Skip to main content

Growth Factor Delivery Matrices for Cardiovascular Regeneration

  • Chapter
  • First Online:
Biomaterials for Cardiac Regeneration

Abstract

Growth factors (GFs) are critical biomolecules associated with the maintenance of homeostasis within cardiovascular tissues. They act in a complex time-, concentration-, and microenvironment-determined manner, often in conjunction with each other, to control multiple cellular functions and repair processes at the tissue level. However, exogenous GFs may not be sensed by the target tissue in a time-frame suitable for tissue regeneration, due to their rapid degradation that shortens their half-lives, thereby entailing the need for multiple infusions and/or high dosage. Moreover, excessive GF concentrations and systemic GF delivery can lead to undesirable system-wide pathological responses, highlighting the critical need for their localized delivery to the target tissue site and precise control over GF dosing, activation, and spatiotemporal bioavailability taking into account the specific cardiovascular (CV) tissue microenvironment.

In this chapter, we provide an overview of biomaterials for the delivery of GFs and cells towards the regenerative repair of CV tissues. A variety of natural and synthetic biomaterials, as well as hybrid materials, have shown significant promise as vehicles for controlled presentation or release of GFs, while serving as platforms to modulate phenotype and regenerative potential of cells pre-seeded within or recruited in situ following implantation in the host. Additionally, incorporation of linkages within these scaffolds that can be activated by stimuli prevalent within the target tissue microenvironment can enable “on demand” and spatiotemporally modulated release of one or more GFs. Thus, we submit that these sophisticated delivery systems, coupled with a more comprehensive understanding of the signaling mechanisms underlying CV tissue formation during fetal development, and the identification of the specific GF(s) necessary for desired therapeutic effects will lead to the development of patient- and condition-customized therapies to overcome CV disease pathologies.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abdel-Latif A, Bolli R, Tleyjeh IM, Montori VM, Perin EC, Hornung CA et al (2007) Adult bone marrow-derived cells for cardiac repair: a systematic review and meta-analysis. Arch Intern Med 167:989–997

    Google Scholar 

  • Allen JB, Khan S, Lapidos KA, Ameer GA (2010) Toward engineering a human neoendothelium with circulating progenitor cells. Stem Cells 28:318–328

    Google Scholar 

  • Anderson KM, Odell PM, Wilson PW, Kannel WB (1991) Cardiovascular disease risk profiles. Am Heart J 121:293–298

    Google Scholar 

  • Anitua E, Sanchez M, Orive G, Andia I (2008) Delivering growth factors for therapeutics. Trends Pharmacol Sci 29:37–41

    Google Scholar 

  • Anitua E, Sanchez M, Orive G (2010) Potential of endogenous regenerative technology for in situ regenerative medicine. Adv Drug Deliv Rev 62:741–752

    Google Scholar 

  • Asahara T, Murohara T, Sullivan A, Silver M, van der Zee R, Li T et al (1997) Isolation of putative progenitor endothelial cells for angiogenesis. Science 275:964–967

    Google Scholar 

  • Astete CE, Sabliov CM (2006) Synthesis and characterization of PLGA nanoparticles. J Biomater Sci Polym Ed 17:247–289

    Google Scholar 

  • Atala A, Kasper FK, Mikos AG (2012) Engineering complex tissues. Sci Transl Med 4:3004890

    Google Scholar 

  • Au P, Daheron LM, Duda DG, Cohen KS, Tyrrell JA, Lanning RM et al (2008a) Differential in vivo potential of endothelial progenitor cells from human umbilical cord blood and adult peripheral blood to form functional long-lasting vessels. Blood 111:1302–1305

    Google Scholar 

  • Au P, Tam J, Fukumura D, Jain RK (2008b) Bone marrow-derived mesenchymal stem cells facilitate engineering of long-lasting functional vasculature. Blood 111:4551–4558

    Google Scholar 

  • Babensee JE, McIntire LV, Mikos AG (2000) Growth factor delivery for tissue engineering. Pharm Res 17:497–504

    Google Scholar 

  • Bashur CA, Venkataraman L, Ramamurthi A (2012) Tissue engineering and regenerative strategies to replicate biocomplexity of vascular elastic matrix assembly. Tissue Eng Part B Rev 18: 203–217

    Google Scholar 

  • Basmanav FB, Kose GT, Hasirci V (2008) Sequential growth factor delivery from complexed microspheres for bone tissue engineering. Biomaterials 29:4195–4204

    Google Scholar 

  • Bayes-Genis A, Conover CA, Schwartz RS (2000) The insulin-like growth factor axis: a review of atherosclerosis and restenosis. Circ Res 86:125–130

    Google Scholar 

  • Belz GG (1995) Elastic properties and Windkessel function of the human aorta. Cardiovasc Drugs Ther 9:73–83

    Google Scholar 

  • Bennett MR (2011) Cell death in cardiovascular disease. Arterioscler Thromb Vasc Biol 31: 2779–2780

    Google Scholar 

  • Benvenuti LA, Onishi RY, Gutierrez PS, de Lourdes Higuchi M (2005) Different patterns of atherosclerotic remodeling in the thoracic and abdominal aorta. Clinics 60:355–360

    Google Scholar 

  • Bhattacharya V, McSweeney PA, Shi Q, Bruno B, Ishida A, Nash R et al (2000) Enhanced endothelialization and microvessel formation in polyester grafts seeded with CD34(+) bone marrow cells. Blood 95:581–585

    Google Scholar 

  • Bing RJ (2001) Myocardial ischemia and infarction: growth of ideas. Cardiovasc Res 51:13–20

    Google Scholar 

  • Black SM, Grobe A, Mata-Greenwood E, Noskina Y (2004) Cyclic stretch increases VEGF expression in pulmonary arterial smooth muscle cells via TGF-1 and reactive oxygen species: a requirement for NAD(P)H oxidase. Conf Proc IEEE Eng Med Biol Soc 7:5053–5056

    Google Scholar 

  • Bonow RO, Mann DL, Zipes DP, Libby P (2012) Braunwald’s heart disease: a textbook of cardiovascular medicine. Elsevier, Philadelphia, PA

    Google Scholar 

  • Boontheekul T, Mooney DJ (2003) Protein-based signaling systems in tissue engineering. Curr Opin Biotechnol 14:559–565

    Google Scholar 

  • Boontheekul T, Kong HJ, Mooney DJ (2005) Controlling alginate gel degradation utilizing partial oxidation and bimodal molecular weight distribution. Biomaterials 26:2455–2465

    Google Scholar 

  • Boontheekul T, Hill EE, Kong HJ, Mooney DJ (2007) Regulating myoblast phenotype through controlled gel stiffness and degradation. Tissue Eng 13:1431–1442

    Google Scholar 

  • Borselli C, Storrie H, Benesch-Lee F, Shvartsman D, Cezar C, Lichtman JW et al (2010) Functional muscle regeneration with combined delivery of angiogenesis and myogenesis factors. Proc Natl Acad Sci U S A 107:3287–3292

    Google Scholar 

  • Bouhadir KH, Lee KY, Alsberg E, Damm KL, Anderson KW, Mooney DJ (2001) Degradation of partially oxidized alginate and its potential application for tissue engineering. Biotechnol Prog 17:945–950

    Google Scholar 

  • Brazel CS, Peppas NA (1995) Synthesis and characterization of thermo- and chemomechanically responsive poly(N-isopropylacrylamide-co-methacrylic acid) hydrogels. Macromolecules 28:8016–8020

    Google Scholar 

  • Brown DM, Hong SP, Farrell CL, Pierce GF, Khouri RK (1995) Platelet-derived growth factor BB induces functional vascular anastomoses in vivo. Proc Natl Acad Sci U S A 92:5920–5924

    Google Scholar 

  • Brown RA, Sethi KK, Gwanmesia I, Raemdonck D, Eastwood M, Mudera V (2002) Enhanced fibroblast contraction of 3D collagen lattices and integrin expression by TGF-beta1 and -beta3: mechanoregulatory growth factors? Exp Cell Res 274:310–322

    Google Scholar 

  • Bryant SJ, Nuttelman CR, Anseth KS (2000) Cytocompatibility of UV and visible light photoinitiating systems on cultured NIH/3T3 fibroblasts in vitro. J Biomater Sci Polym Ed 11:439–457

    Google Scholar 

  • Bujak M, Ren G, Kweon HJ, Dobaczewski M, Reddy A, Taffet G et al (2007) Essential role of Smad3 in infarct healing and in the pathogenesis of cardiac remodeling. Circulation 116:2127–2138

    Google Scholar 

  • Cao R, Eriksson A, Kubo H, Alitalo K, Cao Y, Thyberg J (2004) Comparative evaluation of FGF-2-, VEGF-A-, and VEGF-C-induced angiogenesis, lymphangiogenesis, vascular fenestrations, and permeability. Circ Res 94:664–670

    Google Scholar 

  • Casanovas J, Zanuy D, Alemán C (2006) Conducting polymer actuator mechanism based on the conformational flexibility of calix[4]arene. Angew Chem Int Ed Engl 45:1103–1105

    Google Scholar 

  • Casscells W (1991) Smooth muscle cell growth factors. Prog Growth Factor Res 3:177–206

    Google Scholar 

  • Celletti FL, Waugh JM, Amabile PG, Brendolan A, Hilfiker PR, Dake MD (2001) Vascular endothelial growth factor enhances atherosclerotic plaque progression. Nat Med 7:425–429

    Google Scholar 

  • Chang MY, Yang YJ, Chang CH, Tang AC, Liao WY, Cheng FY et al (2013) Functionalized nanoparticles provide early cardioprotection after acute myocardial infarction. J Control Release 170:287–294

    Google Scholar 

  • Chapanian R, Amsden BG (2010) Combined and sequential delivery of bioactive VEGF165 and HGF from poly(trimethylene carbonate) based photo-cross-linked elastomers. J Control Release 143:53–63

    Google Scholar 

  • Chen G, Hoffman AS (1995) Graft copolymers that exhibit temperature-induced phase transitions over a wide range of pH. Nature 373:49–52

    Google Scholar 

  • Chen RR, Mooney DJ (2003) Polymeric growth factor delivery strategies for tissue engineering. Pharm Res 20:1103–1112

    Google Scholar 

  • Chen RR, Silva EA, Yuen WW, Brock AA, Fischbach C, Lin AS et al (2007a) Integrated approach to designing growth factor delivery systems. FASEB J 21:3896–3903

    Google Scholar 

  • Chen FM, Zhao YM, Sun HH, Jin T, Wang QT, Zhou W et al (2007b) Novel glycidyl methacrylated dextran (Dex-GMA)/gelatin hydrogel scaffolds containing microspheres loaded with bone morphogenetic proteins: formulation and characteristics. J Control Release 118:65–77

    Google Scholar 

  • Chen FM, Zhao YM, Zhang R, Jin T, Sun HH, Wu ZF et al (2007c) Periodontal regeneration using novel glycidyl methacrylated dextran (Dex-GMA)/gelatin scaffolds containing microspheres loaded with bone morphogenetic proteins. J Control Release 121:81–90

    Google Scholar 

  • Chen RR, Silva EA, Yuen WW, Mooney DJ (2007d) Spatio-temporal VEGF and PDGF delivery patterns blood vessel formation and maturation. Pharm Res 24:258–264

