Skip to main content

Sapienic Acid: Species-Specific Fatty Acid Metabolism of the Human Sebaceous Gland

  • Chapter
  • First Online:
Lipids and Skin Health

Abstract

Hair follicle-associated sebaceous glands secrete sebum, a highly complex lipid mixture that covers the skin surface and hair shafts. The functional versatility of lipids, combined with the wide array of sebaceous lipid classes and aliphatic moieties, provide mammals with a substrate that facilitates adaptation to their diverse environments, including interaction with animals and microbes. Unique among the complexity of sebaceous lipids is sapienic acid, a 16 carbon monounsaturated fatty acid with an extremely rare position of the double bond, located between carbons 6 and 7 from the carboxyl terminal. Human sebum is the only documented location in the animal kingdom where sapienic acid is abundant and naturally occurring. It is produced by fatty acid desaturase 2 (FADS2), the same enzyme that is rate-limiting in the formation of polyunsaturated fatty acids. Multiple tissue-specific mechanisms are utilized in the human sebaceous gland in order to “repurpose” FADS2 for the production of sapienic acid, chief among which is the reduction of competing desaturase activity. Among mammals, human sebum has the highest amount of free fatty acids, of which sapienic acid is the most abundant monounsaturated fatty acid. Consistent with the role of fatty acids in modulating host-microbe interactions, sapienic acid has the highest antimicrobial activity among free fatty acids in human sebum, while also demonstrating selectivity for Staphylococcus aureus, an opportunistic pathogen. Increased infection by Staphylococcus aureus is associated with a reduction in sapienic acid in sebum of patients with atopic dermatitis, and topical application of sapienic acid is correlated with decreased bacterial load and amelioration of symptoms. Taken together, this strongly suggests that sapienic acid functions as a “first-line” component of the innate immune system at the cutaneous surface. The species-specific nature of sapienic acid in human sebum is related to the unique architecture of human skin and its microbial environment. Insight into pathogenesis of human skin disease will benefit from further investigation into the biochemistry of sapienic acid production in human sebaceous glands.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    The name cis-6-hexadecenoic acid or 6Z-hexadecenoic acid is often used when referring to 16:1∆6 (or 16:1n-10) originating from nonhuman sources. In this chapter, reference to this monounsaturated fatty acid will use the abbreviation 6-HA.

  2. 2.

    The name sapienic acid is often used when referring to 16:1∆6 (or 16:1n-10) originating in human sebum. In this chapter, reference to this monounsaturated fatty acid will use the abbreviation SA.

Abbreviations

AA:

Arachidonic acid, 20:4n-6, 20:4∆ 5,8,11,14

ALA:

α-linolenic acid, 18:3n-3, 18:3∆ 9,12,15

AWAT1:

Acyl-CoA wax alcohol acyltransferase 1

AWAT2:

Acyl-CoA wax alcohol acyltransferase 2

DGAT1:

Diacylglycerol O-acyltransferase 1

DGAT2:

Diacylglycerol O-acyltransferase 2

DHA:

Docosahexaenoic acid, 22:6n-3, 22:6∆ 4,7,10,13,16,19

EFA:

Essential fatty acid

EPA:

Eicosapentaenoic acid, 20:5n-3, 20:5∆ 5,8,11,14,17

EST:

Expressed sequence tag

FADS1:

Fatty acid desaturase 1

FADS2:

Fatty acid desaturase 2

FFA:

Free fatty acid

6-HA:

Cis-6-hexadecenoic acid, 6Z-hexadecenoic acid, 16:1n-10, 16:1∆ 6

15-HETE:

15-hydroxyeicosatetraenoic acid

5-HODE,:

5-hydroxy-(6E,8Z)-octadecadienoic acid

13-HODE:

13-hydroxyoctadecadienoic acid

LA:

Linoleic acid, 18:2n-6, 18:2∆ 9,12

15-LOX-2:

15-lipoxygenase-2

OA:

Oleic acid, 18:1n-9, 18:1∆ 9

5-oxo-ODE:

5-oxo-(6E,8Z)-octadecadienoic acid

PA:

Palmitic acid, 16:0

POA:

Palmitoleic acid, 16:1n-7, 16:1∆ 9

PPAR-γ:

Peroxisome proliferator activated Receptor-γ

MUFA:

Monounsaturated fatty acid

PUFA:

Polyunsaturated fatty acid

SA:

Sapienic acid, 16:1n-10, 16:1∆ 6

SCD:

Stearoyl-CoA desaturase

SFA:

Saturated fatty acid

TG:

Triacylglycerol

UFA:

Unsaturated fatty acid

References

  • Ackman RG, Hooper SN, Frair W. Comparison of the the fatty acid compositions of depot fats from fresh-water and marine turtles. Comp Biochem Physiol B. 1971;40:931–44.

    CAS  PubMed  Google Scholar 

  • Arsic B, Zhu Y, Heinrichs DE, McGavin MJ. Induction of the staphylococcal proteolytic cascade by antimicrobial fatty acids in community acquired methicillin resistant Staphylococcus aureus. PLoS ONE. 2012;7:e45952.

    Article  Google Scholar 

  • Brash AR. Lipoxygenases: occurrence, functions, catalysis, and acquisition of substrate. J Biol Chem 1999;274:23679–82.

    Article  CAS  PubMed  Google Scholar 

  • Brash AR, Boeglin WE, Chang MS. Discovery of a second 15S-lipoxygenase in humans. Proc Natl Acad Sci U S A. 1997;94:6148–52.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Brasser AJ, Barwacz CA, Dawson DV, Brogden KA, Drake DR, Wertz PW. Presence of wax esters and squalene in human saliva. Arch Oral Biol. 2011;56:588–91.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Brenner RR, Peluffo RO. Effect of saturated and unsaturated fatty acids on the desaturation in vitro of palmitic, stearic, oleic, linoleic, and linolenic acids. J Biol Chem. 1966;241:5213–19.

    CAS  PubMed  Google Scholar 

  • Brownlee RG, Silverstein RM, Muller-Schwarze D, Singer AG. Isolation, identification, and function of the chief component of the male tarsal scent in black-tailed deer. Nature. 1969;221:284–85.

    Article  CAS  Google Scholar 

  • Cahoon EB, Cranmer AM, Shanklin J, Ohlrogge JB. ∆6 hexadecenoic acid is synthesized by the activity of a soluble ∆6 palmitoyl-acyl carrier protein desaturase in Thunbergia alata endosperm. J Biol Chem. 1994;269:27519–26.

    CAS  PubMed  Google Scholar 

  • Cho HP, Nakamura MT, Clarke SD. Cloning, expression, and nutritional regulation of the mammalian Delta-6 desaturase. J Biol Chem. 1999;274:471–7.

    Article  CAS  PubMed  Google Scholar 

  • Cossette C, Patel P, Anumolu JR, Sivendran S, Lee GJ, Gravel S, Graham FD, Lesimple A, Mamer OA, Rokach J, Powell WS. Human neutrophils convert the sebum-derived polyunsaturated fatty acid sebaleic acid to a potent granulocyte chemoattractant. J Biol Chem. 2008;283:11234–43

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Desbois AP, Smith VJ. Antibacterial free fatty acids: activities, mechanisms of action and biotechnological potential. Appl Microbiol Biotechnol. 2010;85:1629–42.

    Article  CAS  PubMed  Google Scholar 

  • Dhouailly D. A new scenario for the evolutionary origin of hair, feather, and avian scales. J Anat. 2009;214:587–606.

    Article  PubMed Central  PubMed  Google Scholar 

  • Downing DT, Stewart ME, Wertz PW, Strauss JS. Essential fatty acids and acne. J Am Acad Dermatol. 1986;14:221–5.

    Article  CAS  PubMed  Google Scholar 

  • Drake DR, Brogden KA, Dawson DV, Wertz PW. Thematic review series: skin lipids. Antimicrobial lipids at the skin surface. J Lipid Res. 2008;49:4–11.

    Article  CAS  PubMed  Google Scholar 

  • Farrell RE Jr. RNA methodologies: a laboratory guide for isolation and characterization. 3rd ed. Amsterdam: Academic Press; 2005. p. 33.

    Google Scholar 

  • Feussner I, Kühn H, Wasternack C. Do specific linoleate 13-lipoxygenases initiate beta-oxidation? FEBS Lett. 1997;406:1–5.

    Article  CAS  PubMed  Google Scholar 

  • Fischer CL, Drake DR, Dawson DV, Blanchette DR, Brogden KA, Wertz PW. Antibacterial activity of sphingoid bases and fatty acids against Gram-positive and Gram-negative bacteria. Antimicrob Agents Chemother. 2012;56:1157–61.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Fischer CL, Walters KS, Drake DR, Dawson DV, Blanchette DR, Brogden KA, Wertz PW. Oral mucosal lipids are antibacterial against Porphyromonas gingivalis, induce ultrastructural damage, and alter bacterial lipid and protein compositions. Int J Oral Sci 2013;5:130–40.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Ge L, Gordon JS, Hsuan C, Stenn K, Prouty SM. Identification of the ∆-6 desaturase of human sebaceous glands: expression and enzyme activity. J Invest Dermatol. 2003;120:707–14.

    Article  CAS  PubMed  Google Scholar 

  • Gostincar C, Turk M, Gunde-Cimerman N. The evolution of fatty acid desaturases and cytochrome b5 in eukaryotes. J Membr Biol. 2010;233:63–72.

    Article  CAS  PubMed  Google Scholar 

  • Green SC, Stewart ME, Downing DT. Variation in sebum fatty acid composition among adult humans. J Invest Dermatol. 1984;83:114–7.

    Article  CAS  PubMed  Google Scholar 

  • Green CD, Ozguden-Akkoc CG, Wang Y, Jump DB, Olson LK. Role of fatty acid elongases in determination of de novo synthesized monounsaturated fatty acid species. J. Lipid Res. 2010;51:1871–7.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Guillou H, D’andrea S, Rioux V, Jan S, Legrand P. The surprising diversity of ∆6-desaturase substrates. Biochem Soc Trans. 2004;32:86–7.

    Article  CAS  PubMed  Google Scholar 

  • Guillou H, Rioux V, Catheline D, Thibault J-N, Bouriel M, Jan S, D’Andrea S, Legrand P. Conversion of hexadecanoic acid to hexadecenoic acid by rat ∆6-desaturase. J Lipid Res. 2003;44:450–4.

    Article  CAS  PubMed  Google Scholar 

  • Guillou H, Zadravec D, Martin PGP, Jacobsson A. The key roles of elongases and desaturases in mammalian fatty acid metabolism: insights from transgenic mice. Prog Lipid Res. 2010;49:186–99.

    Article  CAS  PubMed  Google Scholar 

  • Gurr MI, Harwood JL, Frayn KN. Fatty acid structure and metabolism. In: Lipid biochemistry. Oxford: Blackwell; 2002a. pp. 13–92.

    Google Scholar 

  • Gurr MI, Harwood JL, Frayn KN. Dietary lipids. In: Lipid Biochemistry. Oxford: Blackwell; 2002b. pp. 140–5.

    Google Scholar 

  • Hadley NF. Communication. The adaptive role of lipids in biological systems. New York: Wiley; 1985. p. 253.

    Google Scholar 

  • Hooper SN, Ackman RG. Trans-6-hexadecenoic acid and the corresponding alcohol in lipids of the sea anemone Metridium dianthus. Lipids. 1971;6:341–6.

    Article  CAS  Google Scholar 

  • Hyman AB, Guiducci AV. Ectopic sebaceous glands. In: Montagna W, Ellis RA, Silver AF, editors. The sebaceous glands. New York: Macmillan; 1963. pp. 78–93.

    Google Scholar 

  • Jared C, Antoniazzi MM, Silva JR, Freymüller E. Epidermal glands in squamata: microscopical examination of precloacal glands in Amphisbaena alba (Amphisbaenia, Amphisbaenidae). J Morphol. 1999;241:197–206.

    Article  CAS  PubMed  Google Scholar 

  • Kihara A. Very long-chain fatty acids: elongation, physiology and related disorders. J Biochem. 2012;152:387–95.

    Article  CAS  PubMed  Google Scholar 

  • Knapp LA, Robson J, Waterhouse JS. Olfactory signals and the MHC: a review and a case study in Lemur catta. Am J Primatol. 2006;68:568–84.

    Article  CAS  PubMed  Google Scholar 

  • Knutson DD. Ultrastructural observations in acne vulgaris: the normal sebaceous follicle and acne lesions. J Invest Dermatol. 1974;62:288–307.

    Article  CAS  PubMed  Google Scholar 

  • Kohler T, Weidenmaier C, Peschel A. Wall teichoic acid protects Staphylococcus aureus against antimicrobial fatty acids from human skin. J Bacteriol. 2009;191:4482–4.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Lin M-H, Hsu F-F, Miner JH. Requirement of fatty acid transport protein 4 for development, maturation, and function of sebaceous glands in a mouse model of ichthyosis prematurity syndrome. J Biol Chem. 2013;288:3964–76.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Lupi O. Ancient adaptations of human skin: why do we retain sebaceous and apocrine glands? Int J Dermatol. 2008;47:651–4.

    Article  PubMed  Google Scholar 

  • Marekov I, Momchilova S, Grung B, Nikolova-Damyanova B. Fatty acid composition of wild mushroom species of order agaricales-examination by gas chromatography-mass spectrometry and chemometrics. J Chromatogr B Analyt Technol Biomed Life Sci. 2012;910:54–60.

    Article  CAS  PubMed  Google Scholar 

  • Marquardt A, Stöhr H, White K, Weber BH. cDNA cloning, genomic structure, and chromosomal localization of three members of the human fatty acid desaturase family. Genomics. 2000;66:175–83.

    Article  CAS  PubMed  Google Scholar 

  • Marzouki ZM, Taha AM, Gomaa KS. Fatty acid profiles of sebaceous triglycerides by capillary gas chromatography with mass-selective detection. J Chromatogr. 1988;425:11–24.

    Article  CAS  PubMed  Google Scholar 

  • Matsuzaka T, Shimano H, Yahagi N, Kato T, Atsumi A, Yamamoto T, Inoue N, Ishikawa M, Okada S, Ishigaki N, Iwasaki H, Iwasaki Y, Karasawa T, Kumadaki S, Matsui T, Sekiya M, Ohashi K, Hasty AH, Nakagawa Y, Takahashi A, Suzuki H, Yatoh S, Sone H, Toyoshima H, Osuga J, Yamada N. Crucial role of a long-chain fatty acid elongase, Elovl6, in obesity-induced insulin resistance. Nat Med. 2007;13:1193–202.

    Article  CAS  PubMed  Google Scholar 

  • Mauvoisin D, Mounier C. Hormonal and nutritional regulation of SCD1 gene expression. Biochimie. 2011;93:78–86.

    Article  CAS  PubMed  Google Scholar 

  • McMahon A, Lu H, Butovich IA. A role for ELOVL4 in the mouse meibomian gland and sebocyte cell biology. Invest Ophthalmol Vis Sci. 2014;55:2832–40.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • McNairn AJ, Doucet Y, Demaude J, Brusadelli M, Gordon CB, Uribe-Rivera A, Lambert PF, Bouez C, Breton L, Guasch G. TGFβ signaling regulates lipogenesis in human sebaceous glands cells. BMC Dermatol. 2013;13:2.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Meesapyodsuk D, Qiu X. The front-end desaturase: structure, function, evolution and biotechnological use. Lipids. 2012;47:227–37.

    Article  CAS  PubMed  Google Scholar 

  • Miles AEW. Sebaceous glands in the lip and cheek mucosa of man. Br Dent J. 1958;105:235–48.

    Google Scholar 

  • Miyazaki M, Gomez FE, Ntambi JM. Lack of stearoyl-CoA desaturase-1 function induces a palmitoyl-CoA Delta6 desaturase and represses the stearoyl-CoA desaturase-3 gene in the preputial glands of the mouse. J Lipid Res. 2002;43:2146–54.

    Article  CAS  PubMed  Google Scholar 

  • Miyazaki M, Bruggink SM, Ntambi JM. Identification of mouse palmitoyl-coenzyme A ∆9-desaturase. J Lipid Res. 2006;47:700–4.

    Article  CAS  PubMed  Google Scholar 

  • Montagna W, Yun JS. The skin of primates. X. The skin of the ring-tailed lemur (Lemur catta). Am J Phys Anthropol. 1962;20:95–117.

    Article  CAS  PubMed  Google Scholar 

  • Nagy L, Tontonoz P, Alvarez JG, Chen H, Evans RM. Oxidized LDL regulates macrophage gene expression through ligand activation of PPARgamma. Cell. 1998;93:229–40.

    Article  CAS  PubMed  Google Scholar 

  • Nakamura MT, Cho HP, Clarke SD. Regulation of hepatic ∆-6 desaturase expression and its role in the polyunsaturated fatty acid inhibition of fatty acid synthase gene expression in mice. J Nutr. 2000;130:1561–5.

    CAS  PubMed  Google Scholar 

  • Nakamura MT, Nara TY. Structure, function, and dietary regulation of ∆ 6, ∆ 5, and ∆ 9 desaturases. Annu Rev Nutr. 2004;24:345–76.

    Article  CAS  PubMed  Google Scholar 

  • Nazzaro-Porro M, Passi S, Boniforti L, Belsito F. Effects of aging on fatty acids in skin surface lipids. J Invest Dermatol. 1979;73:112–7.

    Article  CAS  PubMed  Google Scholar 

  • Nichols PD, Volkman JK, Everitt DA. Occurence of cis-6-hexadecenoic acid and other unusual monounsaturated fatty acids in the lipids of oceanic particulate matter. Oceanol Acta. 1989;12:393–403.

    CAS  Google Scholar 

  • Nicolaides, N. Skin lipids: their biochemical uniqueness. Science. 1974;186:19–26.

    Article  CAS  PubMed  Google Scholar 

  • Nicolaides N, Fu HC, Ansari MN, Rice GR. The fatty acids of wax esters and sterol esters from vernix caseosa and from human skin surface lipid. Lipids. 1972;7:506–17.

    Article  CAS  PubMed  Google Scholar 

  • Ntambi JM. Regulation of stearoyl-CoA desaturase by polyunsaturated fatty acids and cholesterol. J Lipid Res. 1999;40:1549–58.

    CAS  PubMed  Google Scholar 

  • Pappas A, Anthonavage M, Gordon JS. Metabolic fate and selective utilization of major fatty acids in human sebaceous gland. J Invest Dermatol. 2002;118:164–71.

    Article  CAS  PubMed  Google Scholar 

  • Pappas A, Fantasia J, Chen T. Age and ethnic variations in sebaceous lipids. Dermatoendocrinology. 2013;5:319–24.

    Article  Google Scholar 

  • Park E-J, Lee AY, Park S, Kim J-H, Cho M-H. Multiple pathways are involved in palmitic acid-induced toxicity. Food Chem Toxicol. 2014;67:26–34.

    Article  CAS  PubMed  Google Scholar 

  • Parsons JB, Yao J, Frank MW, Jackson P, Rock CO. Membrane disruption by antimicrobial fatty acids releases low-molecular-weight proteins from staphylococcus aureus. J Bacteriol. 2012;194:5294–304.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Pereira SL, Leonard AE, Mukerji P. Recent advances in the study of fatty acid desaturases from animals and lower eukaryotes. Prostaglandins Leukot Essent Fatty Acids. 2003;68:97–106.

    Article  CAS  PubMed  Google Scholar 

  • Perkins AC, Cheng CE, Hillebrand GG, Miyamoto K, Kimball AB. Comparison of the epidemiology of acne vulgaris among Caucasian, Asian, Continental Indian and African American women. J Eur Acad Dermatol Venereol. 2011;25:1054–60.

    Article  CAS  PubMed  Google Scholar 

  • Pollard MR, Gunstone FD, James AT, Morris LJ. Desaturation of positional and geometric isomers of monoenoic fatty acids by microsomal preparations of rat liver. Lipids. 1979;15:306–14.

    Article  Google Scholar 

  • Quay WB. Structure and function of skin glands. In: Muller-Schwarze D, Mozell MM, editors. Chemical signals in vertebrates. New York: Plenum Press; 1977. pp. 1–12.

    Chapter  Google Scholar 

  • Reisner RM, Silver DZ, Puhvel M, Sternberg TH. Lipolytic activity of Corynebacterium acnes. J Invest Dermatol. 1968;51:190–6.

    Article  CAS  PubMed  Google Scholar 

  • Richardson AJ. Long-chain polyunsaturated fatty acids in childhood developmental and psychiatric disorders. Lipids. 2004;39:1215–22.

    Article  CAS  PubMed  Google Scholar 

  • Rioux V, Pédrono F, Blanchard H, Duby C, Boulier-Monthéan N, Bernard L, Beauchamp E, Catheline D, Legrand P. Trans-vaccenate is Δ13-desaturated by FADS3 in rodents. J Lipid Res. 2013;54:3438–52.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Rosenfield RL, Kentsis A, Deplewski D, Ciletti N. Rat preputial sebocyte differentiation involves peroxisome proliferator-activated receptors. J Invest Dermatol. 1999;112:226–32.

    Article  CAS  PubMed  Google Scholar 

  • Saliani N, Darabi M, Yousefi B, Baradaran B, Khaniani MS, Darabi M, Shaaker M, Mehdizadeh A, Naji T, Hashemi M. PPARγ agonist-induced alterations in Δ6-desaturase and stearoyl-CoA desaturase 1: role of MEK/ERK1/2 pathway. World J Hepatol. 2013;5:220–5.

    PubMed Central  PubMed  Google Scholar 

  • Sansone A, Melchiorre M, Chatgilialoglu C, Ferreri C. Hexadecenoic fatty acid isomers: a chemical biology approach for human plasma biomarker development. Chem Res Toxicol. 2013;26:1703–9.

    Article  CAS  PubMed  Google Scholar 

  • Sassa T, Ohno Y, Suzuki S, Nomura T, Nishioka C, Kashiwagi T, Hirayama T, Akiyama M, Taguchi R, Shimizu H, Itohara S, Kihara A. Impaired epidermal permeability barrier in mice lacking elovl1, the gene responsible for very-long-chain fatty acid production. Mol Cell Biol. 2013;33:2787–96.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Schempp C, Emde M, Wölfle U. Dermatology in the Darwin anniversary. Part 1: Evolution of the integument. J Dtsch Dermatol Ges. 2009;7:750–7.

    PubMed  Google Scholar 

  • Shalita AR. Genesis of free fatty acids. J Invest Dermatol. 1974;62:332–5.

    Article  CAS  PubMed  Google Scholar 

  • Shappell SB, Keeney DS, Zhang J, Page R, Olson SJ, Brash AR. 15-Lipoxygenase-2 expression in benign and neoplastic sebaceous glands and other cutaneous adnexa. J Invest Dermatol. 2001;117:36–43.

    Article  CAS  PubMed  Google Scholar 

  • Shimano H. Novel qualitative aspects of tissue fatty acids related to metabolic regulation: lessons from Elovl6 knockout. Prog Lipid Res. 2012;51:267–71.

    Article  CAS  PubMed  Google Scholar 

  • Spence MW. Monoenoic fatty-acid isomers of brain in adult and newborn rats. Biochim Biophys Acta. 1970;218:347–56.

    Article  CAS  Google Scholar 

  • Spencer GF, Kleiman R, Miller RW, Earle FR. Occurence of cis-6-hexadecenoic acid as the major component of Thunbergia alata seed oil. Lipids. 1971;6:712–4.

    Article  CAS  Google Scholar 

  • Sperling P, Ternes P, Zank TK, Heinz E. The evolution of desaturases. Prostaglandins Leukot Essent Fatty Acids. 2003;68:73–95.

    Article  CAS  PubMed  Google Scholar 

  • Stewart ME. Sebaceous gland lipids. In: Bereiter-Hahn J, Matoltsy AG, Richards KS, editors. Biology of the Integument. 2. Vertebrates. Berlin: Springer-Verlag; 1986. pp. 824–32.

    Chapter  Google Scholar 

  • Stewart ME, Downing DT. Chemistry and function of mammalian sebaceous lipids. Adv Lipid Res. 1991;24:263–301.

    Article  CAS  PubMed  Google Scholar 

  • Stewart ME, Grahek MO, Cambier LS, Wertz PW, Downing DT. Dilutional effect of increased sebaceous gland activity on the proportion of linoleic acid in sebaceous wax esters and in epidermal acylceramides. J Invest Dermatol. 1986;87:733–6.

    Article  CAS  PubMed  Google Scholar 

  • Strauss JS, Pochi PE, Whitman EN. Suppression of sebaceous gland activity with eicosa-5:8:11:14-tetraynoic acid. J Invest Dermatol. 1967;48:492–3.

    CAS  PubMed  Google Scholar 

  • Takigawa H, Nakagawa H, Kuzukawa M, Mori H, Imokawa G. Deficient production of hexadecenoic acid in the skin is associated in part with the vulnerability of atopic dermatitis patients to colonization by Staphylococcus aureus. Dermatology. 2005;211:240–8.

    Article  CAS  PubMed  Google Scholar 

  • Tang S, Bhatia B, Maldonado CJ, Yang P, Newman RA, Liu J, Chandra D, Traag J, Klein RD, Fischer SM, Chopra D, Shen J, Zhau HE, Chung LWK, Tang DG. Evidence that arachidonate 15-lipoxygenase 2 is a negative cell cycle regulator in normal prostate epithelial cells. J Biol Chem. 2002;277:16189–201.

    Article  CAS  PubMed  Google Scholar 

  • Thody AJ, Shuster S. Control and function of sebaceous glands. Physiol Rev. 1989;69:383–416.

    CAS  PubMed  Google Scholar 

  • Tourdot BE, Ahmed I, Holinstat M. The emerging role of oxylipins in thrombosis and diabetes. Front Pharmacol. 2014;4(176):1–9.

    Google Scholar 

  • Turkish AR, Henneberry AL, Cromley D, Padamsee M, Oelkers P, Bazzi H, Christiano AM, Billheimer JT, Sturley SL. Identification of two novel human acyl-CoA wax alcohol acyltransferases: members of the diacylglycerol acyltransferase 2 (DGAT2) gene superfamily. J Biol Chem. 2005;280:14755–64.

    Article  CAS  PubMed  Google Scholar 

  • Tvrdik P, Westerberg R, Silve S, Asadi A, Jakobsson A, Cannon B, Loison G, Jacobsson A. Role of a new mammalian gene family in the biosynthesis of very long chain fatty acids and sphingolipids. J Cell Biol. 2000;149:707–18.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Umeda S, Ayyagari R, Suzuki MT, Ono F, Iwata F, Fujiki K, Kanai A, Takada Y, Yoshikawa Y, Tanaka Y, Iwata T. Molecular cloning of ELOVL4 gene from cynomolgus monkey (Macaca fascicularis). Exp Anim. 2003;52:129–35.

    Article  CAS  PubMed  Google Scholar 

  • Wakimoto K, Chiba H, Michibata H, Seishima M, Kawasaki S, Okubo K, Mitsui H, Torii H, Imai Y. A novel diacylglycerol acyltransferase (DGAT2) is decreased in human psoriatic skin and increased in diabetic mice. Biochem. Biophys. Res. Commun. 2003;310:296–302.

    Article  CAS  PubMed  Google Scholar 

  • Wang Y, Botolin D, Christian B, Busik J, Xu J, Jump D.B. Tissue-specific, nutritional, and developmental regulation of rat fatty acid elongases. J. Lipid Res. 2005;46:706–15.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Watts JL, Browse J. A palmitoyl-CoA-Specific ∆9 fatty acid desaturase from Caenorhabditis elegans. Biochem Bioph Res Co. 2000;272:263–9.

    Article  CAS  Google Scholar 

  • Welle S, Bhatt K, Thornton.CA. Inventory of high-abundance mRNAs in skeletal muscle of normal men. Genome Res. 1999;9:506–13.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Wille JJ, Kydonieus A. Palmitoleic acid isomer (C16:1∆6) in human skin sebum is effective against gram-positive bacteria. Skin Pharmacol Appl Skin Physiol. 2003;16:176–87.

    Article  CAS  PubMed  Google Scholar 

  • Wille JJ, Drake D, Wertz PW. Identification of cis-palmitoleic acid as the active antimicrobial in human skin sebum. J Invest Dermatol. 1997;108:677.

    Google Scholar 

  • Westerberg R, Tvrdik P, Undén A-B, Månsson J-E, Norlén L, Jakobsson A, Holleran WH, Elias PM, Asadi A, Flodby P, Toftgård R, Capecchi MR, Jacobsson A. Role for ELOVL3 and fatty acid chain length in development of hair and skin function. J Biol Chem. 2004;279:5621–9.

    Article  CAS  PubMed  Google Scholar 

  • Yamamoto A, Serizawa S, Ito M, Sato Y. Effect of aging on sebaceous gland activity and on the fatty acid composition of wax esters. J Invest Dermatol. 1987;89:507–12.

    Article  CAS  PubMed  Google Scholar 

  • Zheng Y, Prouty SM, Harmon A, Sundberg JP, Stenn KS, Parimoo S. Scd3-a novel gene of the stearoyl-CoA desaturase family with restricted expression in skin. Genomics. 2001;71:182–91.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors wish to thank the members of the The Skin Research Center of Johnson and Johnson who participated in this research, and especially Kurt Stenn, M.D. who had the vision to pursue sebaceous gland gene discovery and lipid biology.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Stephen M. Prouty .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer Science+Business Media New York

About this chapter

Cite this chapter

Prouty, S., Pappas, A. (2015). Sapienic Acid: Species-Specific Fatty Acid Metabolism of the Human Sebaceous Gland. In: Pappas, A. (eds) Lipids and Skin Health. Springer, Cham. https://doi.org/10.1007/978-3-319-09943-9_10

Download citation

Publish with us

Policies and ethics