes, J.R.: Gamma, fast, and ultrafast waves of the brain: their relationships with epilepsy and behavior. Epilepsy Behav. 13(1), 25–31 (2008)

    Google Scholar 

  94. Gold, Ian: Does 40-Hz oscillation play a role in visual consciousness? Conscious. Cogn. 8(2), 186–195 (1999). doi:10.1006/ccog.1999.0399

    MathSciNet  Google Scholar 

  95. Imperiale, C., Imperiale, A.: Some fast calculations simulating measurements from single-photon emission computed tomography (SPECT) imaging. Measurement 37(3), 218–240 (2005)

    Google Scholar 

  96. Internet Article 1: Anatomy of the Brain http://www.strokecenter.org/professionals/brain-anatomy/anatomy-of-the-brain/. Accessed 16th May 2014

  97. Internet Article 2: Non-Invasive electromagnetic technique for monitoring physiological changes in the brain. http://www.jhuapl.edu/ott/technologies/technology/articles/P00197.asp. Accessed 26th August 2013

  98. Internet Article 3 Ashrafulla S.: EEG and MEG: functional brain imaging with high temporal resolution. http://www.usc.edu/programs/neuroscience/private/mona_journal_club/Syed__EEG_MEG.pdf (2013). Accessed 26th August 2013

  99. Internet Article 4: Brain diseases. http://www.nlm.nih.gov/medlineplus/braindiseases.html 2013. Accessed 26th August 2013

  100. Internet Article 5: Technology—positron emission tomography (Pet) imaging. http://www.cellsighttech.com/technology/pet.html 2014. Accessed 20th April 2014

  101. Internet Article 6: Head MRI. http://www.ncbi.nlm.nih.gov/pubmedhealth/PMH0004250/ 2014. Accessed 20th April 2014

  102. Internet Article 7: Human brain. http://en.wikipedia.org/wiki/Human_brain#refBuxton 2014. Accessed 16th April 2014

  103. Internet Article 10: Electroencephalography. http://en.wikipedia.org/wiki/Electroencephalography 2014. Accessed 16th April 2014

  104. Internet Article 11: Brainwaves overview. http://www.transparentcorp.com/products/np/brainwaves.php 2014. Accessed 16th April 2014

  105. Internet Article 12: What is Magnetoencephalography (MEG)? http://ilabs.washington.edu/what-magnetoencephalography-meg 2014. Accessed 20th April 2014

  106. Internet Article 13: 10–20 system (EEG). http://en.wikipedia.org/wiki/10-20_system_(EEG) 2014. Accessed 20th April 2014

  107. Internet Article 14: EEG recording. http://www.aha.ru/~geivanit/EEGmanual/Recording.htm 2014. Accessed 20th April 2014

  108. Internet Article 15: Magnetoencephalography. http://en.wikipedia.org/wiki/Human_brain 2014. Accessed 20th April 2014

  109. Internet Article 16: Electrocorticography. http://en.wikipedia.org/wiki/Electrocorticography 2014. Accessed 22nd April 2014

  110. Internet Article 17: Electroneurogram. http://en.wikipedia.org/wiki/Electroneurogram 2014. Accessed 23th April 2014

  111. Internet Article 18: Electrical impedance tomography of brain function. http://www.ucl.ac.uk/medphys/research/eit/pubs/brain_EIT_overview.pdf 2014. Accessed 24th April 2014

  112. Internet Article 8: History of electroencephalography. https://wiki.engr.illinois.edu/display/BIOE414/History+of+Electroencephalography 2014. Accessed 20th April 2014

  113. Internet Article 9: Millet, D.: The origins of EEG. http://www.bri.ucla.edu/nha/ishn/ab24-2002.htm 2002. Accessed 20th April 2014

  114. Iwata, K., Nakao, M., Yamamoto, M., Kimura, M.: Quantitative characteristics of alpha and theta EEG activities during sensory deprivation. Psychiatry Clin. Neurosci. 55(3), 191–192 (2001)

    Google Scholar 

  115. Jasper, H.H.: The ten-twenty electrode system of the International Federation. Electroencephalogr. Clin. Neurophysiol. 10, 371–375 (1958)

    Google Scholar 

  116. Jeon, K., Chang-Ock, L.: CoReHA 2.0: a software package for in vivo MREIT experiments. Comput. Math. Methods Med. 2013(Article ID 941745) 8 (2013)

    Google Scholar 

  117. Jing, L., Liu, S., Zhihong, L., Meng, S.: An image reconstruction algorithm based on the extended Tikhonov regularization method for electrical capacitance tomography. Measurement 42(3), 368–376 (2009)

    Google Scholar 

  118. Jo, H.G., Hinterberger, T., Wittmann, M., Borghardt, T.L., Schmidt, S.: Spontaneous EEG fluctuations determine the readiness potential: is preconscious brain activation a preparation process to move? Exp. Brain Res. 231(4), 495–500 (2013)

    Google Scholar 

  119. John, E.R., Prichep, L.S., Kox, W., Valdes-Sosa, P., Bosch-Bayard, J., Aubert, E., Gugino, L.D.: Invariant reversible QEEG effects of anesthetics. Conscious. Cogn. 10(2), 165–183 (2001)

    Google Scholar 

  120. Joy, M., Scott, G., Henkelman, M.: In vivo detection of applied electric currents by magnetic resonance imaging. Magn. Reson. Imaging 7(1), 89–94 (1989)

    Google Scholar 

  121. Li-Hong, J., Ming-Ni, W.: MRI brain lesion image detection based on color-converted K-means clustering segmentation. Measurement 43(7), 941–949 (2010)

    Google Scholar 

  122. Jurcak, V., Tsuzuki, D., Dan, I.: 10/20, 10/10, and 10/5 systems revisited: their validity as relative head-surface-based positioning systems. Neuroimage. 15, 34(4), 1600–1611. Epub 2007 Jan 4

    Google Scholar 

  123. Karson, C.N., Coppola, R., Daniel, D.G., Weinberger, D.R.: Computerized EEG in schizophrenia. Schizophr. Bull. 14(2), 193–197 (1988)

    Google Scholar 

  124. Keshav, S., Bailey, A.: The Gastrointestinal System at a Glance, 2 edn. Wiley-Blackwell

    Google Scholar 

  125. Khalighi, M., Vosoughi Vahdat, B., Mortazavi, M., Soleimani, M.: Practical design of low-cost instrumentation For industrial Electrical Impedance Tomography (EIT). In: IEEE international instrumentation and measurement technology conference, 2012-05-01, Graz (2012)

    Google Scholar 

  126. Khang, H.S., Lee, B.I., Oh, S.H., Woo, E.J., Lee, S.Y., Cho, M.Y., Kwon, O., Yoon, J.R., Seo, J.K.: J-substitution algorithm in magnetic resonance electrical impedance tomography (MREIT): phantom experiments for static resistivity images. IEEE Trans. Med. Imaging 21(6), 695–702 (2002)

    Google Scholar 

  127. Kim, H.J., Oh, T.I., Kim, Y.T., Lee, B.I., Woo, E.J., Seo, J.K., Lee, S.Y., Kwon, O., Park, C., Kang, B.T., Park, H.M.: In vivo electrical conductivity imaging of a canine brain using a 3T MREIT system. Physiol. Meas. 29, 1145–1155 (2008)

    Google Scholar 

  128. Kim, D.-H., Ghim, M.-O., Kwon, O., Kim, H., Seo, J., Woo, E.: MREIT and EPT: a comparison of two conductivity imaging modalities. Proc. Int. Soc. Mag. Reson. Med. 19, 4468 (2011)

    Google Scholar 

  129. Klassen, B.T., Hentz, J.G., Shill, H.A., Driver-Dunckley, E., Evidente, V.G., Sabbagh, M.N., Adler, C.H., Caviness, J.N.: Quantitative EEG as a predictive biomarker for Parkinson disease dementia. Neurol. 12, 77(2), 118–124 (2011)

    Google Scholar 

  130. Klein, S., Thorne, B.M.: Biological Psychology, 1 edn. Wiley, New York (2006)

    Google Scholar 

  131. Klem, G.H., Lüders, H.O., Jasper, H.H., Elger, C.: The ten-twenty electrode system of the international federation. Electroencephalogr. Clin. Neurophysiol. 52, 3–6 (1999)