    Google Scholar 

  • Chen FM, Shelton RM, Jin Y, Chapple IL (2009a) Localized delivery of growth factors for periodontal tissue regeneration: role, strategies, and perspectives. Med Res Rev 29:472–513

    Google Scholar 

  • Chen F-M, Chen R, Wang X-J, Sun H-H, Wu Z-F (2009b) In vitro cellular responses to scaffolds containing two microencapulated growth factors. Biomaterials 30:5215–5224

    Google Scholar 

  • Chen FM, Zhang M, Wu ZF (2010) Toward delivery of multiple growth factors in tissue engineering. Biomaterials 31:6279–6308

    Google Scholar 

  • Cheng XW, Shi GP, Kuzuya M, Sasaki T, Okumura K, Murohara T (2012) Role for cysteine protease cathepsins in heart disease: focus on biology and mechanisms with clinical implication. Circulation 125:1551–1562

    Google Scholar 

  • Chiong M, Wang ZV, Pedrozo Z, Cao DJ, Troncoso R, Ibacache M et al (2011) Cardiomyocyte death: mechanisms and translational implications. Cell Death Dis 22:130

    Google Scholar 

  • Chow D, Nunalee ML, Lim DW, Simnick AJ, Chilkoti A (2008) Peptide-based biopolymers in biomedicine and biotechnology. Mater Sci Eng R Rep 62:125–155

    Google Scholar 

  • Christman KL, Lee RJ (2006) Biomaterials for the treatment of myocardial infarction. J Am Coll Cardiol 48:907–913

    Google Scholar 

  • Christoffersson G, Vagesjo E, Vandooren J, Liden M, Massena S, Reinert RB et al (2012) VEGF-A recruits a proangiogenic MMP-9-delivering neutrophil subset that induces angiogenesis in transplanted hypoxic tissue. Blood 120:4653–4662

    Google Scholar 

  • Chung YI, Ahn KM, Jeon SH, Lee SY, Lee JH, Tae G (2007) Enhanced bone regeneration with BMP-2 loaded functional nanoparticle-hydrogel complex. J Control Release 121:91–99

    Google Scholar 

  • Conti E, Andreotti F, Sestito A, Riccardi P, Menini E, Crea F et al (2002) Reduced levels of insulin-like growth factor-1 in patients with angina pectoris, positive exercise stress test, and angiographically normal epicardial coronary arteries. Am J Cardiol 89:973–975

    Google Scholar 

  • Conti E, Carrozza C, Capoluongo E, Volpe M, Crea F, Zuppi C et al (2004) Insulin-like growth factor-1 as a vascular protective factor. Circulation 110:2260–2265

    Google Scholar 

  • Cortes-Morichetti M, Frati G, Schussler O, Duong Van Huyen JP, Lauret E, Genovese JA et al (2007) Association between a cell-seeded collagen matrix and cellular cardiomyoplasty for myocardial support and regeneration. Tissue Eng 13:2681–2687

    Google Scholar 

  • Courtney T, Sacks MS, Stankus J, Guan J, Wagner WR (2006) Design and analysis of tissue engineering scaffolds that mimic soft tissue mechanical anisotropy. Biomaterials 27:3631–3638

    Google Scholar 

  • Crapo PM, Wang Y (2010) Physiologic compliance in engineered small-diameter arterial constructs based on an elastomeric substrate. Biomaterials 31:1626–1635

    Google Scholar 

  • Dahms SE, Piechota HJ, Dahiya R, Lue TF, Tanagho EA (1998) Composition and biomechanical properties of the bladder acellular matrix graft: comparative analysis in rat, pig and human. Br J Urol 82:411–419

    Google Scholar 

  • Dai JP, Losy F, Guinault AM, Pages C, Anegon I, Desgranges P et al (2005a) Overexpression of transforming growth factor-beta 1 stabilizes already-formed aortic aneurysms—a first approach to induction of functional healing by endovascular gene therapy. Circulation 112:1008–1015

    Google Scholar 

  • Dai W, Wold LE, Dow JS, Kloner RA (2005b) Thickening of the infarcted wall by collagen injection improves left ventricular function in rats: a novel approach to preserve cardiac function after myocardial infarction. J Am Coll Cardiol 46:714–719

    Google Scholar 

  • Datta N, Pham QP, Sharma U, Sikavitsas VI, Jansen JA, Mikos AG (2006) In vitro generated extracellular matrix and fluid shear stress synergistically enhance 3D osteoblastic differentiation. Proc Natl Acad Sci U S A 103:2488–2493

    Google Scholar 

  • Davani EY, Brumme Z, Singhera GK, Cote HC, Harrigan PR, Dorscheid DR (2003) Insulin-like growth factor-1 protects ischemic murine myocardium from ischemia/reperfusion associated injury. Crit Care 7:10

    Google Scholar 

  • Davis ME, Hsieh PCH, Grodzinsky AJ, Lee RT (2005) Custom design of the cardiac microenvironment with biomaterials. Circ Res 97:8–15

    Google Scholar 

  • Davis ME, Hsieh PCH, Takahashi T, Song Q, Zhang S, Kamm RD et al (2006) Local myocardial insulin-like growth factor 1 (IGF-1) delivery with biotinylated peptide nanofibers improves cell therapy for myocardial infarction. Proc Natl Acad Sci U S A 103:8155–8160

    Google Scholar 

  • de Mel A, Jell G, Stevens MM, Seifalian AM (2008) Biofunctionalization of biomaterials for accelerated in situ endothelialization: a review. Biomacromolecules 9:2969–2979

    Google Scholar 

  • de Souza RR (2002) Aging of myocardial collagen. Biogerontology 3:325–335

    Google Scholar 

  • Deuse T, Peter C, Fedak PW, Doyle T, Reichenspurner H, Zimmermann WH et al (2009) Hepatocyte growth factor or vascular endothelial growth factor gene transfer maximizes mesenchymal stem cell-based myocardial salvage after acute myocardial infarction. Circulation 120:843680

    Google Scholar 

  • Dietz HC, Pyeritz RE (1995) Mutations in the human gene for fibrillin-1 (FBN1) in the Marfan syndrome and related disorders. Hum Mol Genet 4 Spec No:1799–1809

    Google Scholar 

  • Dietz HC, Cutting GR, Pyeritz RE, Maslen CL, Sakai LY, Corson GM et al (1991) Marfan syndrome caused by a recurrent de novo missense mutation in the fibrillin gene. Nature 352: 337–339

    Google Scholar 

  • Dimmeler S, Zeiher AM (2003) Exercise and cardiovascular health: get active to “AKTivate” your endothelial nitric oxide synthase. Circulation 107:3118–3120

    Google Scholar 

  • Discher DE, Mooney DJ, Zandstra PW (2009) Growth factors, matrices, and forces combine and control stem cells. Science 324:1673–1677

    Google Scholar 

  • Dong JD, Gu YQ, Li CM, Wang CR, Feng ZG, Qiu RX et al (2009) Response of mesenchymal stem cells to shear stress in tissue-engineered vascular grafts. Acta Pharmacol Sin 30: 530–536

    Google Scholar 

  • Dubois G, Segers VF, Bellamy V, Sabbah L, Peyrard S, Bruneval P et al (2008) Self-assembling peptide nanofibers and skeletal myoblast transplantation in infarcted myocardium. J Biomed Mater Res B Appl Biomater 87:222–228

    Google Scholar 

  • Ducharme A, Frantz S, Aikawa M, Rabkin E, Lindsey M, Rohde LE et al (2000) Targeted deletion of matrix metalloproteinase-9 attenuates left ventricular enlargement and collagen accumulation after experimental myocardial infarction. J Clin Invest 106:55–62

    Google Scholar 

  • Dvir T, Kedem A, Ruvinov E, Levy O, Freeman I, Landa N et al (2009) Prevascularization of cardiac patch on the omentum improves its therapeutic outcome. Proc Natl Acad Sci U S A 106:14990–14995

    Google Scholar 

  • Eckhouse SR, Purcell BP, McGarvey JR, Lobb D, Logdon CB, Doviak H et al (2014) Local hydrogel release of recombinant TIMP-3 attenuates adverse left ventricular remodeling after experimental myocardial infarction. Sci Transl Med 6:3007244

    Google Scholar 

  • Edep ME, Shirani J, Wolf P, Brown DL (2000) Matrix metalloproteinase expression in nonrheumatic aortic stenosis. Cardiovasc Pathol 9:281–286

    Google Scholar 

  • Eggermann J, Kliche S, Jarmy G, Hoffmann K, Mayr-Beyrle U, Debatin KM et al (2003) Endothelial progenitor cell culture and differentiation in vitro: a methodological comparison using human umbilical cord blood. Cardiovasc Res 58:478–486

    Google Scholar 

  • Ehrbar M, Djonov VG, Schnell C, Tschanz SA, Martiny-Baron G, Schenk U et al (2004) Cell-demanded liberation of VEGF121 from fibrin implants induces local and controlled blood vessel growth. Circ Res 94:1124–1132

    Google Scholar 

  • Ehrbar M, Rizzi SC, Hlushchuk R, Djonov V, Zisch AH, Hubbell JA et al (2007) Enzymatic formation of modular cell-instructive fibrin analogs for tissue engineering. Biomaterials 28: 3856–3866

    Google Scholar 

  • Ehrbar M, Schoenmakers R, Christen EH, Fussenegger M, Weber W (2008) Drug-sensing hydrogels for the inducible release of biopharmaceuticals. Nat Mater 7:800–804

    Google Scholar 

  • Ehrick JD, Deo SK, Browning TW, Bachas LG, Madou MJ, Daunert S (2005) Genetically engineered protein in hydrogels tailors stimuli-responsive characteristics. Nat Mater 4:298–302

    Google Scholar 

  • Emanueli C, Salis MB, Pinna A, Graiani G, Manni L, Madeddu P (2002) Nerve growth factor promotes angiogenesis and arteriogenesis in ischemic hindlimbs. Circulation 106:2257–2262

    Google Scholar 

  • Engelhardt EM, Micol LA, Houis S, Wurm FM, Hilborn J, Hubbell JA et al (2011) A collagen-poly(lactic acid-co-varepsilon-caprolactone) hybrid scaffold for bladder tissue regeneration. Biomaterials 32:3969–3976

    Google Scholar 

  • Engler AJ, Sen S, Sweeney HL, Discher DE (2006) Matrix elasticity directs stem cell lineage specification. Cell 126:677–689

    Google Scholar 

  • Eppler SM, Combs DL, Henry TD, Lopez JJ, Ellis SG, Yi JH et al (2002) A target-mediated model to describe the pharmacokinetics and hemodynamic effects of recombinant human vascular endothelial growth factor in humans. Clin Pharmacol Ther 72:20–32

    Google Scholar 

  • Ertan AB, Yilgor P, Bayyurt B, Calikoglu AC, Kaspar C, Kok FN et al (2013) Effect of double growth factor release on cartilage tissue engineering. J Tissue Eng Regen Med 7:149–160

    Google Scholar 

  • Feil H, Bae YH, Feijen J, Kim SW (1993) Effect of comonomer hydrophilicity and ionization on the lower critical solution temperature of N-isopropylacrylamide copolymers. Macromolecules 26:2496–2500

    Google Scholar 

  • Freedman SB, Isner JM (2002) Therapeutic angiogenesis for coronary artery disease. Ann Intern Med 136:54–71

    Google Scholar 

  • Freeman I, Cohen S (2009) The influence of the sequential delivery of angiogenic factors from affinity-binding alginate scaffolds on vascularization. Biomaterials 30:2122–2131

    Google Scholar 

  • Freeman I, Kedem A, Cohen S (2008) The effect of sulfation of alginate hydrogels on the specific binding and controlled release of heparin-binding proteins. Biomaterials 29:3260–3268

    Google Scholar 

  • Freestone T, Turner RJ, Coady A, Higman DJ, Greenhalgh RM, Powell JT (1995) Inflammation and matrix metalloproteinases in the enlarging abdominal aortic aneurysm. Arterioscler Thromb Vasc Biol 15:1145–1151

    Google Scholar 

  • Fritze O, Romero B, Schleicher M, Jacob MP, Oh DY, Starcher B et al (2012) Age-related changes in the elastic tissue of the human aorta. J Vasc Res 49:77–86

    Google Scholar 

  • Fujimoto KL, Ma Z, Nelson DM, Hashizume R, Guan J, Tobita K et al (2009) Synthesis, characterization and therapeutic efficacy of a biodegradable, thermoresponsive hydrogel designed for application in chronic infarcted myocardium. Biomaterials 30:4357–4368

    Google Scholar 

  • Gabriel D, Zuluaga MF, van den Bergh H, Gurny R, Lange N (2011) It is all about proteases: from drug delivery to in vivo imaging and photomedicine. Curr Med Chem 18:1785–1805

    Google Scholar 

  • Gacchina CE, Ramamurthi A (2011) Impact of pre-existing elastic matrix on TGFβ1 and HA oligomer-induced regenerative elastin repair by rat aortic smooth muscle cells. J Tissue Eng Regen Med 5:85–96

    Google Scholar 

  • Gacchina CE, Deb PP, Barth JL, Ramamurthi A (2011) Elastogenic inductability of smooth muscle cells from a rat model of late stage abdominal aortic aneurysms. Tissue Eng 17:1699–1711

    Google Scholar 

  • Galderisi M, Caso P, Cicala S, De Simone L, Barbieri M, Vitale G et al (2002) Positive association between circulating free insulin-like growth factor-1 levels and coronary flow reserve in arterial systemic hypertension. Am J Hypertens 15:766–772

    Google Scholar 

  • Galis ZS, Khatri JJ (2002) Matrix metalloproteinases in vascular remodeling and atherogenesis—the good, the bad, and the ugly. Circ Res 90:251–262

    Google Scholar 

  • Garbern JC, Hoffman AS, Stayton PS (2010) Injectable pH- and temperature-responsive poly(N-isopropylacrylamide-co-propylacrylic acid) copolymers for delivery of angiogenic growth factors. Biomacromolecules 11:1833–1839

    Google Scholar 

  • Garbern JC, Minami E, Stayton PS, Murry CE (2011) Delivery of basic fibroblast growth factor with a pH-responsive, injectable hydrogel to improve angiogenesis in infarcted myocardium. Biomaterials 32:2407–2416

    Google Scholar 

  • Gerthoffer WT (2007) Mechanisms of vascular smooth muscle cell migration. Circ Res 100: 607–621

    Google Scholar 

  • Giraud MN, Ayuni E, Cook S, Siepe M, Carrel TP, Tevaearai HT (2008) Hydrogel-based engineered skeletal muscle grafts normalize heart function early after myocardial infarction. Artif Organs 32:692–700

    Google Scholar 

  • Go AS, Mozaffarian D, Roger VL, Benjamin EJ, Berry JD, Borden WB et al (2013) Heart disease and stroke statistics—2013 update: a report from the American Heart Association. Circulation 127:e6–e245

    Google Scholar 

  • Godier-Furnemont AF, Martens TP, Koeckert MS, Wan L, Parks J, Arai K et al (2011) Composite scaffold provides a cell delivery platform for cardiovascular repair. Proc Natl Acad Sci U S A 108:7974–7979

    Google Scholar 

  • Golledge J, Norman PE (2009) Pathophysiology of abdominal aortic aneurysm relevant to improvements in patients’ management. Curr Opin Cardiol 24:532–538

    Google Scholar 

  • Golledge J, Norman PE (2010) Atherosclerosis and abdominal aortic aneurysm: cause, response, or common risk factors? Arterioscler Thromb Vasc Biol 30:1075–1077

    Google Scholar 

  • Golledge J, Muller J, Daugherty A, Norman P (2006) Abdominal aortic aneurysm: pathogenesis and implications for management. Arterioscler Thromb Vasc Biol 26:2605–2613

    Google Scholar 

  • Golub JS, Kim YT, Duvall CL, Bellamkonda RV, Gupta D, Lin AS et al (2010) Sustained VEGF delivery via PLGA nanoparticles promotes vascular growth. Am J Physiol Heart Circ Physiol 298:12

    Google Scholar 

  • Gong Z, Niklason LE (2008) Small-diameter human vessel wall engineered from bone marrow-derived mesenchymal stem cells (hMSCs). FASEB J 22:1635–1648

    Google Scholar 

  • Gong CY, Shi S, Peng XY, Kan B, Yang L, Huang MJ et al (2009) Biodegradable thermosensitive injectable PEG-PCL-PEG hydrogel for bFGF antigen delivery to improve humoral immunity. Growth Factors 27:377–383

    Google Scholar 

  • Gorbet MB, Sefton MV (2004) Biomaterial-associated thrombosis: roles of coagulation factors, complement, platelets and leukocytes. Biomaterials 25:5681–5703

    Google Scholar 

  • Goumans MJ, Liu Z, ten Dijke P (2009) TGF-beta signaling in vascular biology and dysfunction. Cell Res 19:116–127

    Google Scholar 

  • Grant MB, Wargovich TJ, Ellis EA, Tarnuzzer R, Caballero S, Estes K et al (1996) Expression of IGF-I, IGF-I receptor and IGF binding proteins-1, -2, -3, -4 and -5 in human atherectomy specimens. Regul Pept 67:137–144

    Google Scholar 

  • Greisler HP, Cziperle DJ, Kim DU, Garfield JD, Petsikas D, Murchan PM et al (1992) Enhanced endothelialization of expanded polytetrafluoroethylene grafts by fibroblast growth factor type 1 pretreatment. Surgery 112:244–254, discussion 54–55

    Google Scholar 

  • Griese DP, Ehsan A, Melo LG, Kong D, Zhang L, Mann MJ et al (2003) Isolation and transplantation of autologous circulating endothelial cells into denuded vessels and prosthetic grafts: implications for cell-based vascular therapy. Circulation 108:2710–2715

    Google Scholar 

  • Griffith CK, Miller C, Sainson RC, Calvert JW, Jeon NL, Hughes CC et al (2005) Diffusion limits of an in vitro thick prevascularized tissue. Tissue Eng 11:257–266

    Google Scholar 

  • Grunewald M, Avraham I, Dor Y, Bachar-Lustig E, Itin A, Jung S et al (2006) VEGF-induced adult neovascularization: recruitment, retention, and role of accessory cells. Cell 124:175–189

    Google Scholar 

  • Guo DC, Papke CL, He RM, Milewicz DM (2006) Pathogenesis of thoracic and abdominal aortic aneurysms. Ann N Y Acad Sci 1085:339–352

    Google Scholar 

  • Hall JE (2010) Guyton and Hall textbook of medical physiology, 12th edn. Saunders, Philadelphia, PA

    Google Scholar 

  • Hamdi H, Furuta A, Bellamy V, Bel A, Puymirat E, Peyrard S et al (2009) Cell delivery: intramyocardial injections or epicardial deposition? A head-to-head comparison. Ann Thorac Surg 87: 1196–1203

    Google Scholar 

  • Harris TJ, von Maltzahn G, Lord ME, Park JH, Agrawal A, Min DH et al (2008) Protease-triggered unveiling of bioactive nanoparticles. Small 4:1307–1312

    Google Scholar 

  • Helisch A, Ware JA (1999) Therapeutic angiogenesis in ischemic heart disease. Thromb Haemost 82:772–780

    Google Scholar 

  • Helisch A, Ware JA (2000) Therapeutic angiogenesis for ischemic heart disease. Adv Exp Med Biol 476:327–350

    Google Scholar 

  • Hellstrom M, Kalen M, Lindahl P, Abramsson A, Betsholtz C (1999) Role of PDGF-B and PDGFR-beta in recruitment of vascular smooth muscle cells and pericytes during embryonic blood vessel formation in the mouse. Development 126:3047–3055

    Google Scholar 

  • Henry TD, Annex BH, McKendall GR, Azrin MA, Lopez JJ, Giordano FJ et al (2003) The VIVA trial: vascular endothelial growth factor in ischemia for vascular angiogenesis. Circulation 107:1359–1365

    Google Scholar 

  • Hill E, Boontheekul T, Mooney DJ (2006) Regulating activation of transplanted cells controls tissue regeneration. Proc Natl Acad Sci U S A 103:2494–2499

    Google Scholar 

  • Hoeben A, Landuyt B, Highley MS, Wildiers H, Van Oosterom AT, De Bruijn EA (2004) Vascular endothelial growth factor and angiogenesis. Pharmacol Rev 56:549–580

    Google Scholar 

  • Holland TA, Tabata Y, Mikos AG (2005) Dual growth factor delivery from degradable oligo(poly(ethylene glycol) fumarate) hydrogel scaffolds for cartilage tissue engineering. J Control Release 101:111–125

    Google Scholar 

  • Houck KA, Leung DW, Rowland AM, Winer J, Ferrara N (1992) Dual regulation of vascular endothelial growth factor bioavailability by genetic and proteolytic mechanisms. J Biol Chem 267:26031–26037

    Google Scholar 

  • Hristov M, Erl W, Weber PC (2003) Endothelial progenitor cells: mobilization, differentiation, and homing. Arterioscler Thromb Vasc Biol 23:1185–1189

    Google Scholar 

  • Hsieh PC, Davis ME, Gannon J, MacGillivray C, Lee RT (2006) Controlled delivery of PDGF-BB for myocardial protection using injectable self-assembling peptide nanofibers. J Clin Invest 116:237–248

    Google Scholar 

  • Hu SH, Liu TY, Huang HY, Liu DM, Chen SY (2008) Magnetic-sensitive silica nanospheres for controlled drug release. Langmuir 24:239–244

    Google Scholar 

  • Hu SH, Liu TY, Huang HY, Liu DM, Chen SY (2009) Stimuli-responsive controlled drug release from magnetic-sensitive silica nanospheres. J Nanosci Nanotechnol 9:866–870

    Google Scholar 

  • Hutchings H, Ortega N, Plouet J (2003) Extracellular matrix-bound vascular endothelial growth factor promotes endothelial cell adhesion, migration, and survival through integrin ligation. FASEB J 17:1520–1522

    Google Scholar 

  • Hutter R, Sauter BV, Reis ED, Roque M, Vorchheimer D, Carrick FE et al (2003) Decreased reendothelialization and increased neointima formation with endostatin overexpression in a mouse model of arterial injury. Circulation 107:1658–1663

    Google Scholar 

  • Iaizzo PA (2009) Handbook of Cardiac Anatomy, Physiology, and Devices, 2nd edn. Humana Press, New York

    Google Scholar 

  • Ikonomidis JS, Barbour JR, Amani Z, Stroud RE, Herron AR, McClister DM et al (2005) Effects of deletion of the matrix metalloproteinase 9 gene on development of murine thoracic aortic aneurysms. Circulation 112:I242–I248

    Google Scholar 

  • Inoue M, Itoh H, Ueda M, Naruko T, Kojima A, Komatsu R et al (1998) Vascular endothelial growth factor (VEGF) expression in human coronary atherosclerotic lesions: possible pathophysiological significance of VEGF in progression of atherosclerosis. Circulation 98: 2108–2116

    Google Scholar 

  • Inoue T, Croce K, Morooka T, Sakuma M, Node K, Simon DI (2011) Vascular inflammation and repair: implications for re-endothelialization, restenosis, and stent thrombosis. JACC Cardiovasc Interv 4:1057–1066

    Google Scholar 

  • Ito Y (2008) Covalently immobilized biosignal molecule materials for tissue engineering. Soft Matter 4:46–56

    Google Scholar 

  • Izhar U, Hasdai D, Richardson DM, Cohen P, Lerman A (2000) Insulin and insulin-like growth factor-I cause vasorelaxation in human vessels in vitro. Coron Artery Dis 11:69–76

    Google Scholar 

  • Jackson CL, Raines EW, Ross R, Reidy MA (1993) Role of endogenous platelet-derived growth factor in arterial smooth muscle cell migration after balloon catheter injury. Arterioscler Thromb 13:1218–1226

    Google Scholar 

  • Jager EW, Smela E, Inganas O (2000) Microfabricating conjugated polymer actuators. Science 290:1540–1545

    Google Scholar 

  • Jaklenec A, Hinckfuss A, Bilgen B, Ciombor DM, Aaron R, Mathiowitz E (2008) Sequential release of bioactive IGF-I and TGF-beta 1 from PLGA microsphere-based scaffolds. Biomaterials 29:1518–1525

    Google Scholar 

  • Jawien A, Bowen-Pope DF, Lindner V, Schwartz SM, Clowes AW (1992) Platelet-derived growth factor promotes smooth muscle migration and intimal thickening in a rat model of balloon angioplasty. J Clin Invest 89:507–511

    Google Scholar 

  • Jeong B, Kim SW, Bae YH (2002a) Thermosensitive sol-gel reversible hydrogels. Adv Drug Deliv Rev 54:37–51

    Google Scholar 

  • Jeong B, Lee KM, Gutowska A, An YH (2002b) Thermogelling biodegradable copolymer aqueous solutions for injectable protein delivery and tissue engineering. Biomacromolecules 3: 865–868

    Google Scholar 

  • Jiang B, Zhang G, Brey EM (2013) Dual delivery of chlorhexidine and platelet-derived growth factor-BB for enhanced wound healing and infection control. Acta Biomater 9:4976–4984

    Google Scholar 

  • Jin H, Wyss JM, Yang R, Schwall R (2004) The therapeutic potential of hepatocyte growth factor for myocardial infarction and heart failure. Curr Pharm Des 10:2525–2533

    Google Scholar 

  • Jin J, Jeong SI, Shin YM, Lim KS, Shin H, Lee YM et al (2009) Transplantation of mesenchymal stem cells within a poly(lactide-co-epsilon-caprolactone) scaffold improves cardiac function in a rat myocardial infarction model. Eur J Heart Fail 11:147–153

    Google Scholar 

  • Joddar B, Ramamurthi A (2006a) Fragment size- and dose-specific effects of hyaluronan on matrix synthesis by vascular smooth muscle cells. Biomaterials 27:2994–3004

    Google Scholar 

  • Joddar B, Ramamurthi A (2006b) Elastogenic effects of exogenous hyaluronan oligosaccharides on vascular smooth muscle cells. Biomaterials 27:5698–5707

    Google Scholar 

  • Joddar B, Ibrahim S, Ramamurthi A (2007) Impact of delivery mode of hyaluronan oligomers on elastogenic responses of adult vascular smooth muscle cells. Biomaterials 28:3918–3927

    Google Scholar 

  • Joner M, Finn AV, Farb A, Mont EK, Kolodgie FD, Ladich E et al (2006) Pathology of drug-eluting stents in humans: delayed healing and late thrombotic risk. J Am Coll Cardiol 48:193–202

    Google Scholar 

  • Joshi RV, Nelson CE, Poole KM, Skala MC, Duvall CL (2013) Dual pH- and temperature-responsive microparticles for protein delivery to ischemic tissues. Acta Biomater 9: 6526–6534

    Google Scholar 

  • Kaden JJ, Vocke DC, Fischer CS, Grobholz R, Brueckmann M, Vahl CF et al (2004) Expression and activity of matrix metalloproteinase-2 in calcific aortic stenosis. Z Kardiol 93:124–130

    Google Scholar 

  • Kang TY, Hong JM, Kim BJ, Cha HJ, Cho DW (2013) Enhanced endothelialization for developing artificial vascular networks with a natural vessel mimicking the luminal surface in scaffolds. Acta Biomater 9:4716–4725

    Google Scholar 

  • Karnik SK, Brooke BS, Bayes-Genis A, Sorensen L, Wythe JD, Schwartz RS et al (2003) A critical role for elastin signaling in vascular morphogenesis and disease. Development 130: 411–423

    Google Scholar 

  • Karsan A, Yee E, Poirier GG, Zhou P, Craig R, Harlan JM (1997) Fibroblast growth factor-2 inhibits endothelial cell apoptosis by Bcl-2-dependent and independent mechanisms. Am J Pathol 151:1775–1784

    Google Scholar 

  • Kaushal S, Amiel GE, Guleserian KJ, Shapira OM, Perry T, Sutherland FW et al (2001) Functional small-diameter neovessels created using endothelial progenitor cells expanded ex vivo. Nat Med 7:1035–1040

    Google Scholar 

  • Khabbaz KR, Zankoul F, Warner KG (2001) Intraoperative metabolic monitoring of the heart: II. Online measurement of myocardial tissue pH. Ann Thorac Surg 72:S2267–S2270

    Google Scholar 

  • Kielty CM, Baldock C, Lee D, Rock MJ, Ashworth JL, Shuttleworth CA (2002) Fibrillin: from microfibril assembly to biomechanical function. Philos Trans R Soc Lond B Biol Sci 357: 207–217

    Google Scholar 

  • Kim BS, Nikolovski J, Bonadio J, Mooney DJ (1999) Cyclic mechanical strain regulates the development of engineered smooth muscle tissue. Nat Biotechnol 17:979–983

    Google Scholar 

  • Kim JH, Jung Y, Kim SH, Sun K, Choi J, Kim HC et al (2011) The enhancement of mature vessel formation and cardiac function in infarcted hearts using dual growth factor delivery with self-assembling peptides. Biomaterials 32:6080–6088

    Google Scholar 

  • Kimura Y, Tabata Y (2010) Controlled release of stromal-cell-derived factor-1 from gelatin hydrogels enhances angiogenesis. J Biomater Sci Polym Ed 21:37–51

    Google Scholar 

  • Kirkland RA, Saavedra GM, Franklin JL (2007) Rapid activation of antioxidant defenses by nerve growth factor suppresses reactive oxygen species during neuronal apoptosis: evidence for a role in cytochrome c redistribution. J Neurosci 27:11315–11326

    Google Scholar 

  • Klouda L, Mikos AG (2008) Thermoresponsive hydrogels in biomedical applications. Eur J Pharm Biopharm 68:34–45

    Google Scholar 

  • Kloxin AM, Kasko AM, Salinas CN, Anseth KS (2009) Photodegradable hydrogels for dynamic tuning of physical and chemical properties. Science 324:59–63

    Google Scholar 

  • Ko IK, Ju YM, Chen T, Atala A, Yoo JJ, Lee SJ (2012) Combined systemic and local delivery of stem cell inducing/recruiting factors for in situ tissue regeneration. FASEB J 26:158–168

    Google Scholar 

  • Ko IK, Lee SJ, Atala A, Yoo JJ (2013) In situ tissue regeneration through host stem cell recruitment. Exp Mol Med 15:118

    Google Scholar 

  • Kobayashi H, DeBusk LM, Babichev YO, Dumont DJ, Lin PC (2006) Hepatocyte growth factor mediates angiopoietin-induced smooth muscle cell recruitment. Blood 108:1260–1266

    Google Scholar 

  • Kothapalli CR, Ramamurthi A (2008) Benefits of concurrent delivery of hyaluronan and IGF-1 cues to regeneration of crosslinked elastin matrices by adult rat vascular cells. J Tissue Eng Regen Med 2:106–116

    Google Scholar 

  • Kothapalli CR, Gacchina CE, Ramamurthi A (2009a) Utility of hyaluronan oligomers and transforming growth factor-beta1 factors for elastic matrix regeneration by aneurysmal rat aortic smooth muscle cells. Tissue Eng 15:3247–3260

    Google Scholar 

  • Kothapalli CR, Taylor PM, Smolenski RT, Yacoub MH, Ramamurthi A (2009b) Transforming growth factor beta 1 and hyaluronan oligomers synergistically enhance elastin matrix regeneration by vascular smooth muscle cells. Tissue Eng 15:501–511

    Google Scholar 

  • Krishnamurthy R, Manning MC (2002) The stability factor: importance in formulation development. Curr Pharm Biotechnol 3:361–371

    Google Scholar 

  • Kruithof BP, van Wijk B, Somi S, Kruithof-de Julio M, Perez Pomares JM, Weesie F et al (2006) BMP and FGF regulate the differentiation of multipotential pericardial mesoderm into the myocardial or epicardial lineage. Dev Biol 295:507–522

    Google Scholar 

  • Kumbhani DJ, Healey NA, Birjiniuk V, Crittenden MD, Josa M, Treanor PR et al (2004) Determinants of regional myocardial acidosis during cardiac surgery. Surgery 136:190–198

    Google Scholar 

  • Kurpinski K, Lam H, Chu J, Wang A, Kim A, Tsay E et al (2010) Transforming growth factor-beta and notch signaling mediate stem cell differentiation into smooth muscle cells. Stem Cells 28:734–742

    Google Scholar 

  • Kusuma S, Gerecht S (2010) Engineering blood vessels using stem cells: innovative approaches to treat vascular disorders. Expert Rev Cardiovasc Ther 8:1433–1445

    Google Scholar 

  • Kwon JS, Park IK, Cho AS, Shin SM, Hong MH, Jeong SY et al (2009) Enhanced angiogenesis mediated by vascular endothelial growth factor plasmid-loaded thermo-responsive amphiphilic polymer in a rat myocardial infarction model. J Control Release 138:168–176

    Google Scholar 

  • Lackey CA, Murthy N, Press OW, Tirrell DA, Hoffman AS, Stayton PS (1999) Hemolytic activity of pH-responsive polymer-streptavidin bioconjugates. Bioconjug Chem 10:401–405

    Google Scholar 

  • Laflamme MA, Chen KY, Naumova AV, Muskheli V, Fugate JA, Dupras SK et al (2007) Cardiomyocytes derived from human embryonic stem cells in pro-survival factors enhance function of infarcted rat hearts. Nat Biotechnol 25:1015–1024

    Google Scholar 

  • Lam MT, Wu JC (2012) Biomaterial applications in cardiovascular tissue repair and regeneration. Expert Rev Cardiovasc Ther 10:1039–1049

    Google Scholar 

  • Lam NT, Currie PD, Lieschke GJ, Rosenthal NA, Kaye DM (2012) Nerve growth factor stimulates cardiac regeneration via cardiomyocyte proliferation in experimental heart failure. PLoS One 7:e53210

    Google Scholar 

  • Langer R, Moses M (1991) Biocompatible controlled release polymers for delivery of polypeptides and growth factors. J Cell Biochem 45:340–345

    Google Scholar 

  • Lanza RP, Langer R (2007) Principles of tissue engineering. Elsevier Academic Press, Amsterdam

    Google Scholar 

  • Lau TT, Wang DA (2011) Stromal cell-derived factor-1 (SDF-1): homing factor for engineered regenerative medicine. Expert Opin Biol Ther 11:189–197

    Google Scholar 

  • Lee KY, Mooney DJ (2001) Hydrogels for tissue engineering. Chem Rev 101:1869–1879

    Google Scholar 

  • Lee RJ, Springer ML, Blanco-Bose WE, Shaw R, Ursell PC, Blau HM (2000a) VEGF gene delivery to myocardium: deleterious effects of unregulated expression. Circulation 102:898–901

    Google Scholar 

  • Lee KY, Peters MC, Anderson KW, Mooney DJ (2000b) Controlled growth factor release from synthetic extracellular matrices. Nature 408:998–1000

    Google Scholar 

  • Lee S, Jilani SM, Nikolova GV, Carpizo D, Iruela-Arispe ML (2005) Processing of VEGF-A by matrix metalloproteinases regulates bioavailability and vascular patterning in tumors. J Cell Biol 169:681–691

    Google Scholar 

  • Lee K, Silva EA, Mooney DJ (2011) Growth factor delivery-based tissue engineering: general approaches and a review of recent developments. J R Soc Interface 8:153–170

    Google Scholar 

  • Leeper NJ, Hunter AL, Cooke JP (2010) Stem cell therapy for vascular regeneration: adult, embryonic, and induced pluripotent stem cells. Circulation 122:517–526

    Google Scholar 

  • Leger AJ, Covic L, Kuliopulos A (2006) Protease-activated receptors in cardiovascular diseases. Circulation 114:1070–1077

    Google Scholar 

  • Lendlein A, Jiang H, Junger O, Langer R (2005) Light-induced shape-memory polymers. Nature 434:879–882

    Google Scholar 

  • Leor J, Amsalem Y, Cohen S (2005) Cells, scaffolds, and molecules for myocardial tissue engineering. Pharmacol Ther 105:151–163

    Google Scholar 

  • Li S, Lao J, Chen BP, Li YS, Zhao Y, Chu J et al (2003) Genomic analysis of smooth muscle cells in 3-dimensional collagen matrix. FASEB J 17:97–99

    Google Scholar 

  • Li D, Zhang C, Song F, Lubenec I, Tian Y, Song QH (2009a) VEGF regulates FGF-2 and TGF-beta1 expression in injury endothelial cells and mediates smooth muscle cells proliferation and migration. Microvasc Res 77:134–142

    Google Scholar 

  • Li B, Davidson JM, Guelcher SA (2009b) The effect of the local delivery of platelet-derived growth factor from reactive two-component polyurethane scaffolds on the healing in rat skin excisional wounds. Biomaterials 30:3486–3494

    Google Scholar 

  • Light N, Champion AE (1984) Characterization of muscle epimysium, perimysium and endomysium collagens. Biochem J 219:1017–1026

    Google Scholar 

  • Lin CC, Anseth KS (2009) Controlling affinity binding with peptide-functionalized poly(ethylene glycol) hydrogels. Adv Funct Mater 19:2325–2331

    Google Scholar 

  • Lin YD, Yeh ML, Yang YJ, Tsai DC, Chu TY, Shih YY et al (2010) Intramyocardial peptide nanofiber injection improves postinfarction ventricular remodeling and efficacy of bone marrow cell therapy in pigs. Circulation 122:939512

    Google Scholar 

  • Liu XM, Wang LS, Wang L, Huang J, He C (2004) The effect of salt and pH on the phase-transition behaviors of temperature-sensitive copolymers based on N-isopropylacrylamide. Biomaterials 25:5659–5666

    Google Scholar 

  • Liu X, Won Y, Ma PX (2005) Surface modification of interconnected porous scaffolds. J Biomed Mater Res A 74:84–91

    Google Scholar 

  • Liu Y, Sun L, Huan Y, Zhao H, Deng J (2006) Effects of basic fibroblast growth factor microspheres on angiogenesis in ischemic myocardium and cardiac function: analysis with dobutamine cardiovascular magnetic resonance tagging. Eur J Cardiothorac Surg 30:103–107

    Google Scholar 

  • Lo H, Kadiyala S, Guggino SE, Leong KW (1996) Poly(L-lactic acid) foams with cell seeding and controlled-release capacity. J Biomed Mater Res 30:475–484

    Google Scholar 

  • Longo GM, Xiong WF, Greiner TC, Zhao Y, Fiotti N, Baxter BT (2002) Matrix metalloproteinases 2 and 9 work in concert to produce aortic aneurysms. J Clin Invest 110:625–632

    Google Scholar 

  • Lu L, Stamatas GN, Mikos AG (2000) Controlled release of transforming growth factor beta 1 from biodegradable polymer microparticles. J Biomed Mater Res 50:440–451

    Google Scholar 

  • Lu LC, Yaszemski MJ, Mikos AG (2001) TGF-beta 1 release from biodegradable polymer microparticles: its effects on marrow stromal osteoblast function. J Bone Joint Surg Am 83A: S82–S91

    Google Scholar 

  • Lu J-M, Wang X, Marin-Muller C, Wang H, Lin PH, Yao Q et al (2009) Current advances in research and clinical applications of PLGA-based nanotechnology. Expert Rev Mol Diagn 9:325–341

    Google Scholar 

  • Lutolf MP, Hubbell JA (2005) Synthetic biomaterials as instructive extracellular microenvironments for morphogenesis in tissue engineering. Nat Biotechnol 23:47–55

    Google Scholar 

  • Lutolf MP, Lauer-Fields JL, Schmoekel HG, Metters AT, Weber FE, Fields GB et al (2003a) Synthetic matrix metalloproteinase-sensitive hydrogels for the conduction of tissue regeneration: engineering cell-invasion characteristics. Proc Natl Acad Sci U S A 100:5413–5418

    Google Scholar 

  • Lutolf MR, Weber FE, Schmoekel HG, Schense JC, Kohler T, Muller R et al (2003b) Repair of bone defects using synthetic mimetics of collagenous extracellular matrices. Nat Biotechnol 21:513–518

    Google Scholar 

  • MacArthur JW Jr, Purcell BP, Shudo Y, Cohen JE, Fairman A, Trubelja A et al (2013) Sustained release of engineered stromal cell-derived factor 1-alpha from injectable hydrogels effectively recruits endothelial progenitor cells and preserves ventricular function after myocardial infarction. Circulation 128:000343

    Google Scholar 

  • Mahabeleshwar GH, Feng W, Reddy K, Plow EF, Byzova TV (2007) Mechanisms of integrin-vascular endothelial growth factor receptor cross-activation in angiogenesis. Circ Res 101: 570–580

    Google Scholar 

  • Majesky MW, Dong XR, Regan JN, Hoglund VJ (2011) Vascular smooth muscle progenitor cells: building and repairing blood vessels. Circ Res 108:365–377

    Google Scholar 

  • Malemud CJ (2006) Matrix metalloproteinases (MMPs) in health and disease: an overview. Front Biosci 11:1696–1701

    Google Scholar 

  • Mann BK, Schmedlen RH, West JL (2001) Tethered-TGF-beta increases extracellular matrix production of vascular smooth muscle cells. Biomaterials 22:439–444

    Google Scholar 

  • Manning MC, Chou DK, Murphy BM, Payne RW, Katayama DS (2010) Stability of protein pharmaceuticals: an update. Pharm Res 27:544–575

    Google Scholar 

  • Mano JF, Silva GA, Azevedo HS, Malafaya PB, Sousa RA, Silva SS et al (2007) Natural origin biodegradable systems in tissue engineering and regenerative medicine: present status and some moving trends. J R Soc Interface 4:999–1030

    Google Scholar 

  • Mark Saltzman W, Baldwin SP (1998) Materials for protein delivery in tissue engineering. Adv Drug Deliv Rev 33:71–86

    Google Scholar 

  • Markovsky E, Baabur-Cohen H, Eldar-Boock A, Omer L, Tiram G, Ferber S et al (2012) Administration, distribution, metabolism and elimination of polymer therapeutics. J Control Release 161:446–460

    Google Scholar 

  • Marmur JD, Poon M, Rossikhina M, Taubman MB (1992) Induction of PDGF-responsive genes in vascular smooth muscle. Implications for the early response to vessel injury. Circulation 86:III53–III60

    Google Scholar 

  • Matsusaki M, Akashi M (2005) Novel functional biodegradable polymer IV: pH-sensitive controlled release of fibroblast growth factor-2 from a poly(gamma-glutamic acid)-sulfonate matrix for tissue engineering. Biomacromolecules 6:3351–3356

    Google Scholar 

  • Maynard HD, Hubbell JA (2005) Discovery of a sulfated tetrapeptide that binds to vascular endothelial growth factor. Acta Biomater 1:451–459

    Google Scholar 

  • Meinel L, Illi OE, Zapf J, Malfanti M, Merkle HP, Gander B (2001) Stabilizing insulin-like growth factor-I in poly(D, L-lactide-co-glycolide) microspheres. J Control Release 70: 193–202

    Google Scholar 

  • Meinel L, Karageorgiou V, Fajardo R, Snyder B, Shinde-Patil V, Zichner L et al (2004) Bone tissue engineering using human mesenchymal stem cells: effects of scaffold material and medium flow. Ann Biomed Eng 32:112–122

    Google Scholar 

  • Melero-Martin JM, De Obaldia ME, Kang SY, Khan ZA, Yuan L, Oettgen P et al (2008) Engineering robust and functional vascular networks in vivo with human adult and cord blood-derived progenitor cells. Circ Res 103:194–202

    Google Scholar 

  • Meloni M, Caporali A, Graiani G, Lagrasta C, Katare R, Van Linthout S et al (2010) Nerve growth factor promotes cardiac repair following myocardial infarction. Circ Res 106:1275–1284

    Google Scholar 

  • Mikos AG, Lyman MD, Freed LE, Langer R (1994) Wetting of poly(L-lactic acid) and poly(DL-lactic-co-glycolic acid) foams for tissue culture. Biomaterials 15:55–58

    Google Scholar 

  • Mikos AG, Herring SW, Ochareon P, Elisseeff J, Lu HH, Kandel R et al (2006) Engineering complex tissues. Tissue Eng 12:3307–3339

    Google Scholar 

  • Miner EC, Miller WL (2006) A look between the cardiomyocytes: the extracellular matrix in heart failure. Mayo Clin Proc 81:71–76

    Google Scholar 

  • Moghimi SM, Hunter AC, Murray JC (2001) Long-circulating and target-specific nanoparticles: theory to practice. Pharmacol Rev 53:283–318

    Google Scholar 

  • Mooney DJ, Baldwin DF, Suh NP, Vacanti JP, Langer R (1996) Novel approach to fabricate porous sponges of poly(D, L-lactic-co-glycolic acid) without the use of organic solvents. Biomaterials 17:1417–1422

    Google Scholar 

  • Mukherjee R, Brinsa TA, Dowdy KB, Scott AA, Baskin JM, Deschamps AM et al (2003) Myocardial infarct expansion and matrix metalloproteinase inhibition. Circulation 107: 618–625

    Google Scholar 

  • Murakami M, Nguyen LT, Zhuang ZW, Moodie KL, Carmeliet P, Stan RV et al (2008) The FGF system has a key role in regulating vascular integrity. J Clin Invest 118:3355–3366

    Google Scholar 

  • Murray JB, Brown L, Langer R, Klagsburn M (1983) A micro sustained release system for epidermal growth factor. In Vitro 19:743–748

    Google Scholar 

  • Muscari C, Bonafe F, Martin-Suarez S, Valgimigli S, Valente S, Fiumana E et al (2013) Restored perfusion and reduced inflammation in the infarcted heart after grafting stem cells with a hyaluronan-based scaffold. J Cell Mol Med 17:518–530

    Google Scholar 

  • Nagase H, Visse R, Murphy G (2006) Structure and function of matrix metalloproteinases and TIMPs. Cardiovasc Res 69:562–573

    Google Scholar 

  • Nahrendorf M, Swirski FK, Aikawa E, Stangenberg L, Wurdinger T, Figueiredo JL et al (2007) The healing myocardium sequentially mobilizes two monocyte subsets with divergent and complementary functions. J Exp Med 204:3037–3047

    Google Scholar 

  • Nakagami H, Kaneda Y, Ogihara T, Morishita R (2005) Hepatocyte growth factor as potential cardiovascular therapy. Expert Rev Cardiovasc Ther 3:513–519

    Google Scholar 

  • Nakayama M, Okano T, Miyazaki T, Kohori F, Sakai K, Yokoyama M (2006) Molecular design of biodegradable polymeric micelles for temperature-responsive drug release. J Control Release 115:46–56

    Google Scholar 

  • Nakazawa G, Finn AV, Joner M, Ladich E, Kutys R, Mont EK et al (2008) Delayed arterial healing and increased late stent thrombosis at culprit sites after drug-eluting stent placement for acute myocardial infarction patients: an autopsy study. Circulation 118:1138–1145

    Google Scholar 

  • Nataatmadja M, West J, West M (2006) Overexpression of transforming growth factor-beta is associated with increased hyaluronan content and impairment of repair in Marfan syndrome aortic aneurysm. Circulation 114:I371–I377

    Google Scholar 

  • Nejjar I, Pieraggi MT, Thiers JC, Bouissou H (1990) Age-related changes in the elastic tissue of the human thoracic aorta. Atherosclerosis 80:199–208

    Google Scholar 

  • Nelson DM, Hashizume R, Yoshizumi T, Blakney AK, Ma Z, Wagner WR (2014) Intramyocardial injection of a synthetic hydrogel with delivery of bFGF and IGF1 in a rat model of ischemic cardiomyopathy. Biomacromolecules 15:1–11

    Google Scholar 

  • Nicodemus GD, Bryant SJ (2008) Cell encapsulation in biodegradable hydrogels for tissue engineering applications. Tissue Eng Part B Rev 14:149–165

    Google Scholar 

  • Nie SP, Wang X, Qiao SB, Zeng QT, Jiang JQ, Liu XQ et al (2010) Improved myocardial perfusion and cardiac function by controlled-release basic fibroblast growth factor using fibrin glue in a canine infarct model. J Zhejiang Univ Sci B 11:895–904

    Google Scholar 

  • Nillesen ST, Geutjes PJ, Wismans R, Schalkwijk J, Daamen WF, van Kuppevelt TH (2007) Increased angiogenesis and blood vessel maturation in acellular collagen-heparin scaffolds containing both FGF2 and VEGF. Biomaterials 28:1123–1131

    Google Scholar 

  • Okura Y, Brink M, Zahid AA, Anwar A, Delafontaine P (2001) Decreased expression of insulin-like growth factor-1 and apoptosis of vascular smooth muscle cells in human atherosclerotic plaque. J Mol Cell Cardiol 33:1777–1789

    Google Scholar 

  • Oltman CL, Kane NL, Gutterman DD, Bar RS, Dellsperger KC (2000) Mechanism of coronary vasodilation to insulin and insulin-like growth factor I is dependent on vessel size. Am J Physiol Endocrinol Metab 279:E176–E181

    Google Scholar 

  • Ozawa CR, Banfi A, Glazer NL, Thurston G, Springer ML, Kraft PE et al (2004) Microenvironmental VEGF concentration, not total dose, determines a threshold between normal and aberrant angiogenesis. J Clin Invest 113:516–527

    Google Scholar 

  • Panyam J, Labhasetwar V (2003) Biodegradable nanoparticles for drug and gene delivery to cells and tissue. Adv Drug Deliv Rev 55:329–347

    Google Scholar 

  • Panyam J, Labhasetwar V (2004) Sustained cytoplasmic delivery of drugs with intracellular receptors using biodegradable nanoparticles. Mol Pharm 1:77–84

    Google Scholar 

  • Pardue EL, Ibrahim S, Ramamurthi A (2008) Role of hyaluronan in angiogenesis and its utility to angiogenic tissue engineering. Organogenesis 4:203–214

    Google Scholar 

  • Park H, Temenoff JS, Holland TA, Tabata Y, Mikos AG (2005) Delivery of TGF-beta1 and chondrocytes via injectable, biodegradable hydrogels for cartilage tissue engineering applications. Biomaterials 26:7095–7103

    Google Scholar 

  • Pasquinelli G, Vinci MC, Gamberini C, Orrico C, Foroni L, Guarnieri C et al (2009) Architectural organization and functional features of early endothelial progenitor cells cultured in a hyaluronan-based polymer scaffold. Tissue Eng Part A 15:2751–2762

    Google Scholar 

  • Patel VA, Zhang QJ, Siddle K, Soos MA, Goddard M, Weissberg PL et al (2001) Defect in insulin-like growth factor-1 survival mechanism in atherosclerotic plaque-derived vascular smooth muscle cells is mediated by reduced surface binding and signaling. Circ Res 88:895–902

    Google Scholar 

  • Pei Y, Chen J, Yang L, Shi L, Tao Q, Hui B et al (2004) The effect of pH on the LCST of poly (N-isopropylacrylamide) and poly(N-isopropylacrylamide-co-acrylic acid). J Biomater Sci Polym Ed 15:585–594

    Google Scholar 

  • Peters MC, Isenberg BC, Rowley JA, Mooney DJ (1998) Release from alginate enhances the biological activity of vascular endothelial growth factor. J Biomater Sci Polym Ed 9:1267–1278

    Google Scholar 

  • Petersen E, Gineitis A, Wagberg F, Angquist KA (2000) Activity of matrix metalloproteinase-2 and-9 in abdominal aortic aneurysms. Relation to size and rupture. Eur J Vasc Endovasc Surg 20:457–461

    Google Scholar 

  • Pfeifle B, Hamann H, Fussganger R, Ditschuneit H (1987) Insulin as a growth regulator of arterial smooth muscle cells: effect of insulin of I.G.F.I. Diabete Metab 13:326–330

    Google Scholar 

  • Phelps EA, Landazuri N, Thule PM, Taylor WR, Garcia AJ (2010) Bioartificial matrices for therapeutic vascularization. Proc Natl Acad Sci U S A 107:3323–3328

    Google Scholar 

  • Piao H, Kwon JS, Piao S, Sohn JH, Lee YS, Bae JW et al (2007) Effects of cardiac patches engineered with bone marrow-derived mononuclear cells and PGCL scaffolds in a rat myocardial infarction model. Biomaterials 28:641–649

    Google Scholar 

  • Pintucci G, Yu PJ, Saponara F, Kadian-Dodov DL, Galloway AC, Mignatti P (2005) PDGF-BB induces vascular smooth muscle cell expression of high molecular weight FGF-2, which accumulates in the nucleus. J Cell Biochem 95:1292–1300

    Google Scholar 

  • Polverini PJ, Cotran PS, Gimbrone MA Jr, Unanue ER (1977) Activated macrophages induce vascular proliferation. Nature 269:804–806

    Google Scholar 

  • Purcell BP, Elser JA, Mu A, Margulies KB, Burdick JA (2012) Synergistic effects of SDF-1alpha chemokine and hyaluronic acid release from degradable hydrogels on directing bone marrow derived cell homing to the myocardium. Biomaterials 33:7849–7857

    Google Scholar 

  • Purcell BP, Lobb D, Charati MB, Dorsey SM, Wade RJ, Zellars KN et al (2014) Injectable and bioresponsive hydrogels for on-demand matrix metalloproteinase inhibition. Nat Mater 30: 653–661

    Google Scholar 

  • Pyo R, Lee JK, Shipley JM, Curci JA, Mao DL, Ziporin SJ et al (2000) Targeted gene disruption of matrix metalloproteinase-9 (gelatinase B) suppresses development of experimental abdominal aortic aneurysms. J Clin Invest 105:1641–1649

    Google Scholar 

  • Rafii S, Heissig B, Hattori K (2002) Efficient mobilization and recruitment of marrow-derived endothelial and hematopoietic stem cells by adenoviral vectors expressing angiogenic factors. Gene Ther 9:631–641

    Google Scholar 

  • Ramirez F (1996) Fibrillin mutations in Marfan syndrome and related phenotypes. Curr Opin Genet Dev 6:309–315

    MathSciNet  Google Scholar 

  • Rane AA, Christman KL (2011) Biomaterials for the treatment of myocardial infarction: a 5-year update. J Am Coll Cardiol 58:2615–2629

    Google Scholar 

  • Ranjan AK, Kumar U, Hardikar AA, Poddar P, Nair PD, Hardikar AA (2009) Human blood vessel-derived endothelial progenitors for endothelialization of small diameter vascular prosthesis. PLoS One 4:0007718

    Google Scholar 

  • Richardson TP, Peters MC, Ennett AB, Mooney DJ (2001) Polymeric system for dual growth factor delivery. Nat Biotechnol 19:1029–1034

    Google Scholar 

  • Rizzi SC, Ehrbar M, Halstenberg S, Raeber GP, Schmoekel HG, Hagenmuller H et al (2006) Recombinant protein-co-PEG networks as cell-adhesive and proteolytically degradable hydrogel matrixes. Part II: biofunctional characteristics. Biomacromolecules 7:3019–3029

    Google Scholar 

  • Roberts AB, Sporn MB, Assoian RK, Smith JM, Roche NS, Wakefield LM et al (1986) Transforming growth factor type beta: rapid induction of fibrosis and angiogenesis in vivo and stimulation of collagen formation in vitro. Proc Natl Acad Sci U S A 83:4167–4171

    Google Scholar 

  • Robinson PN, Godfrey M (2000) The molecular genetics of Marfan syndrome and related microfibrillopathies. J Med Genet 37:9–25

    Google Scholar 

  • Robinson TF, Cohen-Gould L, Factor SM, Eghbali M, Blumenfeld OO (1988) Structure and function of connective tissue in cardiac muscle: collagen types I and III in endomysial struts and pericellular fibers. Scanning Microsc 2:1005–1015

    Google Scholar 

  • Rocha FG, Sundback CA, Krebs NJ, Leach JK, Mooney DJ, Ashley SW et al (2008) The effect of sustained delivery of vascular endothelial growth factor on angiogenesis in tissue-engineered intestine. Biomaterials 29:2884–2890

    Google Scholar 

  • Rosengart TK, Lee LY, Patel SR, Kligfield PD, Okin PM, Hackett NR et al (1999) Six-month assessment of a phase I trial of angiogenic gene therapy for the treatment of coronary artery disease using direct intramyocardial administration of an adenovirus vector expressing the VEGF121 cDNA. Ann Surg 230:466–470

    Google Scholar 

  • Rosenkranz S (2004) TGF-beta1 and angiotensin networking in cardiac remodeling. Cardiovasc Res 63:423–432

    Google Scholar 

  • Rozario T, DeSimone DW (2010) The extracellular matrix in development and morphogenesis: a dynamic view. Dev Biol 341:126–140

    Google Scholar 

  • Rutschow S, Li J, Schultheiss HP, Pauschinger M (2006) Myocardial proteases and matrix remodeling in inflammatory heart disease. Cardiovasc Res 69:646–656

    Google Scholar 

  • Saif J, Schwarz TM, Chau DY, Henstock J, Sami P, Leicht SF et al (2010) Combination of injectable multiple growth factor-releasing scaffolds and cell therapy as an advanced modality to enhance tissue neovascularization. Arterioscler Thromb Vasc Biol 30:1897–1904

    Google Scholar 

  • Saitow CB, Wise SG, Weiss AS, Castellot JJ, Kaplan DL (2013) Elastin biology and tissue engineering with adult cells. Biomol Concepts 4:103–211

    Google Scholar 

  • Sakalihasan N, Limet R, Defawe OD (2005) Abdominal aortic aneurysm. Lancet 365:1577–1589

    Google Scholar 

  • Salimath AS, Phelps EA, Boopathy AV, Che PL, Brown M, Garcia AJ et al (2012) Dual delivery of hepatocyte and vascular endothelial growth factors via a protease-degradable hydrogel improves cardiac function in rats. PLoS One 7:30

    Google Scholar 

  • Santo VE, Frias AM, Carida M, Cancedda R, Gomes ME, Mano JF et al (2009) Carrageenan-based hydrogels for the controlled delivery of PDGF-BB in bone tissue engineering applications. Biomacromolecules 10:1392–1401

    Google Scholar 

  • Sarig U, Machluf M (2011) Engineering cell platforms for myocardial regeneration. Expert Opin Biol Ther 11:1055–1077

    Google Scholar 

  • Satta J, Oiva J, Salo T, Eriksen H, Ohtonen P, Biancari F et al (2003) Evidence for an altered balance between matrix metalloproteinase-9 and its inhibitors in calcific aortic stenosis. Ann Thorac Surg 76:681–688

    Google Scholar 

  • Sauvage M, Hinglais N, Mandet C, Badier C, Deslandes F, Michel JB et al (1998) Localization of elastin mRNA and TGF-β1 in rat aorta and caudal artery as a function of age. Cell Tissue Res 291:305–314

    Google Scholar 

  • Schini-Kerth VB (1999) Dual effects of insulin-like growth factor-I on the constitutive and inducible nitric oxide (NO) synthase-dependent formation of NO in vascular cells. J Endocrinol Invest 22:82–88

    Google Scholar 

  • Schumacher B, Pecher P, von Specht BU, Stegmann T (1998) Induction of neoangiogenesis in ischemic myocardium by human growth factors: first clinical results of a new treatment of coronary heart disease. Circulation 97:645–650

    Google Scholar 

  • Scott RC, Rosano JM, Ivanov Z, Wang B, Chong PL, Issekutz AC et al (2009) Targeting VEGF-encapsulated immunoliposomes to MI heart improves vascularity and cardiac function. FASEB J 23:3361–3367

    Google Scholar 

  • Sekine H, Shimizu T, Sakaguchi K, Dobashi I, Wada M, Yamato M et al (2013) In vitro fabrication of functional three-dimensional tissues with perfusable blood vessels. Nat Commun 4:1399

    Google Scholar 

  • Shao ZQ, Takaji K, Katayama Y, Kunitomo R, Sakaguchi H, Lai ZF et al (2006) Effects of intramyocardial administration of slow-release basic fibroblast growth factor on angiogenesis and ventricular remodeling in a rat infarct model. Circ J 70:471–477

    Google Scholar 

  • Sharma A, Sharma US (1997) Liposomes in drug delivery: progress and limitations. Int J Pharm 154:123–140

    Google Scholar 

  • Sheridan MH, Shea LD, Peters MC, Mooney DJ (2000) Bioabsorbable polymer scaffolds for tissue engineering capable of sustained growth factor delivery. J Control Release 64:91–102

    Google Scholar 

  • Shim WS, Yoo JS, Bae YH, Lee DS (2005) Novel injectable pH and temperature sensitive block copolymer hydrogel. Biomacromolecules 6:2930–2934

    Google Scholar 

  • Shim WS, Kim SW, Lee DS (2006) Sulfonamide-based pH- and temperature-sensitive biodegradable block copolymer hydrogels. Biomacromolecules 7:1935–1941

    Google Scholar 

  • Shimizu T, Sekine H, Yamato M, Okano T (2009) Cell sheet-based myocardial tissue engineering: new hope for damaged heart rescue. Curr Pharm Des 15:2807–2814

    Google Scholar 

  • Shin YM, Lee YB, Kim SJ, Kang JK, Park JC, Jang W et al (2012) Mussel-inspired immobilization of vascular endothelial growth factor (VEGF) for enhanced endothelialization of vascular grafts. Biomacromolecules 13:2020–2028

    Google Scholar 

  • Shirota T, He H, Yasui H, Matsuda T (2003) Human endothelial progenitor cell-seeded hybrid graft: proliferative and antithrombogenic potentials in vitro and fabrication processing. Tissue Eng 9:127–136

    Google Scholar 

  • Siepe M, Giraud MN, Pavlovic M, Receputo C, Beyersdorf F, Menasche P et al (2006) Myoblast-seeded biodegradable scaffolds to prevent post-myocardial infarction evolution toward heart failure. J Thorac Cardiovasc Surg 132:124–131

    Google Scholar 

  • Siepe M, Giraud MN, Liljensten E, Nydegger U, Menasche P, Carrel T et al (2007) Construction of skeletal myoblast-based polyurethane scaffolds for myocardial repair. Artif Organs 31:425–433

    Google Scholar 

  • Silva EA, Kim E-S, Kong HJ, Mooney DJ (2008) Material-based deployment enhances efficacy of endothelial progenitor cells. Proc Natl Acad Sci U S A 105:14347–14352

    Google Scholar 

  • Silva AK, Richard C, Bessodes M, Scherman D, Merten OW (2009) Growth factor delivery approaches in hydrogels. Biomacromolecules 10:9–18

    Google Scholar 

  • Simionescu A, Philips K, Vyavahare N (2005) Elastin-derived peptides and TGF-beta1 induce osteogenic responses in smooth muscle cells. Biochem Biophys Res Commun 334:524–532

    Google Scholar 

  • Simons M, Ware JA (2003) Therapeutic angiogenesis in cardiovascular disease. Nat Rev Drug Discov 2:863–871

    Google Scholar 

  • Simons M, Annex BH, Laham RJ, Kleiman N, Henry T, Dauerman H et al (2002) Pharmacological treatment of coronary artery disease with recombinant fibroblast growth factor-2: double-blind, randomized, controlled clinical trial. Circulation 105:788–793

    Google Scholar 

  • Simpson D, Liu H, Fan TH, Nerem R, Dudley SC Jr (2007) A tissue engineering approach to progenitor cell delivery results in significant cell engraftment and improved myocardial remodeling. Stem Cells 25:2350–2357

    Google Scholar 

  • Singer CA, Salinthone S, Baker KJ, Gerthoffer WT (2004) Synthesis of immune modulators by smooth muscles. Bioessays 26:646–655

    Google Scholar 

  • Sivaraman B, Ramamurthi A (2013) Multifunctional nanoparticles for doxycycline delivery towards localized elastic matrix stabilization and regenerative repair. Acta Biomater 9: 6511–6525

    Google Scholar 

  • Sivaraman B, Bashur C, Ramamurthi A (2012) Advances in biomimetic regeneration of elastic matrix structures. Drug Deliv Transl Res 2:323–350

    Google Scholar 

  • Soldi R, Mitola S, Strasly M, Defilippi P, Tarone G, Bussolino F (1999) Role of alphavbeta3 integrin in the activation of vascular endothelial growth factor receptor-2. EMBO J 18:882–892

    Google Scholar 

  • Sone M, Itoh H, Yamashita J, Yurugi-Kobayashi T, Suzuki Y, Kondo Y et al (2003) Different differentiation kinetics of vascular progenitor cells in primate and mouse embryonic stem cells. Circulation 107:2085–2088

    Google Scholar 

  • Song CX, Labhasetwar V, Murphy H, Qu X, Humphrey WR, Shebuski RJ et al (1997) Formulation and characterization of biodegradable nanoparticles for intravascular local drug delivery. J Control Release 43:197–212

    Google Scholar 

  • Song Y, Kamphuis MM, Zhang Z, Sterk LM, Vermes I, Poot AA et al (2010) Flexible and elastic porous poly(trimethylene carbonate) structures for use in vascular tissue engineering. Acta Biomater 6:1269–1277

    Google Scholar 

  • Soontornworajit B, Zhou J, Shaw MT, Fan TH, Wang Y (2010) Hydrogel functionalization with DNA aptamers for sustained PDGF-BB release. Chem Commun 46:1857–1859

    Google Scholar 

  • Spies M, Nesic O, Barrow RE, Perez-Polo JR, Herndon DN (2001) Liposomal IGF-1 gene transfer modulates pro- and anti-inflammatory cytokine mRNA expression in the burn wound. Gene Ther 8:1409–1415

    Google Scholar 

  • Spinale FG (2007) Myocardial matrix remodeling and the matrix metalloproteinases: influence on cardiac form and function. Physiol Rev 87:1285–1342

    Google Scholar 

  • Sukmana I (2012) Bioactive polymer scaffold for fabrication of vascularized engineering tissue. J Artif Organs 15:215–224

    Google Scholar 

  • Sumaru K, Kameda M, Kanamori T, Shinbo T (2004) Reversible and efficient proton dissociation of spirobenzopyran-functionalized poly(N-isopropylacrylamide) in aqueous solution triggered by light irradiation and temporary temperature rise. Macromolecules 37:7854–7856

    Google Scholar 

  • Sylvester A, Sivaraman B, Deb P, Ramamurthi A (2013) Nanoparticles for localized delivery of hyaluronan oligomers towards regenerative repair of elastic matrix. Acta Biomater 9: 9292–9302

    Google Scholar 

  • Tabata Y (2003) Tissue regeneration based on growth factor release. Tissue Eng 9:S5–S15

    Google Scholar 

  • Tabata Y, Ikada Y, Morimoto K, Katsumata H, Yabuta T, Iwanaga K et al (1999) Surfactant-free preparation of biodegradable hydrogel microspheres for protein release. J Bioact Compat Polym 14:371–384

    Google Scholar 

  • Takehara N, Tsutsumi Y, Tateishi K, Ogata T, Tanaka H, Ueyama T et al (2008) Controlled delivery of basic fibroblast growth factor promotes human cardiosphere-derived cell engraftment to enhance cardiac repair for chronic myocardial infarction. J Am Coll Cardiol 52:1858–1865

    Google Scholar 

  • Tang Y, Urs S, Boucher J, Bernaiche T, Venkatesh D, Spicer DB et al (2010) Notch and transforming growth factor-beta (TGFbeta) signaling pathways cooperatively regulate vascular smooth muscle cell differentiation. J Biol Chem 285:17556–17563

    Google Scholar 

  • Taniyama Y, Morishita R, Nakagami H, Moriguchi A, Sakonjo H, Shokei K et al (2000) Potential contribution of a novel antifibrotic factor, hepatocyte growth factor, to prevention of myocardial fibrosis by angiotensin II blockade in cardiomyopathic hamsters. Circulation 102: 246–252

    Google Scholar 

  • Tayalia P, Mooney DJ (2009) Controlled growth factor delivery for tissue engineering. Adv Mater 21:3269–3285

    Google Scholar 

  • ten Dijke P, Arthur HM (2007) Extracellular control of TGFbeta signalling in vascular development and disease. Nat Rev Mol Cell Biol 8:857–869

    Google Scholar 

  • Tengood JE, Kovach KM, Vescovi PE, Russell AJ, Little SR (2010) Sequential delivery of vascular endothelial growth factor and sphingosine 1-phosphate for angiogenesis. Biomaterials 31: 7805–7812

    Google Scholar 

  • Tengood JE, Ridenour R, Brodsky R, Russell AJ, Little SR (2011) Sequential delivery of basic fibroblast growth factor and platelet-derived growth factor for angiogenesis. Tissue Eng Part A 17:1181–1189

    Google Scholar 

  • Tessmar JK, Gopferich AM (2007) Matrices and scaffolds for protein delivery in tissue engineering. Adv Drug Deliv Rev 59:274–291

    Google Scholar 

  • Thie M, Schlumberger W, Semich R, Rauterberg J, Robenek H (1991) Aortic smooth muscle cells in collagen lattice culture: effects on ultrastructure, proliferation and collagen synthesis. Eur J Cell Biol 55:295–304

    Google Scholar 

  • Traktuev DO, Prater DN, Merfeld-Clauss S, Sanjeevaiah AR, Saadatzadeh MR, Murphy M et al (2009) Robust functional vascular network formation in vivo by cooperation of adipose progenitor and endothelial cells. Circ Res 104:1410–1420

    Google Scholar 

  • Tsou R, Isik FF (2001) Integrin activation is required for VEGF and FGF receptor protein presence on human microvascular endothelial cells. Mol Cell Biochem 224:81–89

    Google Scholar 

  • Tucka J, Bennett M, Littlewood T (2012) Cell death and survival signalling in the cardiovascular system. Front Biosci (Landmark Ed) 17:248–261

    Google Scholar 

  • Ulijn RV, Bibi N, Jayawarna V, Thornton PD, Todd SJ, Mart RJ et al (2007) Bioresponsive hydrogels. Mater Today 10:40–48

    Google Scholar 

  • Urbich C, Dimmeler S (2004) Endothelial progenitor cells: characterization and role in vascular biology. Circ Res 95:343–353

    Google Scholar 

  • Vasita R, Katti DS (2006) Growth factor-delivery systems for tissue engineering: a materials perspective. Expert Rev Med Devices 3:29–47

    Google Scholar 

  • Venkataraman L, Sivaraman B, Vaidya P, Ramamurthi A (2014) Nanoparticulate delivery of agents for induced elastogenesis in 3-dimensional collagenous matrices. J Tissue Eng Regen Med. doi:10.1002/term.1889

    MATH  Google Scholar 

  • Walpoth BH, Zammaretti P, Cikirikcioglu M, Khabiri E, Djebaili MK, Pache JC et al (2007) Enhanced intimal thickening of expanded polytetrafluoroethylene grafts coated with fibrin or fibrin-releasing vascular endothelial growth factor in the pig carotid artery interposition model. J Thorac Cardiovasc Surg 133:1163–1170

    Google Scholar 

  • Waltenberger J (2005) Growth factor signal transduction defects in the cardiovascular system. Cardiovasc Res 65:574–580

    Google Scholar 

  • Walter DH, Haendeler J, Reinhold J, Rochwalsky U, Seeger F, Honold J et al (2005) Impaired CXCR4 signaling contributes to the reduced neovascularization capacity of endothelial progenitor cells from patients with coronary artery disease. Circ Res 97:1142–1151

    Google Scholar 

  • Wang ZZ, Au P, Chen T, Shao Y, Daheron LM, Bai H et al (2007) Endothelial cells derived from human embryonic stem cells form durable blood vessels in vivo. Nat Biotechnol 25: 317–318

    Google Scholar 

  • Wang X, Wenk E, Zhang X, Meinel L, Vunjak-Novakovic G, Kaplan DL (2009) Growth factor gradients via microsphere delivery in biopolymer scaffolds for osteochondral tissue engineering. J Control Release 134:81–90

    Google Scholar 

  • Wang Y, Ait-Oufella H, Herbin O, Bonnin P, Ramkhelawon B, Taleb S et al (2010a) TGF-beta activity protects against inflammatory aortic aneurysm progression and complications in angiotensin II-infused mice. J Clin Invest 120:422–432

    Google Scholar 

  • Wang H, Zhang X, Li Y, Ma Y, Zhang Y, Liu Z et al (2010b) Improved myocardial performance in infarcted rat heart by co-injection of basic fibroblast growth factor with temperature-responsive chitosan hydrogel. J Heart Lung Transplant 29:881–887

    Google Scholar 

  • Weinberg CB, Bell E (1986) A blood vessel model constructed from collagen and cultured vascular cells. Science 231:397–400

    Google Scholar 

  • Welch PM (2005) A tunable dendritic molecular actuator. Nano Lett 5:1279–1283

    Google Scholar 

  • Wentzel JJ, Corti R, Fayad ZA, Wisdom P, Macaluso F, Winkelman MO et al (2005) Does shear stress modulate both plaque progression and regression in the thoracic aorta? Human study using serial magnetic resonance imaging. J Am Coll Cardiol 45:846–854

    Google Scholar 

  • Wiernicki I, Cnotliwy M, Baranowska-Bosiacka I, Urasinska E, Kwas A, Bober J et al (2008) Elastin degradation within the abdominal aortic aneurysm wall—relationship between intramural pH and adjacent thrombus formation. Eur J Clin Invest 38:883–887

    Google Scholar 

  • Xiao Q, Wang G, Luo Z, Xu Q (2010) The mechanism of stem cell differentiation into smooth muscle cells. Thromb Haemost 104:440–448

    Google Scholar 

  • Yablonka-Reuveni Z, Seger R, Rivera AJ (1999) Fibroblast growth factor promotes recruitment of skeletal muscle satellite cells in young and old rats. J Histochem Cytochem 47:23–42

    Google Scholar 

  • Yamamoto T, Kozawa O, Tanabe K, Akamatsu S, Matsuno H, Dohi S et al (2001) Involvement of p38 MAP kinase in TGF-beta-stimulated VEGF synthesis in aortic smooth muscle cells. J Cell Biochem 82:591–598

    Google Scholar 

  • Yamashita J, Itoh H, Hirashima M, Ogawa M, Nishikawa S, Yurugi T et al (2000) Flk1-positive cells derived from embryonic stem cells serve as vascular progenitors. Nature 408:92–96

    Google Scholar 

  • Yang HS, Bhang SH, Kim IK, Lee TJ, Kang JM, Lee DH et al (2012) In situ cardiomyogenic differentiation of implanted bone marrow mononuclear cells by local delivery of transforming growth factor-beta1. Cell Transplant 21:299–312

    Google Scholar 

  • Yannas IV (2004) Natural materials. In: Ratner BD, Hoffman AS, Schoen FJ, Lemons JE (eds) Biomaterials science: an introduction to materials in medicine. Academic, San Diego, CA

    Google Scholar 

  • Yin X, Hoffman AS, Stayton PS (2006) Poly(N-isopropylacrylamide-co-propylacrylic acid) copolymers that respond sharply to temperature and pH. Biomacromolecules 7:1381–1385

    Google Scholar 

  • Yun Y, Shanov V, Tu Y, Schulz MJ, Yarmolenko S, Neralla S et al (2006) A multi-wall carbon nanotube tower electrochemical actuator. Nano Lett 6:689–693

    Google Scholar 

  • Zaruba MM, Franz WM (2010) Role of the SDF-1-CXCR4 axis in stem cell-based therapies for ischemic cardiomyopathy. Expert Opin Biol Ther 10:321–335

    Google Scholar 

  • Zhang G, Hu Q, Braunlin EA, Suggs LJ, Zhang J (2008) Enhancing efficacy of stem cell transplantation to the heart with a PEGylated fibrin biomatrix. Tissue Eng Part A 14:1025–1036

    Google Scholar 

  • Zhao Q, Egashira K, Inoue S, Usui M, Kitamoto S, Ni W et al (2002) Vascular endothelial growth factor is necessary in the development of arteriosclerosis by recruiting/activating monocytes in a rat model of long-term inhibition of nitric oxide synthesis. Circulation 105:1110–1115

    Google Scholar 

  • Zhu XH, Wang CH, Tong YW (2009) In vitro characterization of hepatocyte growth factor release from PHBV/PLGA microsphere scaffold. J Biomed Mater Res A 89:411–423

    Google Scholar 

  • Zhuang Y, Chen X, Xu M, Zhang LY, Xiang F (2009) Chemokine stromal cell-derived factor 1/CXCL12 increases homing of mesenchymal stem cells to injured myocardium and neovascularization following myocardial infarction. Chin Med J 122:183–187

    Google Scholar 

  • Zieris A, Prokoph S, Levental KR, Welzel PB, Grimmer M, Freudenberg U et al (2010) FGF-2 and VEGF functionalization of starPEG-heparin hydrogels to modulate biomolecular and physical cues of angiogenesis. Biomaterials 31:7985–7994

    Google Scholar 

  • Zisch AH, Schenk U, Schense JC, Sakiyama-Elbert SE, Hubbell JA (2001) Covalently conjugated VEGF–fibrin matrices for endothelialization. J Control Release 72:101–113

    Google Scholar 

  • Zisch AH, Lutolf MP, Ehrbar M, Raeber GP, Rizzi SC, Davies N et al (2003) Cell-demanded release of VEGF from synthetic, biointeractive cell ingrowth matrices for vascularized tissue growth. FASEB J 17:2260–2262

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anand Ramamurthi .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Sivaraman, B., Ramamurthi, A. (2015). Growth Factor Delivery Matrices for Cardiovascular Regeneration. In: Suuronen, E., Ruel, M. (eds) Biomaterials for Cardiac Regeneration. Springer, Cham. https://doi.org/10.1007/978-3-319-10972-5_6

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-10972-5_6

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-10971-8

  • Online ISBN: 978-3-319-10972-5

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics