Skip to main content

Actively Replicating Domains Randomly Associate into Replication Factories

  • Chapter
  • First Online:
Mathematical Modelling of Chromosome Replication and Replicative Stress

Part of the book series: Springer Theses ((Springer Theses))

  • 463 Accesses

Abstract

In the previous chapter DNA was treated as a stiff, one-dimensional line. However within a cellular environment DNA diffuses and organises into structures on different scales as for instance being wrapped around nucleosomes or forming chromatin.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. M. Tark-Dame, R. van Driel, D.W. Heermann, Chromatin folding-from biology to polymer models and back. J. Cell Sci. 124(6), 839–845 (2011). doi:10.1242/jcs.077628

  2. V. Dion, S.M. Gasser, Chromatin movement in the maintenance of genome stability. Cell 152(6), 1355–1364 (2013). doi:10.1016/j.cell.2013.02.010

  3. R.E. Boulos, A. Arneodo, P. Jensen, B. Audit, Revealing long-range interconnected hubs in human chromatin interaction data using graph theory. Phys. Rev. Lett. 111(11), 118102 (2013). doi:10.1103/PhysRevLett.111.118102

  4. M. Barbieri, M. Chotalia, J. Fraser, L.-M. Lavitas, J. Dostie, A. Pombo, M. Nicodemi, Complexity of chromatin folding is captured by the strings and binders switch model. Proc. Natl. Acad. Sci. U. S. A. 109(40), 16173–16178 (2012). doi:10.1073/pnas.1204799109

    Article  ADS  Google Scholar 

  5. S. Hahn, D. Kim, Physical origin of the contact frequency in chromosome conformation capture data. Biophys. J. 105(8), 1786–1795 (2013). doi:10.1016/j.bpj.2013.08.043

    Article  ADS  Google Scholar 

  6. E. Kitamura, J.J. Blow, T.U. Tanaka, Live-cell imaging reveals replication of individual replicons in eukaryotic replication factories. Cell 125(7), 1297–1308 (2006). doi:10.1016/j.cell.2006.04.041

    Article  Google Scholar 

  7. D. Baddeley et al., Measurement of replication structures at the nanometer scale using super-resolution light microscopy. Nucleic Acids Res. 38(2), e8 (2010). doi:10.1093/nar/gkp901

    Article  Google Scholar 

  8. N. Saner et al., Stochastic association of neighboring replicons creates replication factories in budding yeast. J. Cell Biol. 202(7), 1001–1012 (2013). doi:10.1083/jcb.201306143

    Article  Google Scholar 

  9. N. Yabuki, H. Terashima, K. Kitada, Mapping of early firing origins on a replication profile of budding yeast. Genes Cells 7(8), 781–789 (2002)

    Article  Google Scholar 

  10. K. Sneppen and G. Zocchi, Timescales for target location in a cell. Phys. Mol. Biol. 178–182 (2005)

    Google Scholar 

  11. R. Berezney, D. D. Dubey, and J. A. Huberman, Heterogeneity of eukaryotic replicons, replicon clusters, and replication foci. Chromosoma 108(8), 471–484 (2000)

    Google Scholar 

  12. J. Dekker, K. Rippe, M. Dekker, N. Kleckner, Capturing chromosome conformation. Science 295(5558), 1306–1311 (2002). doi:10.1126/science.1067799

  13. P Heun, T Laroche, K Shimada, P Furrer, and S. M. Gasser, Chromosome dynamics in the yeast interphase nucleus. Science 294(5549), 2181–2186 (2001). doi:10.1126/science.1065366

  14. D.P. Landau, K. Binder, A Guide to Monte Carlo Simulations in Statistical Physics (Cambridge University Press, Cambridge, 2005). doi:10.1017/CBO9780511614460

  15. C.A. Baxter, C.W. Murray, D.E. Clark, D.R. Westhead, M.D. Eldridge, Flexible docking using Tabu search and an empirical estimate of binding affinity. Proteins 33(3), 367–382 (1998). doi:9829696

    Google Scholar 

  16. K. Rippe, Dynamic organization of the cell nucleus. Curr. Opin. Genet. Dev. 17(5), 373–380 (2007). doi:10.1016/j.gde.2007.08.007

    Article  Google Scholar 

  17. D. Marenduzzo, C. Micheletti, P.R. Cook, Entropy-driven genome organization. Biophys. J. 90(10), 3712–3721 (2006). doi:10.1529/biophysj.105.077685

  18. M.K. Raghuraman et al., Replication dynamics of the yeast genome. Science 294(5540), 115–121 (2001). doi:10.1126/science.294.5540.115

  19. A.P.S. de Moura, R. Retkute, M. Hawkins, C.A. Nieduszynski, Mathematical modelling of whole chromosome replication. Nucleic Acids Res. 38(17), 5623–5633 (2010). doi:10.1093/nar/gkq343

  20. R. Retkute, C.A. Nieduszynski, A. de Moura, Mathematical modeling of genome replication. Phys. Rev. E 86(3), 031916 (2012). doi:10.1103/PhysRevE.86.031916

    Article  ADS  Google Scholar 

  21. M. Hawkins, R. Retkute, C.A. Müller, N. Saner, T.U. Tanaka, A.P. de Moura, C.A. Nieduszynski, High-resolution replication profiles define the stochastic nature of genome replication initiation and termination. Cell Rep. 5(4), 1132–1141 (2013). doi:10.1016/j.celrep.2013.10.014

    Article  Google Scholar 

  22. M.H. Linskens, J.A. Huberman, Organization of replication of ribosomal DNA in Saccharomyces cerevisiae. Mol. Cell. Biol. 8(11), 4927–4935 (1988)

    Google Scholar 

  23. P. Pasero, A. Bensimon, E. Schwob, Single-molecule analysis reveals clustering and epigenetic regulation of replication origins at the yeast rDNA locus. Genes Dev. 16(19), 2479–2484 (2002). doi:10.1101/gad.232902

    Article  Google Scholar 

  24. I.I. Cisse et al., Real-time dynamics of RNA polymerase II clustering in live human cells. Science 341(6146), 664–667 (2013). doi:10.1126/science.1239053

    Article  ADS  Google Scholar 

  25. P.J. Gillespie and J.J. Blow, Clusters, factories and domains: The complex structure of S phase comes into focus. Cell Cycle 9(16) (2010). doi:10.4161/cc.9.16.12644

  26. S. Tuduri, H. Tourrière, P. Pasero, Defining replication origin efficiency using DNA fiber assays. Chromosome Res. 18(1), 91–102 (2010). doi:10.1007/s10577-009-9098-y

    Article  Google Scholar 

  27. Z. Duan et al., A three-dimensional model of the yeast genome. Nature 465(7296), 363–367 (2010). doi:10.1038/nature08973

    Article  ADS  Google Scholar 

  28. X.Q. Ge, J.J. Blow, Chk1 inhibits replication factory activation but allows dormant origin firing in existing factories. J. Cell Biol. 191(7), 1285–1297 (2010). doi:10.1083/jcb.201007074

    Article  Google Scholar 

  29. A. M. Thomson, P. J. Gillespie, and J. J. Blow, Replication factory activation can be decoupled from the replication timing program by modulating Cdk levels. J. Cell Biol. 188(2), pp. 209–221 (2010). doi:10.1083/jcb11037

  30. D.A. Jackson, Replicon clusters are stable units of chromosome structure: evidence that nuclear organization contributes to the efficient activation and propagation of S phase in human cells. J. Cell Biol. 140(6), 1285–1295 (1998). doi:10.1083/jcb.140.6.1285

    Article  Google Scholar 

  31. M. Lisby and R. Rothstein, DNA damage checkpoint and repair centers. Curr. Opin. Cell Biol. 16(3), pp. 328–334 (2004). doi:10.1016/j.ceb.03.011

  32. H. Sutherland, W.A. Bickmore, Transcription factories: gene expression in unions? Nat. Rev. Genet. 10(7), 457–466 (2009). doi:10.1038/nrg2592

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jens Karschau .

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Karschau, J. (2015). Actively Replicating Domains Randomly Associate into Replication Factories. In: Mathematical Modelling of Chromosome Replication and Replicative Stress. Springer Theses. Springer, Cham. https://doi.org/10.1007/978-3-319-08861-7_3

Download citation

Publish with us

Policies and ethics