Skip to main content

Small G Proteins: Arf Family GTPases in Vesicular Transport

  • Chapter
  • First Online:
Ras Superfamily Small G Proteins: Biology and Mechanisms 2

Abstract

Small GTP-binding proteins of the ADP-ribosylation factor (Arf) family are key components of trafficking vesicles. In the past three decades a number of vesicular carriers, whose formation depends on members of the Arf family were identified, and general molecular mechanisms how these transport carriers form and operate were established. Here we describe discovery and roles of the Arf-dependent carriers of the early secretory pathway, the COPI and COPII vesicles. We will discuss their function with regard to molecular mechanisms in coat recruitment, selection of cargo proteins, vesicle membrane budding/scission, and vesicle uncoating.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Adolf F, Herrmann A, Hellwig A, Beck R, Brugger B, Wieland FT (2013) Scission of COPI and COPII vesicles is independent of GTP hydrolysis. Traffic 14:922–932

    PubMed  CAS  Google Scholar 

  • Aguilera-Romero A, Kaminska J, Spang A, Riezman H, Muniz M (2008) The yeast p24 complex is required for the formation of COPI retrograde transport vesicles from the Golgi apparatus. J Cell Biol 180:713–720

    PubMed  CAS  PubMed Central  Google Scholar 

  • Alvarez C, Garcia-Mata R, Brandon E, Sztul E (2003) COPI recruitment is modulated by a Rab1b-dependent mechanism. Mol Biol Cell 14:2116–2127

    PubMed  CAS  PubMed Central  Google Scholar 

  • Amor JC, Harrison DH, Kahn RA, Ringe D (1994) Structure of the human ADP-ribosylation factor 1 complexed with GDP. Nature 372:704–708

    PubMed  CAS  Google Scholar 

  • Andag U, Neumann T, Schmitt HD (2001) The coatomer-interacting protein Dsl1p is required for Golgi-to-endoplasmic reticulum retrieval in yeast. J Biol Chem 276:39150–39160

    PubMed  CAS  Google Scholar 

  • Antonny B (2011) Mechanisms of membrane curvature sensing. Annu Rev Biochem 80:101–123

    PubMed  CAS  Google Scholar 

  • Antonny B, Beraud-Dufour S, Chardin P, Chabre M (1997) N-terminal hydrophobic residues of the G-protein ADP-ribosylation factor-1 insert into membrane phospholipids upon GDP to GTP exchange. Biochemistry 36:4675–4684

    PubMed  CAS  Google Scholar 

  • Antonny B, Madden D, Hamamoto S, Orci L, Schekman R (2001) Dynamics of the COPII coat with GTP and stable analogues. Nat Cell Biol 3:531–537

    PubMed  CAS  Google Scholar 

  • Antonny B, Gounon P, Schekman R, Orci L (2003) Self-assembly of minimal COPII cages. EMBO Rep 4:419–424

    PubMed  CAS  PubMed Central  Google Scholar 

  • Appenzeller C, Andersson H, Kappeler F, Hauri HP (1999) The lectin ERGIC-53 is a cargo transport receptor for glycoproteins. Nat Cell Biol 1:330–334

    PubMed  CAS  Google Scholar 

  • Aridor M, Bannykh SI, Rowe T, Balch WE (1995) Sequential coupling between COPII and COPI vesicle coats in endoplasmic reticulum to Golgi transport. J Cell Biol 131:875–893

    PubMed  CAS  Google Scholar 

  • Aridor M, Weissman J, Bannykh S, Nuoffer C, Balch WE (1998) Cargo selection by the COPII budding machinery during export from the ER. J Cell Biol 141:61–70

    PubMed  CAS  PubMed Central  Google Scholar 

  • Austin C, Hinners I, Tooze SA (2000) Direct and GTP-dependent interaction of ADP-ribosylation factor 1 with clathrin adaptor protein AP-1 on immature secretory granules. J Biol Chem 275:21862–21869

    PubMed  CAS  Google Scholar 

  • Austin C, Boehm M, Tooze SA (2002) Site-specific cross-linking reveals a differential direct interaction of class 1, 2, and 3 ADP-ribosylation factors with adaptor protein complexes 1 and 3. Biochemistry 41:4669–4677

    PubMed  CAS  Google Scholar 

  • Baker D, Hicke L, Rexach M, Schleyer M, Schekman R (1988) Reconstitution of SEC gene product-dependent intercompartmental protein transport. Cell 54:335–344

    PubMed  CAS  Google Scholar 

  • Barlowe C, Schekman R (1993) SEC12 encodes a guanine-nucleotide-exchange factor essential for transport vesicle budding from the ER. Nature 365:347–349

    PubMed  CAS  Google Scholar 

  • Barlowe C, d’Enfert C, Schekman R (1993) Purification and characterization of SAR1p, a small GTP-binding protein required for transport vesicle formation from the endoplasmic reticulum. J Biol Chem 268:873–879

    PubMed  CAS  Google Scholar 

  • Barlowe C, Orci L, Yeung T, Hosobuchi M, Hamamoto S, Salama N, Rexach MF, Ravazzola M, Amherdt M, Schekman R (1994) COPII: a membrane coat formed by Sec proteins that drive vesicle budding from the endoplasmic reticulum. Cell 77:895–907

    PubMed  CAS  Google Scholar 

  • Beck R, Sun Z, Adolf F, Rutz C, Bassler J, Wild K, Sinning I, Hurt E, Brugger B, Bethune J et al (2008) Membrane curvature induced by Arf1-GTP is essential for vesicle formation. Proc Natl Acad Sci USA 105:11731–11736

    PubMed  CAS  PubMed Central  Google Scholar 

  • Beck R, Adolf F, Weimer C, Bruegger B, Wieland FT (2009) ArfGAP1 activity and COPI vesicle biogenesis. Traffic 10:307–315

    PubMed  CAS  Google Scholar 

  • Beck R, Prinz S, Diestelkotter-Bachert P, Rohling S, Adolf F, Hoehner K, Welsch S, Ronchi P, Brugger B, Briggs JA et al (2011) Coatomer and dimeric ADP ribosylation factor 1 promote distinct steps in membrane scission. J Cell Biol 194:765–777

    PubMed  CAS  PubMed Central  Google Scholar 

  • Belden WJ, Barlowe C (1996) Erv25p, a component of COPII-coated vesicles, forms a complex with Emp24p that is required for efficient endoplasmic reticulum to Golgi transport. J Biol Chem 271:26939–26946

    PubMed  CAS  Google Scholar 

  • Belden WJ, Barlowe C (2001) Role of Erv29p in collecting soluble secretory proteins into ER-derived transport vesicles. Science 294:1528–1531

    PubMed  CAS  Google Scholar 

  • Beraud-Dufour S, Robineau S, Chardin P, Paris S, Chabre M, Cherfils J, Antonny B (1998) A glutamic finger in the guanine nucleotide exchange factor ARNO displaces Mg2+ and the beta-phosphate to destabilize GDP on ARF1. EMBO J 17:3651–3659

    PubMed  CAS  PubMed Central  Google Scholar 

  • Bermak JC, Li M, Bullock C, Weingarten P, Zhou QY (2002) Interaction of gamma-COP with a transport motif in the D1 receptor C-terminus. Eur J Cell Biol 81:77–85

    PubMed  CAS  Google Scholar 

  • Bethune J, Kol M, Hoffmann J, Reckmann I, Brugger B, Wieland F (2006) Coatomer, the coat protein of COPI transport vesicles, discriminates endoplasmic reticulum residents from p24 proteins. Mol Cell Biol 26:8011–8021

    PubMed  CAS  PubMed Central  Google Scholar 

  • Bhattacharyya D, Glick BS (2007) Two mammalian Sec16 homologues have nonredundant functions in endoplasmic reticulum (ER) export and transitional ER organization. Mol Biol Cell 18:839–849

    PubMed  CAS  PubMed Central  Google Scholar 

  • Bi X, Corpina RA, Goldberg J (2002) Structure of the Sec23/24-Sar1 pre-budding complex of the COPII vesicle coat. Nature 419:271–277

    PubMed  CAS  Google Scholar 

  • Bi X, Mancias JD, Goldberg J (2007) Insights into COPII coat nucleation from the structure of Sec23.Sar1 complexed with the active fragment of Sec31. Dev Cell 13:635–645

    PubMed  CAS  PubMed Central  Google Scholar 

  • Bianchi P, Fermo E, Vercellati C, Boschetti C, Barcellini W, Iurlo A, Marcello AP, Righetti PG, Zanella A (2009) Congenital dyserythropoietic anemia type II (CDAII) is caused by mutations in the SEC23B gene. Hum Mutat 30:1292–1298

    PubMed  CAS  Google Scholar 

  • Bielli A, Haney CJ, Gabreski G, Watkins SC, Bannykh SI, Aridor M (2005) Regulation of Sar1 NH2 terminus by GTP binding and hydrolysis promotes membrane deformation to control COPII vesicle fission. J Cell Biol 171:919–924

    PubMed  CAS  PubMed Central  Google Scholar 

  • Bigay J, Gounon P, Robineau S, Antonny B (2003) Lipid packing sensed by ArfGAP1 couples COPI coat disassembly to membrane bilayer curvature. Nature 426:563–566

    PubMed  CAS  Google Scholar 

  • Bigay J, Casella JF, Drin G, Mesmin B, Antonny B (2005) ArfGAP1 responds to membrane curvature through the folding of a lipid packing sensor motif. EMBO J 24:2244–2253

    PubMed  CAS  PubMed Central  Google Scholar 

  • Boehm J, Ulrich HD, Ossig R, Schmitt HD (1994) Kex2-dependent invertase secretion as a tool to study the targeting of transmembrane proteins which are involved in ER→Golgi transport in yeast. EMBO J 13:3696–3710

    PubMed  CAS  PubMed Central  Google Scholar 

  • Boehm J, Letourneur F, Ballensiefen W, Ossipov D, Demolliere C, Schmitt HD (1997) Sec12p requires Rer1p for sorting to coatomer (COPI)-coated vesicles and retrieval to the ER. J Cell Sci 110(Pt 8):991–1003

    PubMed  CAS  Google Scholar 

  • Boehm M, Aguilar RC, Bonifacino JS (2001) Functional and physical interactions of the adaptor protein complex AP-4 with ADP-ribosylation factors (ARFs). EMBO J 20:6265–6276

    PubMed  CAS  PubMed Central  Google Scholar 

  • Boman AL, Zhang C, Zhu X, Kahn RA (2000) A family of ADP-ribosylation factor effectors that can alter membrane transport through the trans-Golgi. Mol Biol Cell 11:1241–1255

    PubMed  CAS  PubMed Central  Google Scholar 

  • Bourne HR, Sanders DA, McCormick F (1990) The GTPase superfamily: a conserved switch for diverse cell functions. Nature 348:125–132

    PubMed  CAS  Google Scholar 

  • Bourne HR, Sanders DA, McCormick F (1991) The GTPase superfamily: conserved structure and molecular mechanism. Nature 349:117–127

    PubMed  CAS  Google Scholar 

  • Boyadjiev SA, Fromme JC, Ben J, Chong SS, Nauta C, Hur DJ, Zhang G, Hamamoto S, Schekman R, Ravazzola M et al (2006) Cranio-lenticulo-sutural dysplasia is caused by a SEC23A mutation leading to abnormal endoplasmic-reticulum-to-Golgi trafficking. Nat Genet 38:1192–1197

    PubMed  CAS  Google Scholar 

  • Bremser M, Nickel W, Schweikert M, Ravazzola M, Amherdt M, Hughes CA, Sollner TH, Rothman JE, Wieland FT (1999) Coupling of coat assembly and vesicle budding to packaging of putative cargo receptors. Cell 96:495–506

    PubMed  CAS  Google Scholar 

  • Brock C, Boudier L, Maurel D, Blahos J, Pin JP (2005) Assembly-dependent surface targeting of the heterodimeric GABAB receptor is controlled by COPI but not 14-3-3. Mol Biol Cell 16:5572–5578

    PubMed  CAS  PubMed Central  Google Scholar 

  • Buchanan R, Kaufman A, Kung-Tran L, Miller EA (2010) Genetic analysis of yeast Sec24p mutants suggests cargo binding is not co-operative during ER export. Traffic 11:1034–1043

    PubMed  CAS  PubMed Central  Google Scholar 

  • Bue CA, Barlowe C (2009) Molecular dissection of Erv26p identifies separable cargo binding and coat protein sorting activities. J Biol Chem 284:24049–24060

    PubMed  CAS  PubMed Central  Google Scholar 

  • Bue CA, Bentivoglio CM, Barlowe C (2006) Erv26p directs pro-alkaline phosphatase into endoplasmic reticulum-derived coat protein complex II transport vesicles. Mol Biol Cell 17:4780–4789

    PubMed  CAS  PubMed Central  Google Scholar 

  • Caro LG, Palade GE (1964) Protein synthesis, storage, and discharge in the pancreatic exocrine cell. An autoradiographic study. J Cell Biol 20:473–495

    PubMed  CAS  PubMed Central  Google Scholar 

  • Castillon GA, Aguilera-Romero A, Manzano-Lopez J, Epstein S, Kajiwara K, Funato K, Watanabe R, Riezman H, Muniz M (2011) The yeast p24 complex regulates GPI-anchored protein transport and quality control by monitoring anchor remodeling. Mol Biol Cell 22:2924–2936

    PubMed  CAS  PubMed Central  Google Scholar 

  • Cherfils J, Menetrey J, Mathieu M, Le Bras G, Robineau S, Beraud-Dufour S, Antonny B, Chardin P (1998) Structure of the Sec7 domain of the Arf exchange factor ARNO. Nature 392:101–105

    PubMed  CAS  Google Scholar 

  • Claude A, Zhao BP, Kuziemsky CE, Dahan S, Berger SJ, Yan JP, Armold AD, Sullivan EM, Melancon P (1999) GBF1: a novel Golgi-associated BFA-resistant guanine nucleotide exchange factor that displays specificity for ADP-ribosylation factor 5. J Cell Biol 146:71–84

    PubMed  CAS  PubMed Central  Google Scholar 

  • Connerly PL, Esaki M, Montegna EA, Strongin DE, Levi S, Soderholm J, Glick BS (2005) Sec16 is a determinant of transitional ER organization. Curr Biol 15:1439–1447

    PubMed  CAS  Google Scholar 

  • Contreras I, Ortiz-Zapater E, Aniento F (2004) Sorting signals in the cytosolic tail of membrane proteins involved in the interaction with plant ARF1 and coatomer. Plant J 38:685–698

    PubMed  CAS  Google Scholar 

  • Cosson P, Letourneur F (1994) Coatomer interaction with di-lysine endoplasmic reticulum retention motifs. Science 263:1629–1631

    PubMed  CAS  Google Scholar 

  • Cosson P, Demolliere C, Hennecke S, Duden R, Letourneur F (1996) Delta- and zeta-COP, two coatomer subunits homologous to clathrin-associated proteins, are involved in ER retrieval. EMBO J 15:1792–1798

    PubMed  CAS  PubMed Central  Google Scholar 

  • Cosson P, Lefkir Y, Demolliere C, Letourneur F (1998) New COP1-binding motifs involved in ER retrieval. EMBO J 17:6863–6870

    PubMed  CAS  PubMed Central  Google Scholar 

  • d’Enfert C, Barlowe C, Nishikawa S, Nakano A, Schekman R (1991) Structural and functional dissection of a membrane glycoprotein required for vesicle budding from the endoplasmic reticulum. Mol Cell Biol 11:5727–5734

    PubMed  PubMed Central  Google Scholar 

  • Dancourt J, Barlowe C (2010) Protein sorting receptors in the early secretory pathway. Annu Rev Biochem 79:777–802

    PubMed  CAS  Google Scholar 

  • Davies SM, Harroun TA, Hauss T, Kelly SM, Bradshaw JP (2003) The membrane bound N-terminal domain of human adenosine diphosphate ribosylation factor-1 (ARF1). FEBS Lett 548:119–124

    PubMed  CAS  Google Scholar 

  • Dean N, Pelham HR (1990) Recycling of proteins from the Golgi compartment to the ER in yeast. J Cell Biol 111:369–377

    PubMed  CAS  Google Scholar 

  • Dell’Angelica EC, Puertollano R, Mullins C, Aguilar RC, Vargas JD, Hartnell LM, Bonifacino JS (2000) GGAs: a family of ADP ribosylation factor-binding proteins related to adaptors and associated with the Golgi complex. J Cell Biol 149:81–94

    PubMed  PubMed Central  Google Scholar 

  • Deng Y, Golinelli-Cohen MP, Smirnova E, Jackson CL (2009) A COPI coat subunit interacts directly with an early-Golgi localized Arf exchange factor. EMBO Rep 10:58–64

    PubMed  CAS  PubMed Central  Google Scholar 

  • Dominguez M, Dejgaard K, Fullekrug J, Dahan S, Fazel A, Paccaud JP, Thomas DY, Bergeron JJ, Nilsson T (1998) gp25L/emp24/p24 protein family members of the cis-Golgi network bind both COP I and II coatomer. J Cell Biol 140:751–765

    PubMed  CAS  PubMed Central  Google Scholar 

  • Donaldson JG, Cassel D, Kahn RA, Klausner RD (1992) ADP-ribosylation factor, a small GTP-binding protein, is required for binding of the coatomer protein beta-COP to Golgi membranes. Proc Natl Acad Sci USA 89:6408–6412

    PubMed  CAS  PubMed Central  Google Scholar 

  • Duden R, Griffiths G, Frank R, Argos P, Kreis TE (1991) Beta-COP, a 110 kd protein associated with non-clathrin-coated vesicles and the Golgi complex, shows homology to beta-adaptin. Cell 64:649–665

    PubMed  CAS  Google Scholar 

  • Dumaresq-Doiron K, Savard MF, Akam S, Costantino S, Lefrancois S (2010) The phosphatidylinositol 4-kinase PI4KIIIalpha is required for the recruitment of GBF1 to Golgi membranes. J Cell Sci 123:2273–2280

    PubMed  CAS  Google Scholar 

  • Espenshade P, Gimeno RE, Holzmacher E, Teung P, Kaiser CA (1995) Yeast SEC16 gene encodes a multidomain vesicle coat protein that interacts with Sec23p. J Cell Biol 131:311–324

    PubMed  CAS  Google Scholar 

  • Eugster A, Frigerio G, Dale M, Duden R (2000) COP I domains required for coatomer integrity, and novel interactions with ARF and ARF-GAP. EMBO J 19:3905–3917

    PubMed  CAS  PubMed Central  Google Scholar 

  • Eugster A, Frigerio G, Dale M, Duden R (2004) The alpha- and beta’-COP WD40 domains mediate cargo-selective interactions with distinct di-lysine motifs. Mol Biol Cell 15:1011–1023

    PubMed  CAS  PubMed Central  Google Scholar 

  • Faini M, Prinz S, Beck R, Schorb M, Riches JD, Bacia K, Brugger B, Wieland FT, Briggs JA (2012) The structures of COPI-coated vesicles reveal alternate coatomer conformations and interactions. Science 336:1451–1454

    PubMed  CAS  Google Scholar 

  • Faini M, Beck R, Wieland FT, Briggs JA (2013) Vesicle coats: structure, function, and general principles of assembly. Trends Cell Biol 23:279–288

    PubMed  CAS  Google Scholar 

  • Fath S, Mancias JD, Bi X, Goldberg J (2007) Structure and organization of coat proteins in the COPII cage. Cell 129:1325–1336

    PubMed  CAS  Google Scholar 

  • Faulstich D, Auerbach S, Orci L, Ravazzola M, Wegchingel S, Lottspeich F, Stenbeck G, Harter C, Wieland FT, Tschochner H (1996) Architecture of coatomer: molecular characterization of delta-COP and protein interactions within the complex. J Cell Biol 135:53–61

    PubMed  CAS  Google Scholar 

  • Fiedler K, Veit M, Stamnes MA, Rothman JE (1996) Bimodal interaction of coatomer with the p24 family of putative cargo receptors. Science 273:1396–1399

    PubMed  CAS  Google Scholar 

  • Forster R, Weiss M, Zimmermann T, Reynaud EG, Verissimo F, Stephens DJ, Pepperkok R (2006) Secretory cargo regulates the turnover of COPII subunits at single ER exit sites. Curr Biol 16:173–179

    PubMed  CAS  Google Scholar 

  • Franco M, Chardin P, Chabre M, Paris S (1995) Myristoylation of ADP-ribosylation factor 1 facilitates nucleotide exchange at physiological Mg2+ levels. J Biol Chem 270:1337–1341

    PubMed  CAS  Google Scholar 

  • Franco M, Chardin P, Chabre M, Paris S (1996) Myristoylation-facilitated binding of the G protein ARF1GDP to membrane phospholipids is required for its activation by a soluble nucleotide exchange factor. J Biol Chem 271:1573–1578

    PubMed  CAS  Google Scholar 

  • Frigerio G, Grimsey N, Dale M, Majoul I, Duden R (2007) Two human ARFGAPs associated with COP-I-coated vesicles. Traffic 8:1644–1655

    PubMed  CAS  PubMed Central  Google Scholar 

  • Fromme JC, Ravazzola M, Hamamoto S, Al-Balwi M, Eyaid W, Boyadjiev SA, Cosson P, Schekman R, Orci L (2007) The genetic basis of a craniofacial disease provides insight into COPII coat assembly. Dev Cell 13:623–634

    PubMed  CAS  PubMed Central  Google Scholar 

  • Fujita M, Watanabe R, Jaensch N, Romanova-Michaelides M, Satoh T, Kato M, Riezman H, Yamaguchi Y, Maeda Y, Kinoshita T (2011) Sorting of GPI-anchored proteins into ER exit sites by p24 proteins is dependent on remodeled GPI. J Cell Biol 194:61–75

    PubMed  CAS  PubMed Central  Google Scholar 

  • Futai E, Hamamoto S, Orci L, Schekman R (2004) GTP/GDP exchange by Sec12p enables COPII vesicle bud formation on synthetic liposomes. EMBO J 23:4146–4155

    PubMed  CAS  PubMed Central  Google Scholar 

  • Futatsumori M, Kasai K, Takatsu H, Shin HW, Nakayama K (2000) Identification and characterization of novel isoforms of COP I subunits. J Biochem 128:793–801

    PubMed  CAS  Google Scholar 

  • Garcia-Mata R, Sztul E (2003) The membrane-tethering protein p115 interacts with GBF1, an ARF guanine-nucleotide-exchange factor. EMBO Rep 4:320–325

    PubMed  CAS  PubMed Central  Google Scholar 

  • Garcia-Mata R, Szul T, Alvarez C, Sztul E (2003) ADP-ribosylation factor/COPI-dependent events at the endoplasmic reticulum-Golgi interface are regulated by the guanine nucleotide exchange factor GBF1. Mol Biol Cell 14:2250–2261

    PubMed  CAS  PubMed Central  Google Scholar 

  • Gaynor EC, te Heesen S, Graham TR, Aebi M, Emr SD (1994) Signal-mediated retrieval of a membrane protein from the Golgi to the ER in yeast. J Cell Biol 127:653–665

    PubMed  CAS  Google Scholar 

  • Gillon AD, Latham CF, Miller EA (2012) Vesicle-mediated ER export of proteins and lipids. Biochim Biophys Acta 1821:1040–1049

    PubMed  CAS  PubMed Central  Google Scholar 

  • Gimeno RE, Espenshade P, Kaiser CA (1996) COPII coat subunit interactions: Sec24p and Sec23p bind to adjacent regions of Sec16p. Mol Biol Cell 7:1815–1823

    PubMed  CAS  PubMed Central  Google Scholar 

  • Giraudo CG, Maccioni HJ (2003) Endoplasmic reticulum export of glycosyltransferases depends on interaction of a cytoplasmic dibasic motif with Sar1. Mol Biol Cell 14:3753–3766

    PubMed  CAS  PubMed Central  Google Scholar 

  • Goldberg J (1998) Structural basis for activation of ARF GTPase: mechanisms of guanine nucleotide exchange and GTP-myristoyl switching. Cell 95:237–248

    PubMed  CAS  Google Scholar 

  • Gommel DU, Memon AR, Heiss A, Lottspeich F, Pfannstiel J, Lechner J, Reinhard C, Helms JB, Nickel W, Wieland FT (2001) Recruitment to Golgi membranes of ADP-ribosylation factor 1 is mediated by the cytoplasmic domain of p23. EMBO J 20:6751–6760

    PubMed  CAS  PubMed Central  Google Scholar 

  • Griffiths G, Ericsson M, Krijnse-Locker J, Nilsson T, Goud B, Soling HD, Tang BL, Wong SH, Hong W (1994) Localization of the Lys, Asp, Glu, Leu tetrapeptide receptor to the Golgi complex and the intermediate compartment in mammalian cells. J Cell Biol 127:1557–1574

    PubMed  CAS  Google Scholar 

  • Griffiths G, Pepperkok R, Locker JK, Kreis TE (1995) Immunocytochemical localization of beta-COP to the ER-Golgi boundary and the TGN. J Cell Sci 108(Pt 8):2839–2856

    PubMed  CAS  Google Scholar 

  • Groesch ME, Ruohola H, Bacon R, Rossi G, Ferro-Novick S (1990) Isolation of a functional vesicular intermediate that mediates ER to Golgi transport in yeast. J Cell Biol 111:45–53

    PubMed  CAS  Google Scholar 

  • Hara-Kuge S, Kuge O, Orci L, Amherdt M, Ravazzola M, Wieland FT, Rothman JE (1994) En bloc incorporation of coatomer subunits during the assembly of COP-coated vesicles. J Cell Biol 124:883–892

    PubMed  CAS  Google Scholar 

  • Harrison-Lavoie KJ, Lewis VA, Hynes GM, Collison KS, Nutland E, Willison KR (1993) A 102 kDa subunit of a Golgi-associated particle has homology to beta subunits of trimeric G proteins. EMBO J 12:2847–2853

    PubMed  CAS  PubMed Central  Google Scholar 

  • Harroun TA, Bradshaw JP, Balali-Mood K, Katsaras J (2005) A structural study of the myristoylated N-terminus of ARF1. Biochim Biophys Acta 1668:138–144

    PubMed  CAS  Google Scholar 

  • Harter C, Wieland FT (1998) A single binding site for dilysine retrieval motifs and p23 within the gamma subunit of coatomer. Proc Natl Acad Sci USA 95:11649–11654

    PubMed  CAS  PubMed Central  Google Scholar 

  • Hicke L, Schekman R (1989) Yeast Sec23p acts in the cytoplasm to promote protein transport from the endoplasmic reticulum to the Golgi complex in vivo and in vitro. EMBO J 8:1677–1684

    PubMed  CAS  PubMed Central  Google Scholar 

  • Hicke L, Yoshihisa T, Schekman R (1992) Sec23p and a novel 105-kDa protein function as a multimeric complex to promote vesicle budding and protein transport from the endoplasmic reticulum. Mol Biol Cell 3:667–676

    PubMed  CAS  PubMed Central  Google Scholar 

  • Hoffman GR, Rahl PB, Collins RN, Cerione RA (2003) Conserved structural motifs in intracellular trafficking pathways: structure of the gammaCOP appendage domain. Mol Cell 12:615–625

    PubMed  CAS  Google Scholar 

  • Honda A, Al-Awar OS, Hay JC, Donaldson JG (2005) Targeting of Arf-1 to the early Golgi by membrin, an ER-Golgi SNARE. J Cell Biol 168:1039–1051

    PubMed  CAS  PubMed Central  Google Scholar 

  • Huang M, Weissman JT, Beraud-Dufour S, Luan P, Wang C, Chen W, Aridor M, Wilson IA, Balch WE (2001) Crystal structure of Sar1-GDP at 1.7 A resolution and the role of the NH2 terminus in ER export. J Cell Biol 155:937–948

    PubMed  CAS  PubMed Central  Google Scholar 

  • Iinuma T, Shiga A, Nakamoto K, O’Brien MB, Aridor M, Arimitsu N, Tagaya M, Tani K (2007) Mammalian Sec16/p250 plays a role in membrane traffic from the endoplasmic reticulum. J Biol Chem 282:17632–17639

    PubMed  CAS  Google Scholar 

  • Ivan V, de Voer G, Xanthakis D, Spoorendonk KM, Kondylis V, Rabouille C (2008) Drosophila Sec16 mediates the biogenesis of tER sites upstream of Sar1 through an arginine-rich motif. Mol Biol Cell 19:4352–4365

    PubMed  CAS  PubMed Central  Google Scholar 

  • Jackson CL (2014) Arf proteins and their regulators: at the interface between membrane lipids and the protein trafficking machinery. In: Wittinghofer A (ed) Ras superfamily small G proteins: biology and mechanisms 2. Springer, Heidelberg

    Google Scholar 

  • Jackson MR, Nilsson T, Peterson PA (1990) Identification of a consensus motif for retention of transmembrane proteins in the endoplasmic reticulum. EMBO J 9:3153–3162

    PubMed  CAS  PubMed Central  Google Scholar 

  • Jackson MR, Nilsson T, Peterson PA (1993) Retrieval of transmembrane proteins to the endoplasmic reticulum. J Cell Biol 121:317–333

    PubMed  CAS  Google Scholar 

  • Jackson LP, Lewis M, Kent HM, Edeling MA, Evans PR, Duden R, Owen DJ (2012) Molecular basis for recognition of dilysine trafficking motifs by COPI. Dev Cell 23:1255–1262

    PubMed  CAS  PubMed Central  Google Scholar 

  • Jamieson JD, Palade GE (1967) Intracellular transport of secretory proteins in the pancreatic exocrine cell. I Role of the peripheral elements of the Golgi complex. J Cell Biol 34:577–596

    PubMed  CAS  PubMed Central  Google Scholar 

  • Jones B, Jones EL, Bonney SA, Patel HN, Mensenkamp AR, Eichenbaum-Voline S, Rudling M, Myrdal U, Annesi G, Naik S et al (2003) Mutations in a Sar1 GTPase of COPII vesicles are associated with lipid absorption disorders. Nat Genet 34:29–31

    PubMed  CAS  Google Scholar 

  • Kahn RA, Gilman AG (1984) Purification of a protein cofactor required for ADP-ribosylation of the stimulatory regulatory component of adenylate cyclase by cholera toxin. J Biol Chem 259:6228–6234

    PubMed  CAS  Google Scholar 

  • Kaiser CA, Schekman R (1990) Distinct sets of SEC genes govern transport vesicle formation and fusion early in the secretory pathway. Cell 61:723–733

    PubMed  CAS  Google Scholar 

  • Kappeler F, Klopfenstein DR, Foguet M, Paccaud JP, Hauri HP (1997) The recycling of ERGIC-53 in the early secretory pathway. ERGIC-53 carries a cytosolic endoplasmic reticulum-exit determinant interacting with COPII. J Biol Chem 272:31801–31808

    PubMed  CAS  Google Scholar 

  • Kinoshita T, Maeda Y, Fujita M (2013) Transport of glycosylphosphatidylinositol-anchored proteins from the endoplasmic reticulum. Biochim Biophys Acta 1833:2473–2478

    PubMed  CAS  Google Scholar 

  • Kliouchnikov L, Bigay J, Mesmin B, Parnis A, Rawet M, Goldfeder N, Antonny B, Cassel D (2009) Discrete determinants in ArfGAP2/3 conferring Golgi localization and regulation by the COPI coat. Mol Biol Cell 20:859–869

    PubMed  CAS  PubMed Central  Google Scholar 

  • Krauss M, Kinuta M, Wenk MR, De Camilli P, Takei K, Haucke V (2003) ARF6 stimulates clathrin/AP-2 recruitment to synaptic membranes by activating phosphatidylinositol phosphate kinase type Igamma. J Cell Biol 162:113–124

    PubMed  CAS  PubMed Central  Google Scholar 

  • Krauss M, Jia JY, Roux A, Beck R, Wieland FT, De Camilli P, Haucke V (2008) Arf1-GTP-induced tubule formation suggests a function of Arf family proteins in curvature acquisition at sites of vesicle budding. J Biol Chem 283:27717–27723

    PubMed  CAS  PubMed Central  Google Scholar 

  • Kuehn MJ, Herrmann JM, Schekman R (1998) COPII-cargo interactions direct protein sorting into ER-derived transport vesicles. Nature 391:187–190

    PubMed  CAS  Google Scholar 

  • Kuge O, Hara-Kuge S, Orci L, Ravazzola M, Amherdt M, Tanigawa G, Wieland FT, Rothman JE (1993) zeta-COP, a subunit of coatomer, is required for COP-coated vesicle assembly. J Cell Biol 123:1727–1734

    PubMed  CAS  Google Scholar 

  • Kuge O, Dascher C, Orci L, Rowe T, Amherdt M, Plutner H, Ravazzola M, Tanigawa G, Rothman JE, Balch WE (1994) Sar1 promotes vesicle budding from the endoplasmic reticulum but not Golgi compartments. J Cell Biol 125:51–65

    PubMed  CAS  Google Scholar 

  • Kung LF, Pagant S, Futai E, D’Arcangelo JG, Buchanan R, Dittmar JC, Reid RJ, Rothstein R, Hamamoto S, Snapp EL et al (2012) Sec24p and Sec16p cooperate to regulate the GTP cycle of the COPII coat. EMBO J 31:1014–1027

    PubMed  CAS  PubMed Central  Google Scholar 

  • Kurihara T, Hamamoto S, Gimeno RE, Kaiser CA, Schekman R, Yoshihisa T (2000) Sec24p and Iss1p function interchangeably in transport vesicle formation from the endoplasmic reticulum in Saccharomyces cerevisiae. Mol Biol Cell 11:983–998

    PubMed  CAS  PubMed Central  Google Scholar 

  • Langer JD, Roth CM, Bethune J, Stoops EH, Brugger B, Herten DP, Wieland FT (2008) A conformational change in the alpha-subunit of coatomer induced by ligand binding to gamma-COP revealed by single-pair FRET. Traffic 9:597–607

    PubMed  CAS  Google Scholar 

  • Lanoix J, Ouwendijk J, Lin CC, Stark A, Love HD, Ostermann J, Nilsson T (1999) GTP hydrolysis by arf-1 mediates sorting and concentration of Golgi resident enzymes into functional COP I vesicles. EMBO J 18:4935–4948

    PubMed  CAS  PubMed Central  Google Scholar 

  • Lanoix J, Ouwendijk J, Stark A, Szafer E, Cassel D, Dejgaard K, Weiss M, Nilsson T (2001) Sorting of Golgi resident proteins into different subpopulations of COPI vesicles: a role for ArfGAP1. J Cell Biol 155:1199–1212

    PubMed  CAS  PubMed Central  Google Scholar 

  • Lederkremer GZ, Cheng Y, Petre BM, Vogan E, Springer S, Schekman R, Walz T, Kirchhausen T (2001) Structure of the Sec23p/24p and Sec13p/31p complexes of COPII. Proc Natl Acad Sci USA 98:10704–10709

    PubMed  CAS  PubMed Central  Google Scholar 

  • Lee MC, Orci L, Hamamoto S, Futai E, Ravazzola M, Schekman R (2005) Sar1p N-terminal helix initiates membrane curvature and completes the fission of a COPII vesicle. Cell 122:605–617

    PubMed  CAS  Google Scholar 

  • Letourneur F, Gaynor EC, Hennecke S, Demolliere C, Duden R, Emr SD, Riezman H, Cosson P (1994) Coatomer is essential for retrieval of dilysine-tagged proteins to the endoplasmic reticulum. Cell 79:1199–1207

    PubMed  CAS  Google Scholar 

  • Lewis MJ, Pelham HR (1990) A human homologue of the yeast HDEL receptor. Nature 348:162–163

    PubMed  CAS  Google Scholar 

  • Lewis MJ, Pelham HR (1992a) Ligand-induced redistribution of a human KDEL receptor from the Golgi complex to the endoplasmic reticulum. Cell 68:353–364

    PubMed  CAS  Google Scholar 

  • Lewis MJ, Pelham HR (1992b) Sequence of a second human KDEL receptor. J Mol Biol 226:913–916

    PubMed  CAS  Google Scholar 

  • Liu Y, Kahn RA, Prestegard JH (2010) Dynamic structure of membrane-anchored Arf*GTP. Nat Struct Mol Biol 17:876–881

    PubMed  CAS  PubMed Central  Google Scholar 

  • Love HD, Lin CC, Short CS, Ostermann J (1998) Isolation of functional Golgi-derived vesicles with a possible role in retrograde transport. J Cell Biol 140:541–551

    PubMed  CAS  PubMed Central  Google Scholar 

  • Lowe M, Kreis TE (1995) In vitro assembly and disassembly of coatomer. J Biol Chem 270:31364–31371

    PubMed  CAS  Google Scholar 

  • Lundmark R, Doherty GJ, Vallis Y, Peter BJ, McMahon HT (2008) Arf family GTP loading is activated by, and generates, positive membrane curvature. Biochem J 414:189–194

    PubMed  CAS  PubMed Central  Google Scholar 

  • Ma W, Goldberg J (2013) Rules for the recognition of dilysine retrieval motifs by coatomer. EMBO J 32:926–937

    PubMed  CAS  PubMed Central  Google Scholar 

  • Majoul I, Sohn K, Wieland FT, Pepperkok R, Pizza M, Hillemann J, Soling HD (1998) KDEL receptor (Erd2p)-mediated retrograde transport of the cholera toxin A subunit from the Golgi involves COPI, p23, and the COOH terminus of Erd2p. J Cell Biol 143:601–612

    PubMed  CAS  PubMed Central  Google Scholar 

  • Majoul I, Straub M, Hell SW, Duden R, Soling HD (2001) KDEL-cargo regulates interactions between proteins involved in COPI vesicle traffic: measurements in living cells using FRET. Dev Cell 1:139–153

    PubMed  CAS  Google Scholar 

  • Malhotra V, Erlmann P (2011) Protein export at the ER: loading big collagens into COPII carriers. EMBO J 30:3475–3480

    PubMed  CAS  PubMed Central  Google Scholar 

  • Malhotra V, Serafini T, Orci L, Shepherd JC, Rothman JE (1989) Purification of a novel class of coated vesicles mediating biosynthetic protein transport through the Golgi stack. Cell 58:329–336

    PubMed  CAS  Google Scholar 

  • Malsam J, Gommel D, Wieland FT, Nickel W (1999) A role for ADP ribosylation factor in the control of cargo uptake during COPI-coated vesicle biogenesis. FEBS Lett 462:267–272

    PubMed  CAS  Google Scholar 

  • Malsam J, Satoh A, Pelletier L, Warren G (2005) Golgin tethers define subpopulations of COPI vesicles. Science 307:1095–1098

    PubMed  CAS  Google Scholar 

  • Mancias JD, Goldberg J (2007) The transport signal on Sec22 for packaging into COPII-coated vesicles is a conformational epitope. Mol Cell 26:403–414

    PubMed  CAS  Google Scholar 

  • Mancias JD, Goldberg J (2008) Structural basis of cargo membrane protein discrimination by the human COPII coat machinery. EMBO J 27:2918–2928

    PubMed  CAS  PubMed Central  Google Scholar 

  • Manolea F, Claude A, Chun J, Rosas J, Melancon P (2008) Distinct functions for Arf guanine nucleotide exchange factors at the Golgi complex: GBF1 and BIGs are required for assembly and maintenance of the Golgi stack and trans-Golgi network, respectively. Mol Biol Cell 19:523–535

    PubMed  CAS  PubMed Central  Google Scholar 

  • Margeta-Mitrovic M, Jan YN, Jan LY (2000) A trafficking checkpoint controls GABA(B) receptor heterodimerization. Neuron 27:97–106

    PubMed  CAS  Google Scholar 

  • Marzioch M, Henthorn DC, Herrmann JM, Wilson R, Thomas DY, Bergeron JJ, Solari RC, Rowley A (1999) Erp1p and Erp2p, partners for Emp24p and Erv25p in a yeast p24 complex. Mol Biol Cell 10:1923–1938

    PubMed  CAS  PubMed Central  Google Scholar 

  • Matsuoka K, Orci L, Amherdt M, Bednarek SY, Hamamoto S, Schekman R, Yeung T (1998) COPII-coated vesicle formation reconstituted with purified coat proteins and chemically defined liposomes. Cell 93:263–275

    PubMed  CAS  Google Scholar 

  • McMahon HT, Gallop JL (2005) Membrane curvature and mechanisms of dynamic cell membrane remodelling. Nature 438:590–596

    PubMed  CAS  Google Scholar 

  • Melancon P, Glick BS, Malhotra V, Weidman PJ, Serafini T, Gleason ML, Orci L, Rothman JE (1987) Involvement of GTP-binding “G” proteins in transport through the Golgi stack. Cell 51:1053–1062

    PubMed  CAS  Google Scholar 

  • Michelsen K, Schmid V, Metz J, Heusser K, Liebel U, Schwede T, Spang A, Schwappach B (2007) Novel cargo-binding site in the beta and delta subunits of coatomer. J Cell Biol 179:209–217

    PubMed  CAS  PubMed Central  Google Scholar 

  • Miller E, Antonny B, Hamamoto S, Schekman R (2002) Cargo selection into COPII vesicles is driven by the Sec24p subunit. EMBO J 21:6105–6113

    PubMed  CAS  PubMed Central  Google Scholar 

  • Miller EA, Beilharz TH, Malkus PN, Lee MC, Hamamoto S, Orci L, Schekman R (2003) Multiple cargo binding sites on the COPII subunit Sec24p ensure capture of diverse membrane proteins into transport vesicles. Cell 114:497–509

    PubMed  CAS  Google Scholar 

  • Moelleken J, Malsam J, Betts MJ, Movafeghi A, Reckmann I, Meissner I, Hellwig A, Russell RB, Sollner T, Brugger B et al (2007) Differential localization of coatomer complex isoforms within the Golgi apparatus. Proc Natl Acad Sci USA 104:4425–4430

    PubMed  CAS  Google Scholar 

  • Monetta P, Slavin I, Romero N, Alvarez C (2007) Rab1b interacts with GBF1 and modulates both ARF1 dynamics and COPI association. Mol Biol Cell 18:2400–2410

    PubMed  CAS  PubMed Central  Google Scholar 

  • Montegna EA, Bhave M, Liu Y, Bhattacharyya D, Glick BS (2012) Sec12 binds to Sec16 at transitional ER sites. PLoS One 7:e31156

    PubMed  CAS  PubMed Central  Google Scholar 

  • Mossessova E, Gulbis JM, Goldberg J (1998) Structure of the guanine nucleotide exchange factor Sec7 domain of human arno and analysis of the interaction with ARF GTPase. Cell 92:415–423

    PubMed  CAS  Google Scholar 

  • Mossessova E, Bickford LC, Goldberg J (2003) SNARE selectivity of the COPII coat. Cell 114:483–495

    PubMed  CAS  Google Scholar 

  • Moussalli M, Pipe SW, Hauri HP, Nichols WC, Ginsburg D, Kaufman RJ (1999) Mannose-dependent endoplasmic reticulum (ER)-Golgi intermediate compartment-53-mediated ER to Golgi trafficking of coagulation factors V and VIII. J Biol Chem 274:32539–32542

    PubMed  CAS  Google Scholar 

  • Muniz M, Nuoffer C, Hauri HP, Riezman H (2000) The Emp24 complex recruits a specific cargo molecule into endoplasmic reticulum-derived vesicles. J Cell Biol 148:925–930

    PubMed  CAS  PubMed Central  Google Scholar 

  • Munro S, Pelham HR (1987) A C-terminal signal prevents secretion of luminal ER proteins. Cell 48:899–907

    PubMed  CAS  Google Scholar 

  • Nakano A, Muramatsu M (1989) A novel GTP-binding protein, Sar1p, is involved in transport from the endoplasmic reticulum to the Golgi apparatus. J Cell Biol 109:2677–2691

    PubMed  CAS  Google Scholar 

  • Nakano A, Brada D, Schekman R (1988) A membrane glycoprotein, Sec12p, required for protein transport from the endoplasmic reticulum to the Golgi apparatus in yeast. J Cell Biol 107:851–863

    PubMed  CAS  Google Scholar 

  • Nichols WC, Seligsohn U, Zivelin A, Terry VH, Hertel CE, Wheatley MA, Moussalli MJ, Hauri HP, Ciavarella N, Kaufman RJ et al (1998) Mutations in the ER-Golgi intermediate compartment protein ERGIC-53 cause combined deficiency of coagulation factors V and VIII. Cell 93:61–70

    PubMed  CAS  Google Scholar 

  • Nickel W, Sohn K, Bunning C, Wieland FT (1997) p23, a major COPI-vesicle membrane protein, constitutively cycles through the early secretory pathway. Proc Natl Acad Sci USA 94:11393–11398

    PubMed  CAS  PubMed Central  Google Scholar 

  • Nickel W, Malsam J, Gorgas K, Ravazzola M, Jenne N, Helms JB, Wieland FT (1998) Uptake by COPI-coated vesicles of both anterograde and retrograde cargo is inhibited by GTPgammaS in vitro. J Cell Sci 111(Pt 20):3081–3090

    PubMed  CAS  Google Scholar 

  • Nilsson T, Jackson M, Peterson PA (1989) Short cytoplasmic sequences serve as retention signals for transmembrane proteins in the endoplasmic reticulum. Cell 58:707–718

    PubMed  CAS  Google Scholar 

  • Nishikawa S, Nakano A (1993) Identification of a gene required for membrane protein retention in the early secretory pathway. Proc Natl Acad Sci USA 90:8179–8183

    PubMed  CAS  PubMed Central  Google Scholar 

  • Nishimura N, Balch WE (1997) A di-acidic signal required for selective export from the endoplasmic reticulum. Science 277:556–558

    PubMed  CAS  Google Scholar 

  • Nishimura N, Bannykh S, Slabough S, Matteson J, Altschuler Y, Hahn K, Balch WE (1999) A di-acidic (DXE) code directs concentration of cargo during export from the endoplasmic reticulum. J Biol Chem 274:15937–15946

    PubMed  CAS  Google Scholar 

  • Novick P, Field C, Schekman R (1980) Identification of 23 complementation groups required for post-translational events in the yeast secretory pathway. Cell 21:205–215

    PubMed  CAS  Google Scholar 

  • Novick P, Ferro S, Schekman R (1981) Order of events in the yeast secretory pathway. Cell 25:461–469

    PubMed  CAS  Google Scholar 

  • Oka T, Nakano A (1994) Inhibition of GTP hydrolysis by Sar1p causes accumulation of vesicles that are a functional intermediate of the ER-to-Golgi transport in yeast. J Cell Biol 124:425–434

    PubMed  CAS  Google Scholar 

  • O’Kelly I, Butler MH, Zilberberg N, Goldstein SA (2002) Forward transport. 14-3-3 binding overcomes retention in endoplasmic reticulum by dibasic signals. Cell 111:577–588

    PubMed  Google Scholar 

  • Ooi CE, Dell’Angelica EC, Bonifacino JS (1998) ADP-ribosylation factor 1 (ARF1) regulates recruitment of the AP-3 adaptor complex to membranes. J Cell Biol 142:391–402

    PubMed  CAS  PubMed Central  Google Scholar 

  • Orci L, Glick BS, Rothman JE (1986) A new type of coated vesicular carrier that appears not to contain clathrin: its possible role in protein transport within the Golgi stack. Cell 46:171–184

    PubMed  CAS  Google Scholar 

  • Orci L, Palmer DJ, Ravazzola M, Perrelet A, Amherdt M, Rothman JE (1993) Budding from Golgi membranes requires the coatomer complex of non-clathrin coat proteins. Nature 362:648–652

    PubMed  CAS  Google Scholar 

  • Orci L, Perrelet A, Ravazzola M, Amherdt M, Rothman JE, Schekman R (1994) Coatomer-rich endoplasmic reticulum. Proc Natl Acad Sci USA 91:11924–11928

    PubMed  CAS  PubMed Central  Google Scholar 

  • Orci L, Stamnes M, Ravazzola M, Amherdt M, Perrelet A, Sollner TH, Rothman JE (1997) Bidirectional transport by distinct populations of COPI-coated vesicles. Cell 90:335–349

    PubMed  CAS  Google Scholar 

  • Otte S, Barlowe C (2002) The Erv41p-Erv46p complex: multiple export signals are required in trans for COPII-dependent transport from the ER. EMBO J 21:6095–6104

    PubMed  CAS  PubMed Central  Google Scholar 

  • Otte S, Barlowe C (2004) Sorting signals can direct receptor-mediated export of soluble proteins into COPII vesicles. Nat Cell Biol 6:1189–1194

    PubMed  CAS  Google Scholar 

  • Pagano A, Letourneur F, Garcia-Estefania D, Carpentier JL, Orci L, Paccaud JP (1999) Sec24 proteins and sorting at the endoplasmic reticulum. J Biol Chem 274:7833–7840

    PubMed  CAS  Google Scholar 

  • Palade G (1975) Intracellular aspects of the process of protein synthesis. Science 189:347–358

    PubMed  CAS  Google Scholar 

  • Paleotti O, Macia E, Luton F, Klein S, Partisani M, Chardin P, Kirchhausen T, Franco M (2005) The small G-protein Arf6GTP recruits the AP-2 adaptor complex to membranes. J Biol Chem 280:21661–21666

    PubMed  CAS  Google Scholar 

  • Palmer DJ, Helms JB, Beckers CJ, Orci L, Rothman JE (1993) Binding of coatomer to Golgi membranes requires ADP-ribosylation factor. J Biol Chem 268:12083–12089

    PubMed  CAS  Google Scholar 

  • Pavel J, Harter C, Wieland FT (1998) Reversible dissociation of coatomer: functional characterization of a beta/delta-coat protein subcomplex. Proc Natl Acad Sci USA 95:2140–2145

    PubMed  CAS  PubMed Central  Google Scholar 

  • Pelham HR (1988) Evidence that luminal ER proteins are sorted from secreted proteins in a post-ER compartment. EMBO J 7:913–918

    PubMed  CAS  PubMed Central  Google Scholar 

  • Pellett PA, Dietrich F, Bewersdorf J, Rothman JE, Lavieu G (2013) Inter-Golgi transport mediated by COPI-containing vesicles carrying small cargoes. Elife 2:e01296

    PubMed  PubMed Central  Google Scholar 

  • Peng R, De Antoni A, Gallwitz D (2000) Evidence for overlapping and distinct functions in protein transport of coat protein Sec24p family members. J Biol Chem 275:11521–11528

    PubMed  CAS  Google Scholar 

  • Pepperkok R, Whitney JA, Gomez M, Kreis TE (2000) COPI vesicles accumulating in the presence of a GTP restricted arf1 mutant are depleted of anterograde and retrograde cargo. J Cell Sci 113(Pt 1):135–144

    PubMed  CAS  Google Scholar 

  • Pevzner I, Strating J, Lifshitz L, Parnis A, Glaser F, Herrmann A, Brugger B, Wieland F, Cassel D (2012) Distinct role of subcomplexes of the COPI coat in the regulation of ArfGAP2 activity. Traffic 13:849–856

    PubMed  CAS  Google Scholar 

  • Poon PP, Cassel D, Spang A, Rotman M, Pick E, Singer RA, Johnston GC (1999) Retrograde transport from the yeast Golgi is mediated by two ARF GAP proteins with overlapping function. EMBO J 18:555–564

    PubMed  CAS  PubMed Central  Google Scholar 

  • Popoff V, Adolf F, Brugger B, Wieland F (2011a) COPI budding within the Golgi stack. Cold Spring Harb Perspect Biol 3:a005231

    PubMed  PubMed Central  Google Scholar 

  • Popoff V, Langer JD, Reckmann I, Hellwig A, Kahn RA, Brugger B, Wieland FT (2011b) Several ADP-ribosylation factor (Arf) isoforms support COPI vesicle formation. J Biol Chem 286:35634–35642

    PubMed  CAS  PubMed Central  Google Scholar 

  • Powers J, Barlowe C (1998) Transport of axl2p depends on erv14p, an ER-vesicle protein related to the Drosophila cornichon gene product. J Cell Biol 142:1209–1222

    PubMed  CAS  PubMed Central  Google Scholar 

  • Powers J, Barlowe C (2002) Erv14p directs a transmembrane secretory protein into COPII-coated transport vesicles. Mol Biol Cell 13:880–891

    PubMed  CAS  PubMed Central  Google Scholar 

  • Pryer NK, Salama NR, Schekman R, Kaiser CA (1993) Cytosolic Sec13p complex is required for vesicle formation from the endoplasmic reticulum in vitro. J Cell Biol 120:865–875

    PubMed  CAS  Google Scholar 

  • Puertollano R, Randazzo PA, Presley JF, Hartnell LM, Bonifacino JS (2001) The GGAs promote ARF-dependent recruitment of clathrin to the TGN. Cell 105:93–102

    PubMed  CAS  Google Scholar 

  • Quintero CA, Giraudo CG, Villarreal M, Montich G, Maccioni HJ (2010) Identification of a site in Sar1 involved in the interaction with the cytoplasmic tail of glycolipid glycosyltransferases. J Biol Chem 285:30340–30346

    PubMed  CAS  PubMed Central  Google Scholar 

  • Raykhel I, Alanen H, Salo K, Jurvansuu J, Nguyen VD, Latva-Ranta M, Ruddock L (2007) A molecular specificity code for the three mammalian KDEL receptors. J Cell Biol 179:1193–1204

    PubMed  CAS  PubMed Central  Google Scholar 

  • Reilly BA, Kraynack BA, VanRheenen SM, Waters MG (2001) Golgi-to-endoplasmic reticulum (ER) retrograde traffic in yeast requires Dsl1p, a component of the ER target site that interacts with a COPI coat subunit. Mol Biol Cell 12:3783–3796

    PubMed  CAS  PubMed Central  Google Scholar 

  • Reinhard C, Harter C, Bremser M, Brugger B, Sohn K, Helms JB, Wieland F (1999) Receptor-induced polymerization of coatomer. Proc Natl Acad Sci USA 96:1224–1228

    PubMed  CAS  PubMed Central  Google Scholar 

  • Reinhard C, Schweikert M, Wieland FT, Nickel W (2003) Functional reconstitution of COPI coat assembly and disassembly using chemically defined components. Proc Natl Acad Sci USA 100:8253–8257

    PubMed  CAS  PubMed Central  Google Scholar 

  • Ren X, Farias GG, Canagarajah BJ, Bonifacino JS, Hurley JH (2013) Structural basis for recruitment and activation of the AP-1 clathrin adaptor complex by Arf1. Cell 152:755–767

    PubMed  CAS  PubMed Central  Google Scholar 

  • Renault L, Guibert B, Cherfils J (2003) Structural snapshots of the mechanism and inhibition of a guanine nucleotide exchange factor. Nature 426:525–530

    PubMed  CAS  Google Scholar 

  • Rexach MF, Schekman RW (1991) Distinct biochemical requirements for the budding, targeting, and fusion of ER-derived transport vesicles. J Cell Biol 114:219–229

    PubMed  CAS  Google Scholar 

  • Rexach MF, Latterich M, Schekman RW (1994) Characteristics of endoplasmic reticulum-derived transport vesicles. J Cell Biol 126:1133–1148

    PubMed  CAS  Google Scholar 

  • Roberg KJ, Crotwell M, Espenshade P, Gimeno R, Kaiser CA (1999) LST1 is a SEC24 homologue used for selective export of the plasma membrane ATPase from the endoplasmic reticulum. J Cell Biol 145:659–672

    PubMed  CAS  PubMed Central  Google Scholar 

  • Rowe T, Aridor M, McCaffery JM, Plutner H, Nuoffer C, Balch WE (1996) COPII vesicles derived from mammalian endoplasmic reticulum microsomes recruit COPI. J Cell Biol 135:895–911

    PubMed  CAS  Google Scholar 

  • Ruohola H, Kabcenell AK, Ferro-Novick S (1988) Reconstitution of protein transport from the endoplasmic reticulum to the Golgi complex in yeast: the acceptor Golgi compartment is defective in the sec23 mutant. J Cell Biol 107:1465–1476

    PubMed  CAS  Google Scholar 

  • Sahlmuller MC, Strating JR, Beck R, Eckert P, Popoff V, Haag M, Hellwig A, Berger I, Brugger B, Wieland FT (2011) Recombinant heptameric coatomer complexes: novel tools to study isoform-specific functions. Traffic 12:682–692

    PubMed  Google Scholar 

  • Saito K, Chen M, Bard F, Chen S, Zhou H, Woodley D, Polischuk R, Schekman R, Malhotra V (2009) TANGO1 facilitates cargo loading at endoplasmic reticulum exit sites. Cell 136:891–902

    PubMed  CAS  Google Scholar 

  • Saito K, Yamashiro K, Ichikawa Y, Erlmann P, Kontani K, Malhotra V, Katada T (2011) cTAGE5 mediates collagen secretion through interaction with TANGO1 at endoplasmic reticulum exit sites. Mol Biol Cell 22:2301–2308

    PubMed  CAS  PubMed Central  Google Scholar 

  • Saitoh A, Shin HW, Yamada A, Waguri S, Nakayama K (2009) Three homologous ArfGAPs participate in coat protein I-mediated transport. J Biol Chem 284:13948–13957

    PubMed  CAS  PubMed Central  Google Scholar 

  • Salama NR, Yeung T, Schekman RW (1993) The Sec13p complex and reconstitution of vesicle budding from the ER with purified cytosolic proteins. EMBO J 12:4073–4082

    PubMed  CAS  PubMed Central  Google Scholar 

  • Sato K, Nakano A (2002) Emp47p and its close homolog Emp46p have a tyrosine-containing endoplasmic reticulum exit signal and function in glycoprotein secretion in Saccharomyces cerevisiae. Mol Biol Cell 13:2518–2532

    PubMed  CAS  PubMed Central  Google Scholar 

  • Sato K, Nakano A (2005) Dissection of COPII subunit-cargo assembly and disassembly kinetics during Sar1p-GTP hydrolysis. Nat Struct Mol Biol 12:167–174

    PubMed  CAS  Google Scholar 

  • Sato K, Nakano A (2007) Mechanisms of COPII vesicle formation and protein sorting. FEBS Lett 581:2076–2082

    PubMed  CAS  Google Scholar 

  • Sato K, Nishikawa S, Nakano A (1995) Membrane protein retrieval from the Golgi apparatus to the endoplasmic reticulum (ER): characterization of the RER1 gene product as a component involved in ER localization of Sec12p. Mol Biol Cell 6:1459–1477

    PubMed  CAS  PubMed Central  Google Scholar 

  • Sato M, Sato K, Nakano A (1996) Endoplasmic reticulum localization of Sec12p is achieved by two mechanisms: Rer1p-dependent retrieval that requires the transmembrane domain and Rer1p-independent retention that involves the cytoplasmic domain. J Cell Biol 134:279–293

    PubMed  CAS  Google Scholar 

  • Sato K, Sato M, Nakano A (2001) Rer1p, a retrieval receptor for endoplasmic reticulum membrane proteins, is dynamically localized to the Golgi apparatus by coatomer. J Cell Biol 152:935–944

    PubMed  CAS  PubMed Central  Google Scholar 

  • Sato K, Sato M, Nakano A (2003) Rer1p, a retrieval receptor for ER membrane proteins, recognizes transmembrane domains in multiple modes. Mol Biol Cell 14:3605–3616

    PubMed  CAS  PubMed Central  Google Scholar 

  • Scales SJ, Pepperkok R, Kreis TE (1997) Visualization of ER-to-Golgi transport in living cells reveals a sequential mode of action for COPII and COPI. Cell 90:1137–1148

    PubMed  CAS  Google Scholar 

  • Schimmoller F, Singer-Kruger B, Schroder S, Kruger U, Barlowe C, Riezman H (1995) The absence of Emp24p, a component of ER-derived COPII-coated vesicles, causes a defect in transport of selected proteins to the Golgi. EMBO J 14:1329–1339

    PubMed  CAS  PubMed Central  Google Scholar 

  • Schledzewski K, Brinkmann H, Mendel RR (1999) Phylogenetic analysis of components of the eukaryotic vesicle transport system reveals a common origin of adaptor protein complexes 1, 2, and 3 and the F subcomplex of the coatomer COPI. J Mol Evol 48:770–778

    PubMed  CAS  Google Scholar 

  • Schmitz KR, Liu J, Li S, Setty TG, Wood CS, Burd CG, Ferguson KM (2008) Golgi localization of glycosyltransferases requires a Vps74p oligomer. Dev Cell 14:523–534

    PubMed  CAS  PubMed Central  Google Scholar 

  • Schroder S, Schimmoller F, Singer-Kruger B, Riezman H (1995) The Golgi-localization of yeast Emp47p depends on its di-lysine motif but is not affected by the ret1-1 mutation in alpha-COP. J Cell Biol 131:895–912

    PubMed  CAS  Google Scholar 

  • Schroder-Kohne S, Letourneur F, Riezman H (1998) Alpha-COP can discriminate between distinct, functional di-lysine signals in vitro and regulates access into retrograde transport. J Cell Sci 111(Pt 23):3459–3470

    PubMed  CAS  Google Scholar 

  • Schwarz K, Iolascon A, Verissimo F, Trede NS, Horsley W, Chen W, Paw BH, Hopfner KP, Holzmann K, Russo R et al (2009) Mutations affecting the secretory COPII coat component SEC23B cause congenital dyserythropoietic anemia type II. Nat Genet 41:936–940

    PubMed  CAS  Google Scholar 

  • Semenza JC, Hardwick KG, Dean N, Pelham HR (1990) ERD2, a yeast gene required for the receptor-mediated retrieval of luminal ER proteins from the secretory pathway. Cell 61:1349–1357

    PubMed  CAS  Google Scholar 

  • Serafini T, Orci L, Amherdt M, Brunner M, Kahn RA, Rothman JE (1991a) ADP-ribosylation factor is a subunit of the coat of Golgi-derived COP-coated vesicles: a novel role for a GTP-binding protein. Cell 67:239–253

    PubMed  CAS  Google Scholar 

  • Serafini T, Stenbeck G, Brecht A, Lottspeich F, Orci L, Rothman JE, Wieland FT (1991b) A coat subunit of Golgi-derived non-clathrin-coated vesicles with homology to the clathrin-coated vesicle coat protein beta-adaptin. Nature 349:215–220

    PubMed  CAS  Google Scholar 

  • Sevier CS, Weisz OA, Davis M, Machamer CE (2000) Efficient export of the vesicular stomatitis virus G protein from the endoplasmic reticulum requires a signal in the cytoplasmic tail that includes both tyrosine-based and di-acidic motifs. Mol Biol Cell 11:13–22

    PubMed  CAS  PubMed Central  Google Scholar 

  • Shaywitz DA, Espenshade PJ, Gimeno RE, Kaiser CA (1997) COPII subunit interactions in the assembly of the vesicle coat. J Biol Chem 272:25413–25416

    PubMed  CAS  Google Scholar 

  • Shima DT, Scales SJ, Kreis TE, Pepperkok R (1999) Segregation of COPI-rich and anterograde-cargo-rich domains in endoplasmic-reticulum-to-Golgi transport complexes. Curr Biol 9:821–824

    PubMed  CAS  Google Scholar 

  • Shugrue CA, Kolen ER, Peters H, Czernik A, Kaiser C, Matovcik L, Hubbard AL, Gorelick F (1999) Identification of the putative mammalian orthologue of Sec31P, a component of the COPII coat. J Cell Sci 112(Pt 24):4547–4556

    PubMed  CAS  Google Scholar 

  • Sohn K, Orci L, Ravazzola M, Amherdt M, Bremser M, Lottspeich F, Fiedler K, Helms JB, Wieland FT (1996) A major transmembrane protein of Golgi-derived COPI-coated vesicles involved in coatomer binding. J Cell Biol 135:1239–1248

    PubMed  CAS  Google Scholar 

  • Sonnichsen B, Watson R, Clausen H, Misteli T, Warren G (1996) Sorting by COP I-coated vesicles under interphase and mitotic conditions. J Cell Biol 134:1411–1425

    PubMed  CAS  Google Scholar 

  • Spang A, Schekman R (1998) Reconstitution of retrograde transport from the Golgi to the ER in vitro. J Cell Biol 143:589–599

    PubMed  CAS  PubMed Central  Google Scholar 

  • Spang A, Matsuoka K, Hamamoto S, Schekman R, Orci L (1998) Coatomer, Arf1p, and nucleotide are required to bud coat protein complex I-coated vesicles from large synthetic liposomes. Proc Natl Acad Sci USA 95:11199–11204

    PubMed  CAS  PubMed Central  Google Scholar 

  • Springer S, Schekman R (1998) Nucleation of COPII vesicular coat complex by endoplasmic reticulum to Golgi vesicle SNAREs. Science 281:698–700

    PubMed  CAS  Google Scholar 

  • Stagg SM, Gurkan C, Fowler DM, LaPointe P, Foss TR, Potter CS, Carragher B, Balch WE (2006) Structure of the Sec13/31 COPII coat cage. Nature 439:234–238

    PubMed  CAS  Google Scholar 

  • Stagg SM, LaPointe P, Razvi A, Gurkan C, Potter CS, Carragher B, Balch WE (2008) Structural basis for cargo regulation of COPII coat assembly. Cell 134:474–484

    PubMed  CAS  PubMed Central  Google Scholar 

  • Stamnes MA, Rothman JE (1993) The binding of AP-1 clathrin adaptor particles to Golgi membranes requires ADP-ribosylation factor, a small GTP-binding protein. Cell 73:999–1005

    PubMed  CAS  Google Scholar 

  • Stamnes MA, Craighead MW, Hoe MH, Lampen N, Geromanos S, Tempst P, Rothman JE (1995) An integral membrane component of coatomer-coated transport vesicles defines a family of proteins involved in budding. Proc Natl Acad Sci USA 92:8011–8015

    PubMed  CAS  PubMed Central  Google Scholar 

  • Stankewich MC, Stabach PR, Morrow JS (2006) Human Sec31B: a family of new mammalian orthologues of yeast Sec31p that associate with the COPII coat. J Cell Sci 119:958–969

    PubMed  CAS  Google Scholar 

  • Stenbeck G, Harter C, Brecht A, Herrmann D, Lottspeich F, Orci L, Wieland FT (1993) beta’-COP, a novel subunit of coatomer. EMBO J 12:2841–2845

    PubMed  CAS  PubMed Central  Google Scholar 

  • Sun Z, Anderl F, Frohlich K, Zhao L, Hanke S, Brugger B, Wieland F, Bethune J (2007) Multiple and stepwise interactions between coatomer and ADP-ribosylation factor-1 (Arf1)-GTP. Traffic 8:582–593

    PubMed  CAS  Google Scholar 

  • Supek F, Madden DT, Hamamoto S, Orci L, Schekman R (2002) Sec16p potentiates the action of COPII proteins to bud transport vesicles. J Cell Biol 158:1029–1038

    PubMed  CAS  PubMed Central  Google Scholar 

  • Szul T, Grabski R, Lyons S, Morohashi Y, Shestopal S, Lowe M, Sztul E (2007) Dissecting the role of the ARF guanine nucleotide exchange factor GBF1 in Golgi biogenesis and protein trafficking. J Cell Sci 120:3929–3940

    PubMed  CAS  Google Scholar 

  • Tabata KV, Sato K, Ide T, Nishizaka T, Nakano A, Noji H (2009) Visualization of cargo concentration by COPII minimal machinery in a planar lipid membrane. EMBO J 28:3279–3289

    PubMed  CAS  PubMed Central  Google Scholar 

  • Takida S, Maeda Y, Kinoshita T (2008) Mammalian GPI-anchored proteins require p24 proteins for their efficient transport from the ER to the plasma membrane. Biochem J 409:555–562

    PubMed  CAS  Google Scholar 

  • Tang BL, Kausalya J, Low DY, Lock ML, Hong W (1999) A family of mammalian proteins homologous to yeast Sec24p. Biochem Biophys Res Commun 258:679–684

    PubMed  CAS  Google Scholar 

  • Tang BL, Zhang T, Low DY, Wong ET, Horstmann H, Hong W (2000) Mammalian homologues of yeast sec31p. An ubiquitously expressed form is localized to endoplasmic reticulum (ER) exit sites and is essential for ER-Golgi transport. J Biol Chem 275:13597–13604

    PubMed  CAS  Google Scholar 

  • Tanigawa G, Orci L, Amherdt M, Ravazzola M, Helms JB, Rothman JE (1993) Hydrolysis of bound GTP by ARF protein triggers uncoating of Golgi-derived COP-coated vesicles. J Cell Biol 123:1365–1371

    PubMed  CAS  Google Scholar 

  • Traub LM, Ostrom JA, Kornfeld S (1993) Biochemical dissection of AP-1 recruitment onto Golgi membranes. J Cell Biol 123:561–573

    PubMed  CAS  Google Scholar 

  • Tsuchiya M, Price SR, Tsai SC, Moss J, Vaughan M (1991) Molecular identification of ADP-ribosylation factor mRNAs and their expression in mammalian cells. J Biol Chem 266:2772–2777

    PubMed  CAS  Google Scholar 

  • Tu L, Tai WC, Chen L, Banfield DK (2008) Signal-mediated dynamic retention of glycosyltransferases in the Golgi. Science 321:404–407

    PubMed  CAS  Google Scholar 

  • Tu L, Chen L, Banfield DK (2012) A conserved N-terminal arginine-motif in GOLPH3-family proteins mediates binding to coatomer. Traffic 13:1496–1507

    PubMed  CAS  Google Scholar 

  • Venditti R, Wilson C, De Matteis MA (2014) Exiting the ER: what we know and what we don’t. Trends Cell Biol 24:9–18

    PubMed  CAS  Google Scholar 

  • Vollenweider F, Kappeler F, Itin C, Hauri HP (1998) Mistargeting of the lectin ERGIC-53 to the endoplasmic reticulum of HeLa cells impairs the secretion of a lysosomal enzyme. J Cell Biol 142:377–389

    PubMed  CAS  PubMed Central  Google Scholar 

  • Waters MG, Serafini T, Rothman JE (1991) ‘Coatomer’: a cytosolic protein complex containing subunits of non-clathrin-coated Golgi transport vesicles. Nature 349:248–251

    PubMed  CAS  Google Scholar 

  • Watson PJ, Frigerio G, Collins BM, Duden R, Owen DJ (2004) Gamma-COP appendage domain—structure and function. Traffic 5:79–88

    PubMed  CAS  Google Scholar 

  • Watson P, Townley AK, Koka P, Palmer KJ, Stephens DJ (2006) Sec16 defines endoplasmic reticulum exit sites and is required for secretory cargo export in mammalian cells. Traffic 7:1678–1687

    PubMed  CAS  PubMed Central  Google Scholar 

  • Wegmann D, Hess P, Baier C, Wieland FT, Reinhard C (2004) Novel isotypic gamma/zeta subunits reveal three coatomer complexes in mammals. Mol Cell Biol 24:1070–1080

    PubMed  CAS  PubMed Central  Google Scholar 

  • Weimer C, Beck R, Eckert P, Reckmann I, Moelleken J, Brugger B, Wieland F (2008) Differential roles of ArfGAP1, ArfGAP2, and ArfGAP3 in COPI trafficking. J Cell Biol 183:725–735

    PubMed  CAS  PubMed Central  Google Scholar 

  • Wilson DW, Lewis MJ, Pelham HR (1993) pH-dependent binding of KDEL to its receptor in vitro. J Biol Chem 268:7465–7468

    PubMed  CAS  Google Scholar 

  • Yorimitsu T, Sato K (2012) Insights into structural and regulatory roles of Sec16 in COPII vesicle formation at ER exit sites. Mol Biol Cell 23:2930–2942

    PubMed  CAS  PubMed Central  Google Scholar 

  • Yoshihisa T, Barlowe C, Schekman R (1993) Requirement for a GTPase-activating protein in vesicle budding from the endoplasmic reticulum. Science 259:1466–1468

    PubMed  CAS  Google Scholar 

  • Yu W, Lin J, Jin C, Xia B (2009) Solution structure of human zeta-COP: direct evidences for structural similarity between COP I and clathrin-adaptor coats. J Mol Biol 386:903–912

    PubMed  CAS  Google Scholar 

  • Yu X, Breitman M, Goldberg J (2012) A structure-based mechanism for Arf1-dependent recruitment of coatomer to membranes. Cell 148:530–542

    PubMed  CAS  PubMed Central  Google Scholar 

  • Yuan H, Michelsen K, Schwappach B (2003) 14-3-3 dimers probe the assembly status of multimeric membrane proteins. Curr Biol 13:638–646

    PubMed  CAS  Google Scholar 

  • Zerangue N, Schwappach B, Jan YN, Jan LY (1999) A new ER trafficking signal regulates the subunit stoichiometry of plasma membrane K(ATP) channels. Neuron 22:537–548

    PubMed  CAS  Google Scholar 

  • Zhao L, Helms JB, Brugger B, Harter C, Martoglio B, Graf R, Brunner J, Wieland FT (1997) Direct and GTP-dependent interaction of ADP ribosylation factor 1 with coatomer subunit beta. Proc Natl Acad Sci USA 94:4418–4423

    PubMed  CAS  PubMed Central  Google Scholar 

  • Zhao L, Helms JB, Brunner J, Wieland FT (1999) GTP-dependent binding of ADP-ribosylation factor to coatomer in close proximity to the binding site for dilysine retrieval motifs and p23. J Biol Chem 274:14198–14203

    PubMed  CAS  Google Scholar 

  • Zhao X, Lasell TK, Melancon P (2002) Localization of large ADP-ribosylation factor-guanine nucleotide exchange factors to different Golgi compartments: evidence for distinct functions in protein traffic. Mol Biol Cell 13:119–133

    PubMed  CAS  PubMed Central  Google Scholar 

  • Zhao X, Claude A, Chun J, Shields DJ, Presley JF, Melancon P (2006) GBF1, a cis-Golgi and VTCs-localized ARF-GEF, is implicated in ER-to-Golgi protein traffic. J Cell Sci 119:3743–3753

    PubMed  CAS  Google Scholar 

  • Zheng Q, Bobich JA (2004) ADP-ribosylation factor6 regulates both [3H]-noradrenaline and [14C]-glutamate exocytosis through phosphatidylinositol 4,5-bisphosphate. Neurochem Int 45:633–640

    PubMed  CAS  Google Scholar 

  • Zink S, Wenzel D, Wurm CA, Schmitt HD (2009) A link between ER tethering and COP-I vesicle uncoating. Dev Cell 17:403–416

    PubMed  CAS  Google Scholar 

Download references

Acknowledgements

The work lab of FTW was supported by the German Research Council SFB638 project A10 and A16. We would like to apologise to all colleagues whose work could not be cited due to space limitation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Felix T. Wieland .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Adolf, F., Wieland, F.T. (2014). Small G Proteins: Arf Family GTPases in Vesicular Transport. In: Wittinghofer, A. (eds) Ras Superfamily Small G Proteins: Biology and Mechanisms 2. Springer, Cham. https://doi.org/10.1007/978-3-319-07761-1_9

Download citation

Publish with us

Policies and ethics