    Google Scholar 

  132. Kong, J., Ma, L., Gollub, R.L., Wei, J., Yang, X., Li, D., Weng, X., Jia, F., Wang, C., Li, F., Li, R., Zhuang, D.: A pilot study of functional magnetic resonance imaging of the brain during manual and electroacupuncture stimulation of acupuncture point (LI-4 Hegu) in normal subjects reveals differential brain activation between methods. J. Altern. Complement. Med. 8(4), 411–419 (2002)

    Google Scholar 

  133. Kwong, K.K., Belliveau, J.W., Chesler, D.A., Goldberg, I.E., Weisskoff, R.M., Poncelet, B.P., Kennedy, D.N., Hoppel, B.E., Cohen, M.S., Turner, R., et al.: Dynamic magnetic resonance imaging of human brain activity during primary sensory stimulation. Proc. Natl. Acad. Sci. USA 15, 89(12), 5675–5679 (1992)

    Google Scholar 

  134. Lai, C.W., Gragasin, M.E.: Electroencephalography in herpes simplex encephalitis. J. Clin. Neurophysiol. Jan 5(1), 87–103 (1988)

    Google Scholar 

  135. Langkammer, C., Liu, T., Khalil, M., Enzinger, C., Jehna, M., Fuchs, S., Fazekas, F., Wang, Y., Ropele, S.: Quantitative susceptibility mapping in multiple sclerosis. Radiology 267, 551–559 (2013)

    Google Scholar 

  136. Langkammer, C., Schweser, F., Krebs, N., Deistung, A., Goessler, W., Scheurer, E., Sommer, K., Reishofer, G., Yen, K., Fazekas, F., Ropele, S., Reichenbach, J.R.: Quantitative susceptibility mapping (QSM) as a means to measure brain iron? A post mortem validation study. Neuroimage 62(2–3), 1593–1599 (2012)

    Google Scholar 

  137. Lay-Ekuakille, A., Vergallo, P., Trabacca, A., De Rinaldis, M., Angelillo, F., Conversano, F., Casciaro, S.: Low-frequency detection in ECG signals and joint EEG-Ergospirometric measurements for precautionary diagnosis. Measurement 46(1), 97–107 (2013)

    Google Scholar 

  138. Letosa, J., Artal, J.S., Samplón, M., Usón, A., Arcega, F.J.: Modelization of current sensors by finite elements method. Measurement 35(3), 233–241 (2004)

    Google Scholar 

  139. Lionheart, W.R.B.: EIT reconstruction algorithms: pitfalls, challenges and recent developments, REVIEW ARTICLE. Physiol. Meas. 25(2004), 125–142 (2004)

    Google Scholar 

  140. Liu, H., Tao, X., Xua, P., Zhang, H., Bai, Z.: A dynamic measurement system for evaluating dry bio-potential surface electrodes. Measurement 46, 1904–1913 (2013)

    Google Scholar 

  141. Liu, J., Liu, T., de Rochefort, L., Khalidov, I., Prince, M., Wang, Y.: Quantitative susceptibility mapping by regulating the field to source inverse problem with a sparse prior derived from the Maxwell equation: validation and application to brain. Proc. Intl. Soc. Mag. Reson. Med. 18(2010), 4996 (2010)

    Google Scholar 

  142. Loo, S.K., Makeig, S.: Clinical utility of EEG in attention-deficit/hyperactivity disorder: a research update. Neurotherapeutics 9(3), 569–587 (2012)

    Google Scholar 

  143. Loo, S.K., Barkley, R.A.: Clinical utility of EEG in attention deficit hyperactivity disorder. Appl. Neuropsychol. 12(2), 64–76 (2005)

    Google Scholar 

  144. Luck, S.J.: An Introduction to the Event-Related Potential Technique. The MIT Press, Cambridge (2005). ISBN 0-262-12277-4

    Google Scholar 

  145. Ludovic, D.R., Tian, L., Bryan, K., Jing, L., Pascal, S., Vincent, L., Jianlin, W., Yi, W.: Quantitative susceptibility map reconstruction from MR phase data using bayesian regularization: validation and application to brain imaging. Magn. Reson. Med. 63(1), 194–206 (2009). doi:10.1002/mrm.22187

    Google Scholar 

  146. Maas, L.C., Lukas, S.E., Kaufman, M.J., Weiss, R.D., Daniels, S.L., Rogers, V.W., Kukes, T.J., Renshaw, P.F.: Functional magnetic resonance imaging of human brain activation during cue-induced cocaine craving. Am. J. Psychiatry 155(1), 124–126 (1998)

    Google Scholar 

  147. Macdonell, R.A., Donnan, G.A., Bladin, P.F., Berkovic, S.F., Wriedt, C.H.: The electroencephalogram and acute ischemic stroke. Distinguishing cortical from lacunar infarction. Arch. Neurol. 45(5), 520–524 (1988)

    Google Scholar 

  148. Malmivuo, J., Plonsey, R.: Bioelectromagnetism: Principles and Applications of Bioelectric And Biomagnetic Fields, Chap. 13. Oxford University Press, Oxford (1995)

    Google Scholar 

  149. McEwan, A., Romsauerova, A., Yerworth, R., Horesh, L., Bayford, R., Holder, D.: Design and calibration of a compact multi-frequency EIT system for acute stroke imaging. Physiol. Meas. 27, S199–S210 (2006)

    Google Scholar 

  150. Meeus, I., Galdermans, D., Roland, J., Slabbynck, H., van Schaardenburg, C., Coolen, D.: Spectacular bone scintigraphy and transverse SPECT images in primary osteosarcoma of the pleura. Clin. Nucl. Med. 19(8), 738–740 (1994)

    Google Scholar 

  151. Meng, Z.J., Sajib, S.Z.K., Chauhan, M., Sadleir, R.J., Kim, H.J., Kwon, O.I., Woo, E.J.: Numerical simulations of MREIT conductivity imaging for brain tumor detection. Comput. Math. Methods Med. 2013(Article ID 704829), 10 (2013)

    Google Scholar 

  152. Michael-Titus, A.T., Revest, P., Shortland, P.: The Nervous System: Systems of the Body Series, 2 edn. Churchill Livingstone, Edinburgh (2010)

    Google Scholar 

  153. Miller, K.J., denNijs, M., Shenoy, P., Miller, J.W., Rao, R.P.N., Ojemann, J.G.: Real-time functional brain mapping using electrocorticography. Techn. Note NeuroImage 37, 504–507 (2007)

    Google Scholar 

  154. Miltner, W.H., Braun, C., Arnold, M., Witte, H., Taub, E.: Coherence of gamma-band EEG activity as a basis for associative learning. Nature 397(6718), 434–436 (1999)

    Google Scholar 

  155. Mittal, S., Wu, Z., Neelavalli, J., Haacke, E.M.: Susceptibility-weighted imaging: technical aspects and clinical applications, part 2. AJNR Am. J. Neuroradiol. 30(2), 232–252 (2009). doi:10.3174/ajnr.A1461

    Google Scholar 

  156. Munk, M.H., Roelfsema, P.R., König, P., Engel, A.K., Singer, W.: Role of reticular activation in the modulation of intracortical synchronization. Science 272(5259), 271–274 (1996)

    Google Scholar 

  157. Murakami, S., Okada, Y.: Contributions of principal neocortical neurons to magnetoencephalography and electroencephalography signals. J Physiol 575(Pt 3), 925–936 (2006). doi:10.1113/jphysiol.2006.105379

    Google Scholar 

  158. Newey, C.R., Sarwal, A., Hantus, S.: Continuous electroencephalography (cEEG) changes precede clinical changes in a case of progressive cerebral edema. Neurocrit. Care 18(2), 261–265 (2013). doi:10.1007/s12028-011-9650-4

    Google Scholar 

  159. Niedermeyer, E., da Silva F.L.: Electroencephalography: Basic Principles, Clinical Applications, and Related Fields. Lippincot Williams & Wilkins, New York (2004)

    Google Scholar 

  160. Nikolić, Z.M., Popović, D.B., Stein, R.B., Kenwell, Z.: Instrumentation for ENG and EMG recordings in FES systems. IEEE Trans. Biomed. Eng. 41(7), 703–706 (1994)

    Google Scholar 

  161. Nolte, J.: The Human Brain: An Introduction to its Functional Anatomy, 6th edn. Mosby, Philadelphia (2008)

    Google Scholar 

  162. Nunez, P.L., Srinivasan, R.: Electric Fields of the Brain: The Neurophysics of EEG. Oxford University Press, New York (1981)

    Google Scholar 

  163. O’Callaghan, C.: The Renal System at a Glance, 3 edn. Wiley-Blackwell, Oxford (2009)

    Google Scholar 

  164. Oh, T.I., Koo, H., Lee, K.H., Kim, S.M., Lee, J., Kim, S.W., Seo, J.K., Woo, E.J.: Validation of a multi-frequency electrical impedance tomography (mfEIT) system KHU Mark1: impedance spectroscopy and time-difference imaging. Physiol. Meas. 29(3), 295–307 (2008)

    Google Scholar 

  165. Palmini, A.: The concept of the epileptogenic zone: a modern look at Penfield and Jasper’s views on the role of interictal spikes. Epileptic Disorders. 8(Suppl 2), S10–S15 (2006)

    Google Scholar 

  166. Parenti, G., Marconi, F., Fiori, L.: Electrophysiological (EEG-SSEP) monitoring during middle cerebral aneurysm surgery. J. Neurosurg. Sci. 40(3–4), 195–205 (1996)

    Google Scholar 

  167. Park, C., Kwon. O.I.: Current density imaging using directly measured harmonic data in MREIT. Comput. Math. Methods Med. 2013(Article ID 381507), 9 (2013)

    Google Scholar 

  168. Petry, K.G., Boiziau, C., Dousset, V., Brochet, B.: Magnetic resonance imaging of human brain macrophage infiltration. Neurotherapeutics 4(3), 434–442 (2007)

    Google Scholar 

  169. Piwnica-Worms, D.: Clinical molecular imaging today: PET and SPECT. In: Kufe, D.W., Pollock, R.E., Weichselbaum, R.R., et al. (eds.) Holland-Frei Cancer Medicine, 6th edn. BC Decker, Hamilton (ON) (2003)

    Google Scholar 

  170. Pollak, L., Klein, C., Schiffer, J., Flechter, S., Rabey, J.: Electroencephalographic abnormalities in aseptic meningitis and noninfectious headache. A comparative study. Headache 41(1), 79–83 (2001)

    Google Scholar 

  171. Preissl, H.: Magnetoencephalography, 1 edn. Academic Press, New York (2005)

    Google Scholar 

  172. Purnell, J.Q., Klopfenstein, B.A., Stevens, A.A., Havel, P.J., Adams, S.H., Dunn, T.N., Krisky, C., Rooney, W.D.: Brain functional magnetic resonance imaging response to glucose and fructose infusions in humans. Diab. Obes. Metab. 13(3), 229–234 (2011). doi:10.1111/j.1463-1326.2010.01340.x

    Google Scholar 

  173. Raichle, M., Gusnard, D.A.: Appraising the brain’s energy budget. Proc. Natl. Acad. Sci. USA 99(16), 10237–10239 (2002)

    Google Scholar 

  174. Rangaswamy, M., Porjesz, B., Chorlian, D.B., Wang, K., Jones, K.A., Bauer, L.O., Rohrbaugh, J., O’Connor, S.J., Kuperman, S., Reich, T., Begleiter, H.: Beta power in the EEG of alcoholics. Biol. Psychol. 52(8), 831–842 (2002)

    Google Scholar 

  175. Reddy, J.N.: An Introduction to the Finite Element Method, 3rd edn. McGraw-Hill Science/Engineering/Math (2005)

    Google Scholar 

  176. Riu, P.J., Rosell, J., Lozano, A., Pallàs-Areny, R.: Multi-frequency static imaging in electrical impedance tomography: Part 1. Instrum. Requirements Med. Biol. Eng. Comput. 33(6), 784–792 (1995)

    Google Scholar 

  177. Roesler, C.R.M., Horn, F.J., Moré, A.D.O., Fancello, E.A.: A biomechanical analysis of titanium miniplates used for treatment of mandible condylar fracture with the finite element method. J. Med. Imaging Health Inf. 4, 106–112 (2014)

    Google Scholar 

  178. Romsauerova, A., McEwan, A., Horesh, L., Yerworth, R., Bayford, R.H., Holder, D.S.: Multi-frequency electrical impedance tomography (EIT) of the adult human head: initial findings in brain tumours, arteriovenous malformations and chronic stroke, development of an analysis method and calibration. Physiol. Meas. 27, S147–S161 (2006)

    Google Scholar 

  179. Ronne-Engstrom, E., Winkler, T.: Continuous EEG monitoring in patients with traumatic brain injury reveals a high incidence of epileptiform activity. Acta Neurol. Scand. Jul 114(1), 47–53 (2006)

    Google Scholar 

  180. Rothenberger, A., Moll, G.H.: Standard EEG and dyslexia in children–new evidence for specific correlates? Acta Paedopsychiatr. 56(3), 209–218 (1994)

    Google Scholar 

  181. Rozman, J., Zorko, B., Bunc, M.: Recording of electroneurograms from the nerves innervating the pancreas of a dog. J. Neurosci. Methods. 15, 112(2), 155–162 (2001)

    Google Scholar 

  182. Rudzinski, L.A., Rabinstein, A.A., Chung, S.Y., Wong-Kisiel, L.C., Burrus, T.M., Lanzino, G., Westmoreland, B.F.: Electroencephalographic findings in acute subdural hematoma. J. Clin. Neurophysiol. 28(6), 633–641 (2011)

    Google Scholar 

  183. Sadleir, R.J., Grant, S.C., Woo, E.J.: Can high-field MREIT be used to directly detect neural activity? Theor. Considerations NeuroImage 52(1), 205–216 (2010)

    Google Scholar 

  184. Sathya, P.D., Kayalvizhi, R.: Amended bacterial foraging algorithm for multilevel thresholding of magnetic resonance brain images. Measurement 44(10), 1828–1848 (2011)

    Google Scholar 

  185. Schneiderman, J.F.: Information content with low- versus high-T(c) SQUID arrays in MEG recordings: the case for high-T(c) SQUID-based MEG. J. Neurosci. Methods. 30, 222, 42–46. doi: 10.1016/j.jneumeth.2013.10.007. Epub 2013 Nov 1

  186. Seo, J.K., Woo, E.J.: Nonlinear Inverse Problems in Imaging, 1 edn. Wiley, New York (2012)

    Google Scholar 

  187. Seo, J.K., Min-Oh, Kim, Lee, J., Choi, N., Woo, E.J., Kim, H.J., Kwon, O.I., Dong-Hyun, Kim: Error analysis of nonconstant admittivity for mr-based electric property imaging. IEEE Trans. Med. Imaging 31(2), 430–437 (2012)

    Google Scholar 

  188. Shafi, A.A., Kadir, M.R.A., Sulaiman, E., Kasim, N.H.A., Kassim, N.L.A.: The effect of dental implant materials and thread profiles-a finite element and statistical study. J. Med. Imaging Health Inf. 3, 509–513 (2013)

    Google Scholar 

  189. Sharbrough, F., Chatrian, G.-E., Lesser, R.P., Lüders, H., Nuwer, M., Picton, T.W.: American electroencephalographic society guidelines for standard electrode position nomenclature. J. Clin. Neurophysiol. 8, 200–202 (1991)

    Google Scholar 

  190. Sieg, K.G., Gaffney, G.R., Preston, D.F., Hellings, J.A.: SPECT brain imaging abnormalities in attention deficit hyperactivity disorder. Clin. Nucl. Med. 20(1), 55–60 (1995)

    Google Scholar 

  191. Soleimani, M., Mitchell, C.N.: Electrical impedance tomography guided cryosurgery for the brain using a temporally correlated image reconstruction. In: XXIX General Assembly of the International Union of Radio/Union Radio Scientifique Internationale, 2008, USA

    Google Scholar 

  192. Sritharan, A., Line, P., Sergejew, A., Silberstein, R., Egan, G., Copolov, D.: EEG coherence measures during auditory hallucinations in schizophrenia. Psychiatry Res. 15, 136(2–3), 189–200 (2005)

    Google Scholar 

  193. Stephenson, D.R., Davidson, J.L., Lionheart, W.R.B., Grieve, B.D., York, T.A.: Comparison of 3D image reconstruction techniques using real electrical impedance measurement data. In: 4th World Congress on Industrial Proceedings Tomography, 2005, Japan, pp. 1–8

    Google Scholar 

  194. Stufflebeam, S.M., Tanaka, N., Ahlfors, S.P.: Clinical applications of Magnetoencephalography. Hum. Brain Mapp. 30(6), 1813–1823 (2009)

    Google Scholar 

  195. Szczecinski, L., Morawski, R.Z., Barwicz, A.: Original-domain Tikhonov regularization and non-negativity constraint improve resolution of spectrophotometric analyses. Measurement 18(3), 151–157 (1996)

    Google Scholar 

  196. Tan, H., Liu, T., Wu, Y., Thacker, J., Shenkar, R., Mikati, A.G., Shi, C., Dykstra, C., Wang, Y., Prasad, P.V., Edelman, R.R., Awad, I.A.: Evaluation of iron content in human cerebral cavernous malformation using quantitative susceptibility mapping. Invest. Radiol. 49(7), 498–504 (2014). doi:10.1097/RLI.0000000000000043

    Google Scholar 

  197. Tang, T.: Detection of intraventricular hemorrhage in neonates using electrical impedance tomography, Ph.D. Thesis, University of Florida, USA (2010)

    Google Scholar 

  198. Tatum, W.O., Husain, A.M., Benbadis, S.R.: Handbook of EEG Interpretation. Demos Medical Publishing,New York (2008)

    Google Scholar 

  199. Tidswell, T., Gibson, A., Bayford, R.H., Holder, D.S.: Three-dimensional electrical impedance tomography of human brain activity. NeuroImage 13(2), 283–294 (2001)

    Google Scholar 

  200. Turovets, S., Poolman, P., Salman, A., Li, K., Malony, A., Tucker, D.: Bounded electrical impedance tomography for noninvasive conductivity estimation of the human head tissues, EIT 2009. Manchester, UK (2009)

    Google Scholar 

  201. Vespa, P.: Continuous EEG monitoring for the detection of seizures in traumatic brain injury, infarction, and intracerebral hemorrhage: “to detect and protect”. J. Clin. Neurophysiol. 22(2), 99–106 (2005)

    Google Scholar 

  202. Vignadndra, V., Ghee, L.T., Chawla, J.: EEG in brain abscess: its value in localization compared to other diagnostic tests. Electroencephalogr. Clin. Neurophysiol. 38(6), 611–622 (1975)

    Google Scholar 

  203. Vonach, M., Marson, B., Yun, M., Cardoso, J., Modat, M., Ourselin, S., Holder, D.: A method for rapid production of subject specific finite element meshes for electrical impedance tomography of the human head. Physiol. Meas. 33, 801–816 (2012)

    Google Scholar 

  204. Li-ming, Wang, Ying-liang, Zhao, Fang-lin, Chen, Han, Y.: The 3D CT reconstruction algorithm to directly reconstruct multi-characteristic based on EMD. Measurement 44(10), 2043–2048 (2011)

    Google Scholar 

  205. Wang, C., Zheng, D., Xu, J., Lam, W., Yew, D.T.: Brain damages in ketamine addicts as revealed by magnetic resonance imaging. Front. Neuroanat. 7, 23 (2013)

    Google Scholar 

  206. Wang, P., Guo, B., Li, N.: Multi-index optimization design for electrical resistance tomography sensor. Measurement 46(8), 2845–2853 (2013)

    MathSciNet  Google Scholar 

  207. Yun-Heng, Wang, Qiao, J., Jun-Bao, Li, Fu, P., Shu-Chuan, Chu, Roddick, J.F.: Sparse representation-based MRI super-resolution reconstruction. Measurement 47, 946–953 (2014)

    Google Scholar 

  208. Ward, J.P.T., Ward, J., Leach, R.M.: The Respiratory System at a Glance, 3rd edn. Wiley-Blackwell, Oxford (2010)

    Google Scholar 

  209. Webster, J.G.: Electrical impedance tomography. Adam Hilger Series of Biomedical Engineering, Adam Hilger, New York (1990)

    Google Scholar 

  210. Weese-Mayer, D.E., Brouillette, R.T., Klemka, L., Hunt, C.E.: Effects of almitrine on hypoglossal and phrenic electroneurograms. J. Appl. Physiol. 59(1), 105–112 (1985)

    Google Scholar 

  211. Wei, L., Bing, W., Chunlei, L.: Quantitative susceptibility mapping of human brain reflects spatial variation in tissue composition. NeuroImage 55(4), 1645–1656 (2011)

    Google Scholar 

  212. Wei, L., Bing, W., Chunlei, L.: Quantitative susceptibility mapping of human brain reflects spatial variation in tissue composition. NeuroImage 55(4), 1645–1656 (2011). doi:10.1016/j.neuroimage.2010.11.088

    Google Scholar 

  213. Wilson, A.J., Felton, E.A., Garell, C.P., Schalk, G., Williams, J.C.: ECoG factors underlying multimodal control of a brain-computer interface. IEEE Trans. Neural Syst. Rehabil. Eng. 14(2), 246–250 (2006)

    Google Scholar 

  214. Woo, E.J.: Functional Brain Imaging using MREIT and EIT: Requirements and Feasibility. NFSI & ICBEM, Banff, Canada, May 13–15 (2011)

    Google Scholar 

  215. Xu, B., Spincemaille, P., Liu, T., Prince, M.R., Dutruel, S., Gupta, A., Thimmappa, N.D., Wang, Y.: Quantification of cerebral perfusion using dynamic quantitative susceptibility mapping. Magn. Reson. Med. Apr 14 doi: 10.1002/mrm.25257 (2014)

  216. Yasuhara, A.: Correlation between EEG abnormalities and symptoms of autism spectrum disorder (ASD). Brain Dev. 2010 Nov 32(10), 791–798 (2010)

    Google Scholar 

  217. Ye, L., Yang, M., Xu, L., Guo, C., Li, L., Wang, D.: Optimization of inductive angle sensor using response surface methodology and finite element method. Measurement 48, 252–262 (2014)

    Google Scholar 

  218. Yerworth, R.J., Bayford, R.H., Cusick, G., Conway, M., Holder, D.S.: Design and performance of the UCLH Mark 1b 64 channel electrical impedance tomography (EIT) system, optimized for imaging brain function. Physiol. Meas. 23, 149–158 (2002)

    Google Scholar 

  219. Yerworth, R.J., Bayford, R.H., Brown, B., Milnes, P., Conway, M., Holder, D.S.: Electrical impedance tomography spectroscopy (EITS) for human head imaging. Physiol. Meas. 24, 477–489 (2003)

    Google Scholar 

  220. Yorkey, T.J.: Comparing reconstruction methods for electrical impedance tomography, PhD thesis, University of. Wisconsin at Madison, Madison (1986)

    Google Scholar 

  221. Yorkey, T.J., Webster, J.G., Tompkins, W.J.: Comparing reconstruction algorithms for electrical impedance tomography. IEEE Trans. Biomed. Eng. BME-34(11), 843–852 (1987)

    Google Scholar 

  222. Zhang, X., Zhu, S., He, B.: Imaging electric properties of biological tissues by RF field mapping in MRI. IEEE Trans. Med. Imaging 29(2), 474–481 (2010)

    Google Scholar 

  223. Zhang, X., He, B.: Imaging electric properties of human brain tissues by b1 mapping: a simulation study. J. Phys: Conf. Ser. 224, 012077 (2010)

    Google Scholar 

  224. Zhang, X., Van de Moortele, P.F., Schmitter, S., He, B.: Complex B1 mapping and electrical properties imaging of the human brain using a 16-channel transceiver coil at 7T. Magn. Reson. Med. 69(5), 1285–1296 (2013)

    Google Scholar 

  225. Zimmerman, J.E., Theine, P., Harding, J.T.: Design and operation of stable rf-biased superconducting point-contact quantum devices, etc. J. Appl. Phys. 41, 1572–1580 (1970)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tushar Kanti Bera .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Bera, T.K. (2015). Noninvasive Electromagnetic Methods for Brain Monitoring: A Technical Review. In: Hassanien, A., Azar, A. (eds) Brain-Computer Interfaces. Intelligent Systems Reference Library, vol 74. Springer, Cham. https://doi.org/10.1007/978-3-319-10978-7_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-10978-7_3

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-10977-0

  • Online ISBN: 978-3-319-10978-7

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics