Skip to main content

Mechanisms of Hexavalent Chromium Resistance and Removal by Microorganisms

  • Chapter
  • First Online:

Part of the book series: Reviews of Environmental Contamination and Toxicology ((RECT,volume 233))

Abstract

Chromium is a naturally occurring element found in rocks, animals, plants, soil and in volcanic dust and gases. It exists in different oxidation states that range from +2 to +6. The most stable forms are Cr(VI) and Cr(III), although they significantly differ in biological, geochemical and toxicological properties. Cr(III) occurs naturally in the environment at a narrow concentration range and is considered to be less toxic than Cr(VI). Hexavalent chromium is used extensively in industrial processes such as electroplating, tanning, textile dyeing, corrosion inhibition and wood treatment, all of which produce discharge of chromium-containing effluents (Lauwerys et al. 2007). The high solubility of Cr(VI) makes it a hazardous contaminant of water and soil when discharged by industries that produce or utilize chromium. When it is released to the environment, Cr(VI) is a potential contaminant of groundwater that can participate in trophic transfer in food chains. The United States Environmental Protection Agency has identified Cr(VI) as one of the 17 chemicals posing the greatest threat to humans (Marsh and McInerney 2001). The permissible limit for total chromium in drinking water is 0.05 mg/L (WHO 2004).

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Ackerley DF, Barak Y, Lynch SV, Curtin J, Matin A (2006) Effect of chromate stress on Escherichia coli K-12. J Bacteriol 188:3371–3381

    CAS  Google Scholar 

  • Ackerley DF, Gonzalez CF, Park CH, Blake R II, Keyhan M, Matin A (2004) Chromate-reducing properties of soluble flavoproteins from Pseudomonas putida and Escherichia coli. Appl Environ Microbiol 70:873–882

    CAS  Google Scholar 

  • Alvarez H, Moreno-Sanchez R, Cervantes C (1999) Chromate efflux by means of the ChrA chromate resistance protein from Pseudomonas aeruginosa. J Bacteriol 181:7398–7400

    CAS  Google Scholar 

  • Anjana K, Kaushik A, Kiran B, Nisha R (2007) Biosorption of Cr(VI) by immobilized biomass of two indigenous strains of cyanobacteria isolated from metal contaminated soil. J Hazard Mater 148:383–386

    CAS  Google Scholar 

  • Asmatullah SNQ, Shakoori AR (1998) Embryotoxic and teratogenic effects of hexavalent chromium in developing chicks of Gallus domesticus. Bull Environ Contam Toxicol 61:281–288

    CAS  Google Scholar 

  • Bae WC, Lee HK, Choe YC, Jahng DJ, Lee SH, Kim SJ, Lee JH, Jeong BC (2005) Purification and characterization of NADPH-dependent Cr(VI) reductase from Escherichia coli ATCC 33456. J Microbiol 43:21–7

    CAS  Google Scholar 

  • Bahafid W, Sayel H, Tahri Joutey N, El Ghachtouli N (2011) Removal mechanism of hexavalent chromium by a novel strain of Pichia anomala isolated from industrial effluents of Fez (Morocco). J Environ Sci Eng 5:980–991

    CAS  Google Scholar 

  • Bahafid W, Tahri Joutey N, Sayel H, Iraqui-Houssaini M, El Ghachtouli N (2013) Chromium adsorption by three yeast strains isolated from sediments in Morocco. Geophys J Roy Astron Soc 5:422–429

    Google Scholar 

  • Branco R, Chung AP, Johnston T, Gurel V, Morais P, Zhitkovich A (2008) The chromate-inducible chrBACF operon from the transposable element TnOtChr confers resistance to chromium(VI) and superoxide. J Bacteriol 190(21):6996–7003

    CAS  Google Scholar 

  • Brown SD, Thompson MR, Verberkmoes NC, Chourey K, Shah M, Zhou JZ, Hettich RL, Thompson DK (2006) Molecular dynamics of the Shewanella oneidensis response to chromate stress. Mol Cell Proteomics 5:1054–1071

    CAS  Google Scholar 

  • Cervantes C, Campos-García J (2007) Reduction and efflux of chromate by bacteria. Molecular microbiology of heavy metals. Microbiol Monogr 6:407–419

