Skip to main content

Nitric Oxide and Other Signaling Molecules: A Cross Talk in Response to Abiotic Stress

  • Chapter
  • First Online:
  • 973 Accesses

Abstract

Nitric oxide (NO), an easily diffusible bioactive molecule, has emerged as a biological messenger in plants. The study of NO has contributed to a better knowledge of many mechanisms and functions that were not well understood until very recently. NO may act as a signal molecule in multiple physiological processes in plants such as seed germination, plant maturation and senescence, floral transition, stomatal movement, lateral and adventitious root development. Depending upon the concentration and location in the plant cells, potential roles of NO as a regulator of many abiotic stresses have been identified. NO functions as a signaling molecule that mediates plant responses to various stimuli. Intracellular signaling responses to NO under stresses involve synthesis of cyclic guanosine monophosphate (cGMP), cyclic ADP ribose (cADPR), hydrogen peroxide (H2O2), elevation of cytosolic calcium (Ca2+), and so on. In this chapter, our goal is to highlight the recent advances in NO signal transduction and its interactions with other signaling molecules in response to abiotic stress.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Ahlfors R, Brosché M, Kollist H, Kangasjärvi J (2009) Nitric oxide modulates ozone-induced cell death, hormone biosynthesis and gene expression in Arabidopsis thaliana. Plant J 58:1–12

    Article  CAS  PubMed  Google Scholar 

  • Alderton WK, Cooper CE, Knowles RG (2001) Nitric oxide synthases: structure, function and inhibition. Biochem J 357:593–615

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • An LZ, Liu YH, Zhang MX et al (2005) Effects of nitric oxide on growth of maize seedling leaves in the presence or absence of ultraviolet-B radiation. J Plant Physiol 162:317–326

    Article  CAS  PubMed  Google Scholar 

  • Arasimowicz M, Floryszak-Wieczorek J (2007) Nitric oxide as a bioactive signalling molecule in plant stress responses. Plant Sci 172:876–887

    Article  CAS  Google Scholar 

  • Bai X, Yang L, Tian M et al (2011) Nitric oxide enhances desiccation tolerance of recalcitrant Antiaris toxicaria seeds via protein S-nitrosylation and carbonylation. PLoS ONE 6:e20714

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Bright J, Desikan R, Hancock JT et al (2006) ABA-induced NO generation and stomatal closure in Arabidopsis are dependent on H2O2 synthesis. Plant J 45:113–122

    Article  CAS  PubMed  Google Scholar 

  • Courtois C, Besson A, Dahan J et al (2008) Nitric oxide signalling in plants: Interplays with Ca2+ and protein kinases. J Exp Bot 59:155–163

    Article  CAS  PubMed  Google Scholar 

  • Crawford NM, Galli M, Tischner R et al (2006) Response to Zemojtel et al.: plant nitric oxide synthase: back to square one. Trends Plant Sci 11:526–527

    Article  CAS  Google Scholar 

  • Desikan R, Cheung MK, Bright J et al (2004) ABA, hydrogen peroxide and nitric oxide signalling in stomatal guard cells. J Exp Bot 55:205–212

    Article  CAS  PubMed  Google Scholar 

  • Donaldson L, Ludidi N, Knight MR et al (2004) Salt and osmotic stress cause rapid increases in Arabidopsis thaliana cGMP levels. FEBS Lett 569:317–320

    Article  CAS  PubMed  Google Scholar 

  • Durner J, Wendehenne D, Klessig DF (1998) Defense gene induction in tobacco by nitric oxide, cyclic GMP, and cyclic ADP-ribose. P Natl Acad Sci USA 95:10328–10333

    Article  CAS  Google Scholar 

  • Ederli L, Morettini R, Borgogni A et al (2006) Interaction between nitric oxide and ethylene in the induction of alternative oxidase in ozone-treated tobacco plants. Plant Physiol 142:595–608

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Eum HL, Kim HB, Choi SB, Lee SK (2009) Regulation of ethylene biosynthesis by nitric oxide in tomato (Solanum lycopersicum L.) fruit harvested at different ripening stages. Eur Food Res Technol 228:331–338

    Article  CAS  Google Scholar 

  • Fan H, Guo S, Jiao Y et al (2007) Effects of exogenous nitric oxide on growth, active oxygen species metabolism, and photosynthetic characteristics in cucumber seedlings under NaCl stress. Front Agric China 1:308–314

    Article  Google Scholar 

  • Garces H, Durzan DJ, Pedroso MC (2001) Mechanical stress elicits nitric oxide formation and DNA fragmentation in Arabidopsis thaliana. Ann Bot 87:567–574

    Article  CAS  Google Scholar 

  • Garcia-Mata C, Gay R, Sokolovski S et al (2003) Nitric oxide regulates K+ and Cl channels in guard cells through a subset of abscisic acid-evoked signaling pathways. Proc Natl Acad Sci USA 100:11116–11121

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Garcia-Mata C, Lamattina L (2002) Nitric oxide and abscisic acid cross talk in guard cells. Plant Physiol 128:790–792

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • González A, Cabrera M de los Á, Henríquez MJ et al (2012) Cross talk among calcium, hydrogen peroxide, and nitric oxide and activation of gene expression involving calmodulins and calcium-dependent protein kinases in Ulva compressa exposed to copper excess. Plant Physiol 158: 1451–1462

    Google Scholar 

  • Gould KS, Lamotte O, Klinguer A et al (2003) Nitric oxide production in tobacco leaf cells: a generalized stress response? Plant Cell Environ 26:1851–1862

    Article  CAS  Google Scholar 

  • Groppa D, Rosales EP, Iannone MF, Benavides MP (2008) Nitric oxide, polyamines and Cd-induced phytotoxicity in wheat roots. Phytochemistry 69:2609–2615

    Article  CAS  PubMed  Google Scholar 

  • Hao GP, Xing Y, Zhang JH (2008) Role of nitric oxide dependence on nitric oxide synthase-like activity in the water stress signaling of maize seedling. J Integr Plant Biol 50:435–442

    Article  CAS  PubMed  Google Scholar 

  • Isner JC, Nühse T, Maathuis FJM (2012) The cyclic nucleotide cGMP is involved in plant hormone signalling and alters phosphorylation of Arabidopsis thaliana root proteins. J Exp Bot 63:3199–3205

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Jasid S, Simontacchi M, Bartoli CG, Puntarulo S (2006) Chloroplasts as a nitric oxide cellular source. Effect of reactive nitrogen species on chloroplastic lipids and proteins. Plant Physiol 142:1246–1255

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Joudoi T, Shichiri Y, Kamizono N et al (2013) Nitrated cyclic GMP modulates guard cell signaling in Arabidopsis. Plant Cell 25:558–5571

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Kim T-Y, Jo M-H, Hong J-H (2010) Protective effect of nitric oxide against oxidative stress under UV-B radiation in maize leaves. J Environ Sci 19:1323–1334

    Google Scholar 

  • Knowles RG, Moncada S (1994) Nitric oxide synthases in mammals. Biochem J 298:249–258

    CAS  PubMed Central  PubMed  Google Scholar 

  • Leshem YY, Haramaty E (1996) The characterization and contrasting effects of the nitric oxide free radical in vegetative stress of Pisum sativum Linn. foliage. J Plant Physiol 148:258–263

    Article  CAS  Google Scholar 

  • Li Y, Yin H, Wang Q et al (2009) Oligochitosan induced Brassica napus L. production of NO and H2O2 and their physiological function. Carbohyd Polym 4:612–617

    Article  Google Scholar 

  • Liao WB, Huang GB, Yu JH et al (2011) Nitric oxide and hydrogen peroxide are involved in indole-3-butyric acid-induced adventitious root development in marigold. J Hortic Sci Biotechnol 86:159–165

    CAS  Google Scholar 

  • Liao WB, Xiao HL, Zhang ML (2009) Role and relationship of nitric oxide and hydrogen peroxide in adventitious root development of marigold. Acta Physiol Plant 31:1279–1289

    Article  CAS  Google Scholar 

  • Liao WB, Xiao HL, Zhang ML (2010) Effect of nitric oxide and hydrogen peroxide on adventitious root development from cuttings of ground-cover chrysanthemum and associated biochemical changes. J Plant Growth Regul 29:338–348

    Article  CAS  Google Scholar 

  • Liao WB, Zhang ML, Huang GB, Yu JH (2012a) Hydrogen peroxide in the vase solution increases vase life and keeping quality of cut Oriental × Trumpet hybrid lily ‘Manissa’. Sci Hortic 139:32–38

    Article  CAS  Google Scholar 

  • Liao WB, Zhang ML, Huang GB, Yu JH (2012b) Ca2+ and CaM are involved in NO- and H2O2-induced adventitious root development in marigold. J Plant Growth Regul 31:253–264

    Article  CAS  Google Scholar 

  • Liao WB, Zhang ML, Yu JH (2013) Role of nitric oxide in delaying senescence of cut rose flowers and its interaction with ethylene. Sci Hortic 155:30–38

    Article  CAS  Google Scholar 

  • Lin A, Wang Y, Tang J et al (2012) Nitric oxide and protein S-nitrosylation are integral to hydrogen peroxide-induced leaf cell death in rice. Plant Physiol 158:451–464

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Liu X, Wang L, Liu L et al (2011) Alleviating effect of exogenous nitric oxide in cucumber seedling against chilling stress. Afr J Biotechnol 10:4380–4386

    Article  Google Scholar 

  • Ma F, Lu R, Liu H et al (2012) Nitric oxide-activated calcium/calmodulin-dependent protein kinase regulates the abscisic acid-induced antioxidant defence in maize. J Exp Bot 63:4835–4847

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Mackerness SAH, John CF, Jordan B, Thomas B (2001) Early signaling components in ultraviolet-B responses: distinct roles for different reactive oxygen species and nitric oxide. FEBS Lett 489:237–242

    Article  CAS  Google Scholar 

  • Mallick N, Mohn FH, Rai L, Soeder CJ (2000) Impact of physiological stresses on nitric oxide formation by green alga, Scenedesmus obliquus. J Microbiol Biotechnol 10:300–306

    CAS  Google Scholar 

  • Neill S (2007) Interactions between abscisic acid, hydrogen peroxide and nitric oxide mediate survival responses during water stress. New Phytol 175:4–6

    Article  CAS  PubMed  Google Scholar 

  • Neill S, Barros R, Bright J, Desikan R et al (2008) Nitric oxide, stomatal closure, and abiotic stress. J Exp Bot 59:165–176

    Article  CAS  PubMed  Google Scholar 

  • Neill SJ, Desikan D, Clarke A, Hancock JT (2002) Nitric oxide is a novel component of abscisic acid signaling in stomatal guard cells. Plant Physiol 128:13–16

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Neill SJ, Desikan R, Hancock JT (2003) Nitric oxide signalling in plants. New Phytol 159:11–35

    Article  CAS  Google Scholar 

  • Newton RP, Roef L, Witters E, Van Onckelen H (1999) Cyclic nucleotides in higher plants: the enduring paradox. New Phytol 143:427–455

    Article  CAS  Google Scholar 

  • Pagnussat GC, Lanteri ML, Lamattina L (2003) Nitric oxide and cyclic GMP are messengers in the indole acetic acid-induced adventitious rooting process. Plant Physiol 132:1241–1248

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Pedroso MC, Magalhaes JR, Durzan D (2000) Nitric oxide induces cell death in Taxus cells. Plant Sci 157:173–180

    Article  CAS  PubMed  Google Scholar 

  • Phang IC, Leung DW, Taylor HH, Burritt DJ (2011) The protective effect of sodium nitroprusside (SNP) treatment on Arabidopsis thaliana seedlings exposed to toxic level of Pb is not linked to avoidance of Pb uptake. Ecotoxicol Environ Saf 74:1310–1315

    Article  CAS  PubMed  Google Scholar 

  • Qu Y, Feng HY, Wang YB et al (2006) Nitric oxide functions as a signal in UV-B inhibition of pea stems elongation. Plant Sci 170:994–1000

    Article  CAS  Google Scholar 

  • Rockel P, Strube F, Rockel A et al (2002) Regulation of nitric oxide (NO) production by plant nitrate reductase in vivo and in vitro. J Exp Bot 53:103–110

    Article  CAS  PubMed  Google Scholar 

  • Rodríguez-Serrano M, Bárány I, Prem D et al (2012) NO, ROS, and cell death associated with caspase-like activity increase in stress-induced microspore embryogenesis of barley. J Exp Bot 63:2007–2024

    Article  PubMed Central  PubMed  Google Scholar 

  • Rodríguez-Serrano M, Romero-Puertas MC, Pazmiño DM et al (2009) Cellular response of pea plants to cadmium toxicity: cross talk between reactive oxygen species, nitric oxide, and calcium. Plant Physiol 150:229–243

    Article  PubMed Central  PubMed  Google Scholar 

  • She XP, Song XG (2008) Pharmacological evidence indicates that MAPKK/CDPK modulate NO levels in darkness-induced stomatal closure of broad bean. Aust J Bot 56:347–357

    Article  CAS  Google Scholar 

  • She XP, Song XG, He JM (2004) The role and relationship of nitric oxide and hydrogen peroxide in light/dark-regulated stomatal movement in Vicia faba. Acta Bot Sin 46:1292–1300

    CAS  Google Scholar 

  • Song L, Ding W, Zhao M et al (2006) Nitric oxide protects against oxidative stress under heat stress in the calluses from two ecotypes of reed. Plant Sci 171:449–458

    Article  CAS  Google Scholar 

  • Song XG, She XP, Wang J, Sun YC (2011) Ethylene inhibits darkness-induced stomatal closure by scavenging nitric oxide in guard cells of Vicia faba. Funct Plant Biol 38:767–777

    Article  CAS  Google Scholar 

  • Stamler JS, Singel DJ, Loscalzo J (1992) Biochemistry of nitric oxide and its redox-activated forms. Science 258:1898–1902

    Article  CAS  PubMed  Google Scholar 

  • Suita K, Kiryu T, Sawada M et al (2009) Cyclic GMP acts as a common regulator for the transcriptional activation of the flavonoid biosynthetic pathway in soybean. Planta 229:402–413

    Article  Google Scholar 

  • Tan J, Zhao H, Hong J et al (2008) Effects of exogenous nitric oxide on photosynthesis, antioxidant capacity and proline accumulation in wheat seedlings subjected to osmotic stress. World J Agric Sci 4:307–313

    Google Scholar 

  • Tian QY, Sun DH, Zhao MG, Zhang WH (2007) Inhibition of nitric oxide synthase (NOS) underlies aluminum-induced inhibition of root elongation in Hibiscus moscheutos. New Phytol 174:322–331

    Article  CAS  PubMed  Google Scholar 

  • Uchida A, Jagendorf AT, Hibino T, Takabe T, Takabe T (2002) Effects of hydrogen peroxide and nitric oxide on both salt and heat stress tolerance in rice. Plant Sci 163:515–523

    Google Scholar 

  • Wang Y, Yun BW, Kwon EJ et al (2006) S-nitrosylation: an emerging redox-based post-translational modification in plants. J Exp Bot 57:1777–1784

    Article  CAS  PubMed  Google Scholar 

  • Wojtaszek P (2000) Nitric oxide in plants: to NO or not to. Phytochemistry 54:1–4

    Article  CAS  PubMed  Google Scholar 

  • Wu X, Zhu W, Zhang H et al (2011) Exogenous nitric oxide protects against salt-induced oxidative stress in the leaves from two genotypes of tomato (Lycopersicom esculentum Mill.). Acta Physiol Plant 33:1199–1209

    Article  CAS  Google Scholar 

  • Xu MJ, Dong JF, Zhang XB (2008) Signal interaction between nitric oxide and hydrogen peroxide in heat shock-induced hypericin production of Hypericum perforatum suspension cells. Sci China C Life Sci 51:676–686

    Article  CAS  PubMed  Google Scholar 

  • Yang H, Wu F, Cheng J (2011) Reduced chilling injury in cucumber by nitric oxide and the antioxidant response. Food Chem 127:1237–1242

    Article  CAS  Google Scholar 

  • Yang JD, Yun JY, Zhang TH, Zhao HL (2006) Presoaking with nitric oxide donor SNP alleviates heat shock damages in mung bean leaf discs. Bot Stud 47:129–136

    CAS  Google Scholar 

  • Zhang AY, Jiang MY, Zhang JH et al (2007) Nitric oxide induced by hydrogen peroxide mediates abscisic acid-induced activation of the mitogen-activated protein kinase cascade involved in antioxidant defense in maize leaves. New Phytol 175:36–50

    Article  CAS  PubMed  Google Scholar 

  • Zhang H, Li YH, Hu LY et al (2008) Effects of exogenous nitric oxide donor on antioxidant metabolism in wheat leaves under aluminum stress. Russ J Plant Physiol 55:469–474

    Article  CAS  Google Scholar 

  • Zhang Y, Wang L, Liu Y et al (2006) Nitric oxide enhances salt tolerance in maize seedlings through increasing activities of proton-pump and Na+/H+ antiport in the tonoplast. Planta 224:545–555

    Article  CAS  PubMed  Google Scholar 

  • Zhao LQ, Zhang F, Guo JK et al (2004) Nitric oxide functions as a signal in salt resistance in the calluses from two ecotypes of reed. Plant Physiol 134:849–857

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Zheng C, Jiang D, Liu F et al (2009) Exogenous nitric oxide improves seed germination in wheat against mitochondrial oxidative damage induced by high salinity. Environ Exp Bot 67:222–227

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (No. 31160398), the Post Doctoral Foundation of China (Nos. 20100470887, 2012T50828), the Key Project of Chinese Ministry of Education (No. 211182), and the Research Fund for the Doctoral Program of Higher Education (No. 20116202120005).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wei-Biao Liao .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Liao, WB., Yu, JH. (2014). Nitric Oxide and Other Signaling Molecules: A Cross Talk in Response to Abiotic Stress. In: Khan, M., Mobin, M., Mohammad, F., Corpas, F. (eds) Nitric Oxide in Plants: Metabolism and Role in Stress Physiology. Springer, Cham. https://doi.org/10.1007/978-3-319-06710-0_11

Download citation

Publish with us

Policies and ethics