    Google Scholar 

  • Cervantes C, Silver S (1992) Plasmid chromate resistance and chromate reduction. Plasmid 27(1):65–71

    CAS  Google Scholar 

  • Cervantes C, Campos-García J, Devars S, Gutiérrez-Corona F, Loza-Tavera H, Torres-Guzmán JC, Moreno-Sanchez R (2001) Interactions of chromium with microorganisms and plants. FEMS Microbiol Rev 25:335–347

    CAS  Google Scholar 

  • Çetin D, Donmez S, Donmez G (2008) The treatment of textile wastewater including chromium(VI) and reactive dye by sulfate-reducing bacterial enrichment. J Environ Manage 88:76–82

    Google Scholar 

  • Chandhuru J, Harshitha S, Sujitha K, Mukesh Kumar DJ (2012) Isolation of chromium resistant Bacillus sp. MRKV and reduction of hexavalent chromium potassium dichromate. J Acad Indus Res 1(6):317–319

    Google Scholar 

  • Chardin B, Giudici-Orticoni MT, DeLuca G, Guigliarelli B, Bruschi M (2003) Hydrogenases in sulfate-reducing bacteria function as chromium reductase. Appl Microbiol Biotechnol 63:315–321

    CAS  Google Scholar 

  • Chatterjee S, Chatterjee NC, Dutta S (2012) Bioreduction of chromium (VI) to chromium (III) by a novel yeast strain Rhodotorula mucilaginosa (MTCC 9315). Afr J Biotechnol 11:14920–14929

    CAS  Google Scholar 

  • Chaturvedi MK (2011) Studies on chromate removal by chromium-resistant Bacillus sp. isolated from tannery effluent. J Environ Prot (Irvine, Calif) 2:76–82

    CAS  Google Scholar 

  • Chen Y, Gu G (2005) Preliminary studies on continuous chromium(VI) biological removal from wastewater by anaerobic-aerobic activated sludge process. Biores Technol 96:1713–1721

    CAS  Google Scholar 

  • Cheng Y, Xie Y, Zheng J, Wu Z, Chen Z, Ma X, Li B, Lin Z (2009) Identification and characterization of the chromium(VI) responding protein from a newly isolated Ochrobactrum anthropi CTS-325. J Environ Sci 21:1673–1678

    CAS  Google Scholar 

  • Cheung KH, Gu JD (2007) Mechanism of hexavalent chromium detoxification by microorganisms and bioremediation application potential: a review. Int Biodeter Biodegrad 59:8–15

    CAS  Google Scholar 

  • Chirwa EMN, Molokwane PE (2011) Biological Cr(VI) reduction: microbial diversity, kinetics and biotechnological solutions to pollution. In: Sofo A (ed) Biodiversity. ISBN: 978-953-307-715-4, InTech, Cambridge. Available from http://www.intechopen.com/books/biodiversity/biological-cr-vi-reduction-microbialdiversity-kinetics-and-biotechnological-solutions-to-pollution.

  • Christl I, Imseng M, Tatti E, Frommer J, Viti C, Giovannetti L, Kretzschmar R (2012) Aerobic reduction of chromium(VI) by Pseudomonas corrugata 28: Influence of metabolism and fate of reduced chromium. Geophys J Roy Astron Soc 29:173–185

    CAS  Google Scholar 

  • Das SK, Guha AK (2009) Biosorption of hexavalent chromium by Termitomyces clypeatus biomass: Kineticsand transmission electron microscopic study. J Hazard Mater 167:685–691

    CAS  Google Scholar 

  • Deng L, Zhang Y, Qin J, Wang X, Zhu X (2009) Biosorption of Cr(VI) from aqueous solutions by nonliving green algae Cladophora albida. Minerals Eng 22:372–377

    CAS  Google Scholar 

  • Diaz-Perez C, Cervantes C, Campos-Garcia J, Julian-Sanchez A, Riveros-Rosas H (2007) Phylogenetic analysis of the chromate ion transporter (CHR) superfamily. FEBS J 274:6215–6227

    CAS  Google Scholar 

  • Dogan NMC, Kantar SG, Dodge CJ, Yilmaz BC, Mazmanci MA, Mazmanci MA (2011) Chromium(VI) bioremoval by Pseudomonas bacteria: role of microbial exudates for natural attenuation and biotreatment of Cr(VI) contamination. Environ Sci Technol 45:2278–2285

    CAS  Google Scholar 

  • Donati E, Oliver C, Curutchet G (2003) Reduction of Chromium(VI) by the indirect action of Thiobacillus thioparus. Braz J Chem Eng 20:69–73

    CAS  Google Scholar 

  • Elangovan R, Abhipsa S, Rohit B, Ligy P, Chandraraj K (2006) Reduction of Cr(VI) by a Bacillus sp. Biotechnol Lett 28:247–52

    CAS  Google Scholar 

  • Elangovan R, Philip L, Chandraraj K (2010) Hexavalent chromium reduction by free and immobilized cell-free extract of Arthrobacter rhombi-RE. Appl Biochem Biotechnol 160:81–97

    CAS  Google Scholar 

  • Estaún V, Cortés A, Velianos K, Camprubí A, Calvet C (2010) Effect of chromium contaminated soil on arbuscular mycorrhizal colonisation of roots and metal uptake by Plantago lanceolata. Span J Agric Res 8:109–115

    Google Scholar 

  • Farag S, Zaki S (2010) Identification of bacterial strains from tannery effluent and reduction of hexavalent chromium. J Environ Biol 31:877–882

    CAS  Google Scholar 

  • Fedorovych DV, Gonchar MV, Ksheminska HP, Prokopiv TM, Nechay HI, Kaszycki P, Koloczek H, Sibirny AA (2009) Mechanisms of chromate detoxification in yeasts. Mikrobiol Biotechnol 3:15–21

    Google Scholar 

  • Flora SJ (2009) Structural, chemical and biological aspects of antioxidants for strategies against metal and metalloid exposure. Oxid Med Cell Longev 2(4):191–206

    Google Scholar 

  • Frederick TM, Taylor EA, Willis JL, Shultz MS, Woodruff PJ (2013) Chromate reduction is expedited by bacteria engineered to produce the compatible solute trehalose. Biotechnol Lett 35:1291–6. doi:10.1007/s10529-013-1200-z

    CAS  Google Scholar 

  • Fukuda T, Ishino Y, Ogawa A, Tsutsumi K, Morita H (2008) Cr(VI) reduction from contaminated soils by Aspergillus sp. N2 and Penicillium sp. N3 isolated from chromium deposits. J Gen Appl Microbiol 54:295–303

    CAS  Google Scholar 

  • Gamalero E, Lingua G, Berta G, Glick BR (2009) Beneficial role of plant growth promoting bacteria and arbuscular mycorrhizal fungi on plant responses to heavy metal stress. Can J Microbiol 55:501–14. doi:10.1139/w09-010

    CAS  Google Scholar 

  • Garg SK, Tripathi M, Singh SK, Singh A (2013) Pentachlorophenol dechlorination and simultaneous Cr6+ reduction by Pseudomonas putida SKG-1 MTCC (10510): characterization of PCP dechlorination products, bacterial structure and functional groups. Environ Sci Pollut Res 20:2288–2304

    CAS  Google Scholar 

  • Ghosh M, Singh SP (2005) Comparative uptake and phytoextraction study of soil induced chromium by accumulator and high biomass weed species. Appl Ecol Environ 3:67–79

    Google Scholar 

  • Glick BR (2010) Using soil bacteria to facilitate phytoremediation. Biotechnol Adv 28:367–374

    CAS  Google Scholar 

  • Gonzalez CF, Ackerley DF, Lynch SV, Matin A (2005) ChrR, a soluble quinone reductase of Pseudomonas putida that defends against H2O2. J Biol Chem 280:2590–2595

    Google Scholar 

  • Gupta VK, Carrott PJM, Ribeiro Carrott MML, Suhas TL (2009) Low cost adsorbents: growing approach to wastewater treatment—a review. Crit Rev Environ Sci Technol 39:783–842

    Google Scholar 

  • Halasova E, Matakova T, Kavcova E, Musak L, Letkova L, Adamkov M, Ondrusova M, Bukovska E, Singliar A (2009) Human lung cancer and hexavalent chromium exposure. Neuro Endocrinol Lett 1:182–5

    Google Scholar 

  • Han X, Wong YS, Wong MH, Tam NF (2007) Biosorption and bioreduction of Cr(VI) by a microalgal isolate, Chlorella miniata. J Hazard Mater 146:65–72

    CAS  Google Scholar 

  • Harrison JJ, Ceri H, Turner RJ (2007) Multimetal resistance and tolerance in microbial biofilms. Nat Rev Microbiol 5:928–938

    CAS  Google Scholar 

  • He M, Li X, Liu H, Miller SJ, Wang G, Rensing C (2011) Characterization and genomic analysis of a highly chromate resistant and reducing bacterial strain Lysinibacillus fusiformis ZC1. J Hazard Mater 185:682–8

    CAS  Google Scholar 

  • Hołda A, Kisielowska E, Niedoba T (2011) Bioaccumulation of Cr(VI) ions from aqueous solutions by Aspergillus niger. Polish J Environ Stud 20:345–349

    Google Scholar 

  • Hu P, Brodie EL, Suzuki Y, McAdams HH, Andersen GL (2005) Whole-genome transcriptional analysis of heavy metal stresses in Caulobacter crescentus. J Bacteriol 187:8437–8449

    CAS  Google Scholar 

  • Iftikhar S, Faisal M, Hasnain S (2007) Cytosolic reduction of toxic Cr(VI) by indigenous microorganism. Res J Env Sci 1:77–81

    CAS  Google Scholar 

  • Iyer A, Mody K, Jha B (2004) Accumulation of hexavalent chromium by an exopolysaccharide producing marine Enterobacter cloaceae. Mar Pollut Bull 49(11–12):974–977

    CAS  Google Scholar 

  • Jing Y, He Z, Yang X (2007) Role of soil rhizobacteria in phytoremediation of heavy metal contaminated soils. J Zhejiang Univ Sci 8:192–207

    CAS  Google Scholar 

  • Juhnke S, Peitzsch N, Hubener N, Grosse C, Nies DH (2002) New genes involved in chromate resistance in Ralstonia metallidurans strain CH34. Arch Microbiol 179:15–25

    CAS  Google Scholar 

  • Kader J, Sannasi P, Othman O, Ismail BS, Salmijah S (2007) Removal of Cr(VI) from aqueous solutions by growing and non-growing populations of environmental bacterial consortia. Global J Environ Res 1:12–17

    Google Scholar 

  • Karami A, Shamsuddin ZH (2010) Phytoremediation of heavy metals with several efficiency enhancer methods. Afr J Biotechnol 25:3689–3698

    Google Scholar 

  • Khan AG (2006) Mycorrhizoremediation an enhanced form of phytoremediation. J Zhejiang Univ Sci 7:503–514

    Google Scholar 

  • Kim SH, Lee IC, Baek HS, Moon C, Kang SS, Bae CS, Kim SH, Shin DH, Kim J (2012) C. Pycnogenol® prevents hexavalent chromium-induced spermatotoxicity in rats. Mol Cel Toxicol 8:249–256

    CAS  Google Scholar 

  • Ksheminska H, Fedorovych D, Babyak L, Yanovych D, Kaszycki P, Koloczek H (2005) Chromium (III) and (VI) tolerance and bioaccumulation in yeast: A survey of cellular chromium content in selected strains of representative genera. Process Biochem 40:1565–1572

    CAS  Google Scholar 

  • Ksheminska H, Fedorovych D, Honchar T, Ivash M, Gonchar M (2008) Yeast tolerance to chromium depends on extracellular chromate reduction and Cr(III) chelation. Food Technol Biotechnol 46:419–426

    CAS  Google Scholar 

  • Ksheminska HP, Honchar TM, Gayda GZ, Gonchar MV (2006) Extracellular chromate-reducing activity of the yeast cultures. Central Eur J Biol 1:137–149

    CAS  Google Scholar 

  • Kwak YH, Lee DS, Kim HB (2003) Vibrio harveyi nitroreductase is also a chromate reductase. Appl Environ Microbiol 69:4390–4395

    CAS  Google Scholar 

  • Lauwerys R, Haufroid V, Hoet P, Lison D (2007) Toxicologie industrielle et intoxications professionnelles, 5th edn. Elsevier-Masson, Paris

    Google Scholar 

  • Liu H, Guo L, Liao S, Wang G (2012) Reutilization of immobilized fungus Rhizopus sp. LG04 to reduce toxic chromate. J Appl Microbiol 112:651–9

    CAS  Google Scholar 

  • Long D, Tang X, Cai K, Chen G, Shen C, Shi J, Chen L, Chen Y (2013) Cr(VI) resistance and removal by indigenous bacteria isolated from chromium contaminated soil. J Microbiol Biotechnol 23(8):1123–32

    CAS  Google Scholar 

  • Mangaiyarkarasi MMS, Vincent S, Janarthanan S, Subba Rao T, Tata BVR (2011) Bioreduction of Cr(VI) by alkaliphilic Bacillus subtilis and interaction of the membrane groups. Saudi J Biol Sci 18:157–167

    CAS  Google Scholar 

  • Marsh TL, McInerney MJ (2001) Relationship of hydrogen bioavailability to chromate reduction in aquifer sediments. Appl Environ Microbiol 67:1517–1521

    CAS  Google Scholar 

  • McNeill L, McLean J (2012) State of the science of hexavalent chromium in drinking water. Pollut Eng 44:5

    Google Scholar 

  • Miransari M (2011) Hyperaccumulators, arbuscular mycorrhizal fungi and stress of heavy metals. Biotechnol Adv 29:645–53. doi:10.1016/j.biotechadv.2011.04.006

    CAS  Google Scholar 

  • Mohan D, Pittman CU Jr (2006) Activated carbons and low cost adsorbents for remediation of tri- and hexavalent chromium from water. J Hazard Mater 137:762–811

    CAS  Google Scholar 

  • Morales-Barrera L, Guillén-Jiménez FDM, Ortíz-Moreno A, Villegas-Garrido TL, Sandoval-Cabrera A, Hernández-Rodríguez CH, Cristiani-Urbina E (2008) Isolation, identification and characterization of a Hypocrea tawa with high Cr(VI) reduction potential. Biochem Eng J 40:284–292

    CAS  Google Scholar 

  • Mungasavalli DP, Viraraghavan T, Chung YJ (2007) Biosorption of chromium from aqueous solutions by pretreated Aspergillus niger: Batch and column studies. Colloid Surface 301:214–223

    CAS  Google Scholar 

  • Murugavelh S, Mohanty K (2013a) Bioreduction of chromate by immobilized cells of Halomonas sp. Int J Energy Environ 4:349–356

    CAS  Google Scholar 

  • Murugavelh S, Mohanty K (2013b) Bioreduction of Cr(VI) using live and immobilized Phanerochaete chrysosporium. Desalin Water Treat 51:3482–3488

    CAS  Google Scholar 

  • Ngwenya N, Chirwa EMN (2011) Biological removal of cationic fission products from nuclear wastewater. Water Sci Technol 63:124–128

    CAS  Google Scholar 

  • Opperman DJ, van Heerden E (2008) A membrane-associated protein with Cr(VI)-reducing activity from Thermus scotoductus SA-01. FEMS Microbiol Lett 280(2):210–8

    CAS  Google Scholar 

  • Padma SV, Bajpai D (2008) Phyto-remediation of chrome(VI) of tannery effluent by Trichoderma species. Desalination 222:255–262

    Google Scholar 

  • Pang Y, Zeng G-M, Tang L, Zhang Y, Liu Y-Y, Lei X-X, Wu M-S, Li Z, Liu C (2011) Cr(VI) reduction by Pseudomonas aeruginosa immobilized in a polyvinyl alcohol/sodium alginate matrix containing multi-walled carbon nanotubes. Bioresour Technol 102:10733–10736

    CAS  Google Scholar 

  • Park CH, Gonzalez D, Ackerley D, Keyhan M, Matin A (2002) Molecular engineering of soluble bacterial proteins with chromate reductase activity. In: Pellei M, Porta A, Hinchee RE (eds) Remediation and beneficial reuse of contaminated sediments. Batelle, Columbus

    Google Scholar 

  • Park D, Lim S-R, Yun Y-S, Park JM (2008) Development of a new Cr(VI)-biosorbent from agricultural biowaste. Biores Technol 99:8810–8818

    CAS  Google Scholar 

  • Park D, Yun YS, Jo JH, Park JM (2005a) Mechanism of hexavalent chromium removal by dead fungal biomass of Aspergillus niger. Water Res 39:533–540

    CAS  Google Scholar 

  • Park D, Yun YS, Park JM (2005b) Use of dead fungal biomass for the detoxification of hexavalent chromium: screening and kinetics. Process Biochem 40:2559–2565

    CAS  Google Scholar 

  • Park D, Yun YS, Park JM (2006) Comment on the removal mechanism of hexavalent chromium by biomaterials or biomaterial-based activated carbons. J Ind Chem Res 45:2405–2407

    CAS  Google Scholar 

  • Patra RC, Malik B, Beer M, Megharaj M, Naidu R (2010) Molecular characterization of chromium (VI) reducing potential in Gram positive bacteria isolated from contaminated sites. Soil Biol Biochem 42:1857–1863

    CAS  Google Scholar 

  • Pereira Y, Lagniel G, Godat E, Cornu PB, Junot C, Labarre J (2008) Chromate causes sulfur starvation in yeast. Toxicol Sci 106:400–412

    CAS  Google Scholar 

  • Piñón-Castillo HA, Brito EM, Goñi-Urriza M, Guyoneaud R, Duran R, Nevarez-Moorillon GV, Gutiérrez-Corona JF, Caretta CA, Reyna-López GE (2010) Hexavalent chromium reduction by bacterial consortia and pure strains from an alkaline industrial effluent. J Appl Microbiol 109:2173–82

    Google Scholar 

  • Polti MA, Amoroso MJ, Abate CM (2007) Chromium(VI) resistance and removal by actinomycete strains isolated from sediments. Chemosphere 67:660–667

    CAS  Google Scholar 

  • Puzon GJ, Petersen JN, Roberts AG, Kramer DM, Xun L (2002) A bacterial flavin reductase system reduces chromates (III)–NAD+ complex. Biochem Biophy Res 294(1):76–81

    CAS  Google Scholar 

  • Qamar M, Gondal MA, Yamani ZH (2011) Synthesis of nanostructured NiO and its application in laser-induced photocatalytic reduction of Cr(VI) from water. J Mol Catal A Chem 341:83–88

    CAS  Google Scholar 

  • Rajamani S, Siripornadulsil S, Falcao V, Torres M, Colepicolo P, Sayre R (2007) Phycoremediation of heavy metals using transgenic microalgae. Adv Exp Med Biol 616:99–109

    Google Scholar 

  • Ramirez-Diaz MI, Díaz-Pérez C, Vargas E, Riveros-Rosas H, Campos-García J, Cervantes C (2008) Mechanisms of bacterial resistance to chromium compounds. Biometals 21:321–332

    CAS  Google Scholar 

  • Ramírez-Ramírez R, Calvo-Méndez C, Ávila-Rodriguez M, Lappe P, Ulloa M, Vázquez-Juárez R, Gutiérrez-Corona JF (2004) Cr(VI) reduction in a chromate-resistant strain of Candida maltosa isolated from the leather industry. Antonie Van Leeuwenhoek 85:63–68

    Google Scholar 

  • Raspor P, Bati M, Jamnik P, Josi D (2000) The influence of chromium compounds on yeast physiology (A review). Acta Microbiol Immunol Hung 47:143–173

    CAS  Google Scholar 

  • Reya Issac I, Rajamehala M, Lakshmi Prabha M, Emilin Renitta R (2012) comparitive study on biosorption of hexavalent chromium using Aspergillus Oryzae NCIM 637 And Aspergillus Sojae NCIM 1198 from electroplating effluent. Inter J ChemTech Res 4:1708–1719

    CAS  Google Scholar 

  • Rida B, Yrjala K, Hasnain S (2012) Hexavalent chromium reduction by bacteria from tannery effluent. J Microbiol Biotechnol 22(4):547–54

    Google Scholar 

  • Romanenko VI, Koren’kov VN (1977) A pure culture of bacteria utilizing chromates and bichromates as hydrogen acceptors in growth under anaerobic conditions. Mikrobiologiya 43:414–417

    Google Scholar 

  • Saha B, Orvig C (2010) Biosorbents for hexavalent chromium elimination from industrial and municipal effluents. Coord Chem Rev 254:2959–2972

    CAS  Google Scholar 

  • Saharan BS, Nehra V (2011) Plant growth promoting Rhizobacteria: a critical review. Life Sc Med Res: LSMR-21

    Google Scholar 

  • Sanghi R, Sankararamakrishnana N, Daveb BC (2009) Fungal bioremediation of chromates: conformational changes of biomass during sequestration, binding, and reduction of hexavalent chromium ions. J Hazard Mater 169:1074–1080

    CAS  Google Scholar 

  • Sannasi P, Kader J, Ismail BS, Salmijah S (2006) Sorption of Cr(VI), Cu(II) and Pb(II) by growing and non-growing cells of a bacterial consortium. Biores Technol 97:740–747

    CAS  Google Scholar 

  • Sayel H, Bahafid W, Tahri Joutey N, Derraz K, Fikri Benbrahim K, Ibnsouda Koraichi S, El Ghachtouli N (2012) Cr(VI) reduction by Enterococcus gallinarum isolated from tannery waste-contaminated soil. Ann Microbiol 62:1269–1277

    CAS  Google Scholar 

  • Seema T, Krishnamurthy V, Riaz M (2012) Characterization of chromium remediating bacterium Bacillus subtilis isolated from electroplating effluent. Int J Eng Res Appl 2:961–966

    Google Scholar 

  • Sen M, Ghosh Dastidar M (2010) Chromium removal using various biosorbents. Iran J Environ Health Sci Eng 7(3):182–190

    Google Scholar 

  • Sharma S, Adholeya A (2011) Detoxification and accumulation of chromium from tannery effluent and spent chrome effluent by Paecilomyces lilacinus fungi. Int Biodeterior Biodegrad 65:309–317

    CAS  Google Scholar 

  • Sharma S, Adholeya A (2012) Hexavalent chromium reduction in tannery effluent by bacterial species isolated from tannery effluent contaminated soil. J Environ Sci Technol 5:142–154

    CAS  Google Scholar 

  • Sobol Z, Schiestl RH (2012) Intracellular and extracellular factors influencing Cr(VI) and Cr(III) genotoxicity. Environ Mol Mutagen 53:94–100. doi:10.1002/em.20679

    CAS  Google Scholar 

  • Somasundaram V, Philip L, Bhallamudi SM (2009) Experimental and mathematical modeling studies on Cr(VI) reduction by CRB, SRB and IRB, individually and in combination. J Hazard Mater 172:606–17

    CAS  Google Scholar 

  • Somasundaram V, Philip L, Bhallamudi SM (2011) Laboratory scale column studies on transport and biotransformation of Cr(VI) through porous media in presence of CRB, SRB and IRB. Chem Eng J 171:572–581

    CAS  Google Scholar 

  • Srinath T, Khare S, Ramteke PW (2001) Isolation of hexavalent chromium reducing Cr-tolerant facultative anaerobes from tannery effluent. J Gen Appl Microbiol 47:307–12

    CAS  Google Scholar 

  • Srivastava S, Thakur IS (2006) Evaluation of bioremediation and detoxification potentiality of Aspergillus niger for removal of hexavalent chromium in soil microcosm. Soil Biol Biochem 38:1904–1911

    CAS  Google Scholar 

  • Sugiyama T, Sugito H, Mamiya K, Suzuki Y, Ando K, Ohnuki T (2012) Hexavalent chromium reduction by an actinobacterium Flexivirga alba ST13T in the family Dermacoccaceae. J Biosci Bioeng 113:367–71. doi:10.1016/j.jbiosc.2011.11.009

    CAS  Google Scholar 

  • Tahri Joutey N, Bahafid W, Sayel H, El Abed S, El Ghachtouli N (2011) Remediation of hexavalent chromium by consortia of indigenous bacteria from tannery waste contaminated biotopes in Fez, Morocco. Inter J Environ Stud 686:901–912

    Google Scholar 

  • Tahri Joutey N, Bahafid W, Sayel H, El Ghachtouli N (2013a) Biodegradation: involved microorganisms and genetically engineered microorganisms. In: Chamy R (ed) Biodegradation—life of science. InTech, Cambridge, p 289

    Google Scholar 

  • Tahri Joutey N, Bahafid W, Sayel H, Ananou S, El Ghachtouli N (2013b) Hexavalent chromium removal by a novel Serratia proteamaculans isolated from the bank of Sebou River (Morocco). Environ Sci Pollut Res. doi:10.1007/s11356-013-2249-x

    Google Scholar 

  • Thacker U, Parikh R, Shouche Y, Madamwar D (2006) Hexavalent chromium reduction by Providencia sp. Process Biochem 41:1332–1337

    CAS  Google Scholar 

  • Tiwari S, Singh SN, Garg SK (2013) Microbially enhanced phytoextraction of heavy metals fly-ash amended soil. Commun Soil Sci Plant Anal 44:3161–3176

    CAS  Google Scholar 

  • Tripathi M, Garg SK (2013) Co-remediation of pentachlorophenol and Cr6+ by free and immobilized cells of native Bacillus cereus isolate: spectrometric characterization of PCP dechlorination products, bioreactor trial and chromate reductase activity. Process Biochem 48:496–509

    CAS  Google Scholar 

  • Verma T, Garg SK, Ramteke PW (2009) Genetic correlation between chromium resistance and reduction in Bacillus brevis isolated from tannery effluent. J Appl Microbiol 107:1425–1432

    CAS  Google Scholar 

  • Vijayaraghavan K, Yun YS (2008) Polysulfone-immobilized Corynebacterium glutamicum: a biosorbent for reactive black 5 from aqueous solution in an up-flow packed column. Chem Eng J 145:44–49

    CAS  Google Scholar 

  • Viti C, Giovannetti L (2007) Bioremediation of soils polluted with hexavalent chromium using bacteria—the challenge. In: Singh SN, Tripathi RD (eds) Environmental bioremediation technologies. Springer, Berlin, p 57

    Google Scholar 

  • Wang PC, Toda K, Ohtake H, Kusaka I, Yale I (1991) Membrane bound respiratory system of Enterobacter cloacae strain HO1 grown anaerobically with chromate. FEMS Microbiol Lett 76:11–16

    Google Scholar 

  • Wani PA, Khan MS (2010) Bacillus species enhance growth parameters of chickpea (Cicer arietinum L.) in chromium stressed soils. Food Chem Toxicol 48(11):3262–7. doi:10.1016/j.fct.2010.08.035

    CAS  Google Scholar 

  • WHO (2004) Guidelines for drinking water quality. WHO, Geneva

    Google Scholar 

  • Xu L, Luo M, Jiang C, Wei X, Kong P, Liang X, Zhao J, Yang L, Liu H (2012) In vitro reduction of hexavalent chromium by cytoplasmic fractions of Pannonibacter phragmitetus LSSE-09 under aerobic and anaerobic conditions. Appl Biochem Biotechnol 166:933–41. doi:10.1007/s12010-011-9481-y. Epub 2011 Dec 13

    CAS  Google Scholar 

  • Zahoor A, Rehman A (2009) Isolation of Cr(VI) reducing bacteria from industrial effluents and their potential use in bioremediation of chromium containing wastewater. J Environ Sci 21:814–820

    Google Scholar 

  • Zhu W, Chai L, Ma Z, Wang Y, Xiao H, Zhao K (2008) Anaerobic reduction of hexavalent chromium by bacterial cells of Achromobacter sp. Strain Ch1. Microbiol Res 163(6):616–623

    CAS  Google Scholar 

Download references

Acknowledgment

The authors appreciate the effort made by Dr. Dave Whitacre, RECT Editor, and are extremely grateful for his excellent comments and editing this manuscript. We are also grateful for the financial and scientific support rendered by Microbial Biotechnology Laboratory of Faculty of Sciences and Techniques and Innovation City, SMBA University, Fez, Morocco.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Naïma El Ghachtouli .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Joutey, N.T., Sayel, H., Bahafid, W., El Ghachtouli, N. (2015). Mechanisms of Hexavalent Chromium Resistance and Removal by Microorganisms. In: Whitacre, D. (eds) Reviews of Environmental Contamination and Toxicology Volume 233. Reviews of Environmental Contamination and Toxicology, vol 233. Springer, Cham. https://doi.org/10.1007/978-3-319-10479-9_2

Download citation

Publish with us

Policies and ethics