Skip to main content

Azospirillum Cell Aggregation, Attachment, and Plant Interaction

  • Chapter
Handbook for Azospirillum

Abstract

Azospirillum cellular and morphological transformation in culture as well as cyst formation, aggregation, and flocculation in response to nutritional limitations and increasing oxygen levels are discussed and typical protocols for flocculation and aggregation are presented. An overview of the mechanisms of attachment to plant roots and other surfaces is followed by protocols for labeling Azospirillum cells with reporter genes and using such genetically labelled cells in qualitative and quantitative assays of Azospirillum–plant associations. The potential of Azospirillum in plant pathogen and disease suppression is discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  • Arsène F, Katupitiya S, Kennedy IR, Elmerich C (1994) Use of lacZ fusions to study the expression of nif genes of Azospirillum brasilense in association with plants. Mol Plant Microbe Interact 7:748–757

    Article  Google Scholar 

  • Assmus B, Hutzler P, Kirchhof G, Amann R, Lawrence JR, Hertmann A (1995) In situ localization of Azospirillum brasilense in the rhizosphere of wheat with fluorescently labeled, rRNA-targeted oligonucleotide probes and scanning confocal laser microscopy. Appl Environ Microbiol 61:1013–1019

    PubMed Central  CAS  PubMed  Google Scholar 

  • Bahat-Samet E, Castro-Sowinski S, Okon Y (2004) Arabinose content of extracellular polysaccharide plays a role in cell aggregation of Azospirillum brasilense. FEMS Microbiol Lett 237:195–203

    Article  CAS  PubMed  Google Scholar 

  • Bakanchikova TI, Lobanok EV, Pavlova-Ivanova LK, Redkina TV, Nagapetyan ZA, Majsuryan AN (1993) Inhibition of tumor formation process in dicotyledonous plants by Azospirillum brasilense strains. Mikrobiologija 62:515–523

    Google Scholar 

  • Barak R, Nur I, Okon Y (1983) Detection of chemotaxis in Azospirillum brasilense. J Appl Bacteriol 53:399–403

    Article  Google Scholar 

  • Bashan Y, de Bashan LE (2002a) Protection of tomato seedlings against infection by Pseudomonas syringae pv. tomato by using the plant growth-promoting bacterium Azospirillum brasilense. Appl Environ Microbiol 68:2637–2643

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Bashan Y, de Bashan LE (2002b) Reduction of bacterial speck (Pseudomonas syringae pv. tomato) of tomato by combined treatments of plant growth-promoting bacterium, Azospirillum brasilense, streptomycin sulfate, and chemo-thermal seed treatment. Eur J Plant Pathol 108:821–829

    Article  CAS  Google Scholar 

  • Bashan Y, Levanony H (1988a) Active attachment of Azospirillum brasilense Cd to quartz sand and to a light-textured soil by protein bridging. J Gen Microbiol 134:2269–2279

    CAS  Google Scholar 

  • Bashan Y, Levanony H (1988b) Adsorption of the rhizosphere bacterium Azospirillum brasilense Cd to soil, sand and peat particles. J Gen Microbiol 134:1811–1820

    Google Scholar 

  • Bashan Y, Levanony H (1990) Current status of Azospirillum inoculation technology: Azospirillum as a challenge for agriculture. Can J Microbiol 36:591–608

    Article  CAS  Google Scholar 

  • Bashan Y, Levanony H, Klein E (1986) Evidence for a weak active external adsorption of Azospirillum brasilense Cd to wheat roots. J Gen Microbiol 132:3069–3073

    Google Scholar 

  • Bashan Y, Levanony H, Whitmoyer RE (1991a) Root surface colonization of non-cereal crop plants by pleomorphic Azospirillum brasilense Cd. J Gen Microbiol 137:187–196

    Article  Google Scholar 

  • Bashan Y, Mitiku G, Whitmoyer RE, Levanony H (1991b) Evidence that fibrillar anchoring is essential for Azospirillum brasilense Cd attachment to sand. Plant and Soil 132:73–83

    Article  Google Scholar 

  • Bastarrachea F, Zamudio M, Rivas R (1988) Non-encapsulated mutants of Azospirillum brasilense and Azospirillum lipoferum. Can J Microbiol 34:24–29

    Article  Google Scholar 

  • Becking JH (1985) Pleomorphism in Azospirillum. In: Klingmüller W (ed) Azospirillum III: genetics, physiology, ecology. Springer, Berlin, pp 243–263

    Chapter  Google Scholar 

  • Bleakley BH, Gaskins MH, Hubbell DH, Zam SG (1988) Floc formation by Azospirillum lipoferum grown on poly-β-hydroxybutyrate. Appl Environ Microbiol 54:2986–2995

    PubMed Central  CAS  PubMed  Google Scholar 

  • Burdman S, Jurkevitch E, Schwartsburd B, Hampel M, Okon Y (1998) Aggregation in Azospirillum brasilense: effects of chemical and physical factors and involvement of extracellular components. Microbiology 144:1989–1999

    Article  CAS  PubMed  Google Scholar 

  • Burdman S, Jurkevitch E, Schwartsburd B, Okon Y (1999) Involvement of outer-membrane proteins in the aggregation of Azospirillum brasilense. Microbiology 145:1145–1152

    Article  CAS  PubMed  Google Scholar 

  • Burdman S, Jurkevitch E, Soria-Diaz ME, Serrano AMG, Okon Y (2000a) Extracellular polysaccharide composition of Azospirillum brasilense and its relation with cell aggregation. FEMS Microbiol Lett 189:259–264

    Article  CAS  PubMed  Google Scholar 

  • Burdman S, Okon Y, Jurkevitch E (2000b) Surface characteristics of Azospirillum brasilense in relation to cell aggregation and attachment to plant roots. Crit Rev Microbiol 26:91–110

    Article  CAS  PubMed  Google Scholar 

  • Burdman S, Dulguerova G, Okon Y, Jurkevitch E (2001) Purification of the major outer membrane protein of Azospirillum brasilense, its affinity to plant roots, and its involvement in cell aggregation. Mol Plant Microbe Interact 14:555–561

    Article  CAS  PubMed  Google Scholar 

  • Cangelosi GA, Hung L, Puvanesarajah V, Stacey G, Ozga DA, Leigh JA, Nester EW (1987) Common loci for Agrobacterium tumefaciens and Rhizobium meliloti exopolysaccharide synthesis and their roles in plant interactions. J Bacteriol 169:2086–2091

    PubMed Central  CAS  PubMed  Google Scholar 

  • Casadaban MJ, Chou J, Cohen SN (1980) In vitro gene fusions that join an enzymatically active β-galactosidase segment to amino-terminal fragments of exogenous proteins: Escherichia coli plasmid vectors for the detection and cloning of translational initiation signals. J Bacteriol 143:971–980

    PubMed Central  CAS  PubMed  Google Scholar 

  • Casadaban MJ, Martinez-Arias A, Shapira SK, Chou J (1983) β-Galactosidase gene fusions for analysing gene expression in Escherichia coli and yeast. Methods Enzymol 100:293–308

    Article  CAS  PubMed  Google Scholar 

  • Coplin DL, Majerczak DR (1990) Extracellular polysaccharide genes in Erwinia stewartii: directed mutagenesis and complementation analysis. Mol Plant Microbe Interact 3:286–292

    Article  CAS  Google Scholar 

  • Croes C, van Bastelaere E, De Clercq E, Eyers M, Vanderleyden J, Michiels K (1991) Identification and mapping of loci involved in motility, adsorption to wheat roots, colony morphology, and growth in minimal medium on the Azospirillum brasilense Sp7 90-MDa-plasmid. Plasmid 26:83–93

    Article  CAS  PubMed  Google Scholar 

  • Croes C, Moens S, van Bastelaere E, Vanderleyden J, Michiels K (1993) The polar flagellum mediates Azospirillum brasilense adsorption to wheat roots. J Gen Microbiol 139:2261–2269

    Article  CAS  Google Scholar 

  • Danneberg G, Zimmer W, Bothe H (1985) Some physiological and biochemical properties of denitrification by Azospirillum brasilense. In: Klingmüller W (ed) Azospirillum III: genetics, physiology, ecology. Springer, Berlin

    Google Scholar 

  • Danneberg A, Kronenberg A, Neuer G, Bothe H (1986) Aspects of nitrogen fixation and denitrification by Azospirillum. Plant and Soil 90:193–202

    Article  CAS  Google Scholar 

  • Day JM, Döbereiner J (1976) Physiological aspects of N2 fixation by a Spirillum from Digitaria roots. Soil Biol Biochem 8:45–50

    Article  CAS  Google Scholar 

  • De Troch P, Keijers V, Vanderleyden J (1994) Sequence analysis of the Azospirillum brasilense exoB gene, encoding UDP-glucose 4'-epimerase. Gene 144:143–144

    Article  PubMed  Google Scholar 

  • Del Gallo MM, Fendrik I (1994) The rhizosphere and Azospirillum. In: Okon Y (ed) Azospirillum-plant associations. CRC, Boca Raton, pp 57–75

    Google Scholar 

  • Döbereiner J, Pedrosa FO (1987) Nitrogen-fixing bacteria in nonleguminous crop plants. Science Tech Publishers, Madison

    Google Scholar 

  • Dolph PJ, Majerczak DR, Coplin DL (1988) Characterization of a gene cluster for exopolysaccharide biosynthesis and virulence in Erwinia stewartii. J Bacteriol 170:865–871

    PubMed Central  CAS  PubMed  Google Scholar 

  • Drahos DJ, Hemming BC, McPherson S (1986) Tracking recombinant organisms in the environment: β-Galactosidase as a selective non-antibiotic marker for fluorescent pseudomonads. Biotechnology 4:439–444

    Article  CAS  Google Scholar 

  • Dylan T, Ielpi L, Stanfield S, Kashyap L, Douglas C, Yanovski M, Nester E, Helinski DR, Ditta G (1986) Rhizobium meliloti genes required for nodule development are related to chromosomal virulence genes in Agrobacterium tumefaciens. Proc Natl Acad Sci U S A 83:4403–4407

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Elmerich C (1991) Genetics and regulation of Mo-nitrogenase. In: Dilworth MJ, Glenn AR (eds) Biology and biochemistry of nitrogen fixation. Elsevier, Amsterdam, pp 103–141

    Google Scholar 

  • Elmerich C, Zimmer W, Vieille C (1992) Associative nitrogen-fixing bacteria. In: Evans H, Burris RH, Stacey G (eds) Biological nitrogen fixation. Chapman & Hall, New York, pp 211–257

    Google Scholar 

  • Eskew DL, Focht DD, Ting IP (1977) Nitrogen fixation, denitrification and pleomorphic growth in a highly pigmented Spirillum lipoferum. Appl Environ Microbiol 34:582–585

    PubMed Central  CAS  PubMed  Google Scholar 

  • Gough C, Vasse J, Galera C, Webster G, Cocking E, Dénarié J (1997) Interactions between bacterial diazotrophs and non-legume dicots: Arabidopsis thaliana as a model plant. Plant and Soil 194:123–130

    Article  CAS  Google Scholar 

  • Hall PG, Krieg NR (1983) Swarming of Azospirillum brasilense on solid media. Can J Microbiol 29:1592–1594

    Article  Google Scholar 

  • Hartmann A, Hurek T (1988) Effect of carotenoid overproduction on oxygen tolerance of nitrogen fixation in Azospirillum brasilense Sp7. J Gen Microbiol 134:2449–2455

    CAS  Google Scholar 

  • Hartmann A, Zimmer W (1994) Physiology of Azospirillum. In: Okon Y (ed) Azospirillum-plant associations. CRC, Boca Raton, pp 15–39

    Google Scholar 

  • Hood ME, Shew HD (1997) Initial cellular interactions between Thielaviopsis basicola and tobacco root hairs. Phytopathology 87:228–235

    Article  CAS  PubMed  Google Scholar 

  • Hynes MF, Simon R, Müller P, Niehaus K, Labes M, Pühler A (1986) The two megaplasmids of Rhizobium meliloti are involved in the effective nodulation of alfalfa. Mol Gen Genet 202:356–362

    Article  CAS  Google Scholar 

  • Katsy EI, Iosipenko AD, Egorenkov DA, Zhuravleva EA, Panasenko VI, Ignatov VV (1990) Involvement of Azospirillum brasilense plasmid DNA in the production of indole acetic acid. FEMS Microbiol Lett 60:1–4

    Article  Google Scholar 

  • Katupitiya S, Millet J, Vesk M, Viccars L, Zeman A, Lidong Z, Elmerich C, Kennedy IR (1995) A mutant of Azospirillum brasilense Sp7 impaired in flocculation with a modified colonization pattern and superior nitrogen fixation in association with wheat. Appl Environ Microbiol 61:1987–1995

    PubMed Central  CAS  PubMed  Google Scholar 

  • Lamm RB, Neyra CA (1981) Characterization and cyst production of azospirilla isolated from selected grass growing in New Jersey and New York. Can J Microbiol 27:1320–1325

    Article  Google Scholar 

  • Levanony H, Bashan Y, Romano B, Klein E (1989) Ultrastructural localization and identification of Azospirillum brasilense Cd on and within wheat root by immuno-gold labeling. Plant and Soil 117:207–218

    Article  Google Scholar 

  • Madi L, Henis Y (1989) Aggregation in Azospirillum brasilense Cd: conditions and factors involved in cell-to-cell adhesion. Plant and Soil 115:89–98

    Article  Google Scholar 

  • Matthysse AG, Holmes KV, Gurlitz RHG (1981) Elaboration of cellulose fibrils by Agrobacterium tumefaciens during attachment to carrot cells. J Bacteriol 145:583–595

    PubMed Central  CAS  PubMed  Google Scholar 

  • Mauk PA, Hine RB (1988) Infection, colonization of Gossypium hirsutum and G. barbadense, and development of black root rot caused by Thielaviopsis basicola. Phytopathology 78:1662–1667

    Article  Google Scholar 

  • Michiels K, Vanderleyden J, Van Gool A, Signer ER (1988) Isolation and characterization of Azospirillum brasilense loci that correct Rhizobium meliloti exoB and exoC mutations. J Bacteriol 170:5401–5404

    PubMed Central  CAS  PubMed  Google Scholar 

  • Michiels K, De Troch P, Onyeocha I, Van Gool A, Elmerich C, Vanderleyden J (1989) Plasmid localization and mapping of two Azospirillum brasilense loci that affect exopolysaccharides synthesis. Plasmid 21:142–146

    Article  CAS  PubMed  Google Scholar 

  • Michiels K, Croes CL, Vanderleyden J (1991) Two different modes of attachment of Azospirillum brasilense Sp7 to wheat roots. J Gen Microbiol 137:2241–2246

    Article  CAS  Google Scholar 

  • Moens S, Michiels K, Keijers V, Van Leuven F, Vanderleyden J (1995) Cloning, sequencing and phenotypic analysis of laf1, encoding the flagellin of the lateral flagella of Azospirillum brasilense Sp7. J Bacteriol 177:5419–5426

    PubMed Central  CAS  PubMed  Google Scholar 

  • Moens S, Schloter M, Vanderleyden J (1996) Expression of the structural gene, laf1, encoding the flagellin of the lateral flagella in Azospirillum brasilense Sp7. J Bacteriol 178:5017–5019

    PubMed Central  CAS  PubMed  Google Scholar 

  • Okon Y (1985) Azospirillum as a potential inoculant for agriculture. Trends Biotechnol 3:223–228

    Article  Google Scholar 

  • Okon Y, Itzigsohn R (1992) Poly-β-hydroxybutyrate metabolism in Azospirillum brasilense and the ecological role of PHB in the rhizosphere. FEMS Microbiol Rev 103:131–140

    CAS  Google Scholar 

  • Okon Y, Cakmakci L, Nur I, Chet I (1980) Aerotaxis and chemotaxis of Azospirillum brasilense: a note. Microb Ecol 6:277–280

    Article  CAS  PubMed  Google Scholar 

  • Oliveira RGB, Drozdowicz A (1988) Are Azospirillum bacteriocins produced and active in soil? In: Klingmüller W (ed) Azospirillum IV: genetics, physiology, ecology. Springer, Berlin, pp 101–108

    Chapter  Google Scholar 

  • Onyeocha I, Vieille C, Zimmer W, Baca BE, Flores M, Palacios R, Elmerich C (1990) Physical map and properties of a 90-MDa plasmid of Azospirillum brasilense Sp7. Plasmid 23:169–182

    Article  CAS  PubMed  Google Scholar 

  • Papen H, Werner D (1982) Organic acid utilization, succinate excretion, encystation and oscillating nitrogenase activity in Azospirillum brasilense under microaerobic conditions. Arch Microbiol 132:57–61

    Article  CAS  Google Scholar 

  • Pardy K (1994) Reporter enzymes for the study of promoter activity. Mol Biotechnol 2:23–27

    Article  CAS  PubMed  Google Scholar 

  • Pereg Gerk L (2004) Expression of flcA, a gene regulating differentiation and plant interaction in Azospirillum. Soil Biol Biochem 36:1245–1252

    Article  CAS  Google Scholar 

  • Pereg Gerk L, Paquelin A, Gounon P, Kennedy IR, Elmerich C (1998) A transcriptional regulator of the LuxR-UhpA family, FlcA, controls flocculation and wheat root surface colonisation by Azospirillum brasilense Sp7. Mol Plant Microbe Interact 11:177–187

    Article  CAS  PubMed  Google Scholar 

  • Pereg Gerk L, Gilchrist K, Kennedy IR (2000) Mutants with enhanced nitrogenase activity in hydroponic Azospirillum brasilense-wheat associations. Appl Environ Microbiol 66:2175–2184

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Petersen DJ, Eyers M, De Troch P, Michiels K, Vandeleyden J (1992) Differential complementation of Rhizobium meliloti 7027: isolation of a second ExoC locus from Azospirillum brasilense Sp7. Symbiosis 13:139–145

    CAS  Google Scholar 

  • Puvanesarajah V, Schell FM, Stacey G, Douglas CJ, Nester EW (1985) Role for 2-linked-β-glucan in the virulence of Agrobacterium tumefaciens. J Bacteriol 164:102–106

    PubMed Central  CAS  PubMed  Google Scholar 

  • Puvanesarajah V, Schell FM, Gerhold D, Stacey G (1987) Cell surface polysaccharides from Bradyrhizobium japonicum and a nonnodulating mutant. J Bacteriol 169:137–141

    PubMed Central  CAS  PubMed  Google Scholar 

  • Rodríguez-Cáceres EA (1982) Improved medium for isolation of Azospirillum spp. Appl Environ Microbiol 44:990–991

    Google Scholar 

  • Romero AM, Correa O, Moccia S, Rivas JG (2003) Effect of Azospirillum-mediated plant growth promotion on the development of bacterial diseases on fresh-market and cherry tomato. J Appl Microbiol 95:832–838

    Article  CAS  PubMed  Google Scholar 

  • Russo A, Vettori L, Felici C, Fiaschi G, Morini S, Toffanin A (2008) Enhanced micropropagation response and biocontrol effect of Azospirillum brasilense Sp245 on Prunus cerasifera L. clone Mr.S 2/5 plants. J Biotechnol 134:312–319

    Article  CAS  PubMed  Google Scholar 

  • Sadasivan L, Neyra CA (1985a) Cysts of Azospirilla under various cultural conditions. In: Klingmüller W (ed) Azospirillum III: genetics, physiology, ecology. Springer, Berlin, pp 230–242

    Chapter  Google Scholar 

  • Sadasivan L, Neyra CA (1985b) Flocculation in Azospirillum brasilense and Azospirillum lipoferum: exopolysaccharides and cyst formation. J Bacteriol 163:716–723

    PubMed Central  CAS  PubMed  Google Scholar 

  • Sadasivan L, Neyra CA (1987) Cyst production and brown pigment formation in aging cultures of Azospirillum brasilense ATCC 29145. J Bacteriol 169:1670–1677

    PubMed Central  CAS  PubMed  Google Scholar 

  • Sarig S, Blum A, Okon Y (1988) Improvement of the water status and yield of field-grown grain sorghum (Sorghum bicolor) by inoculation with Azospirillum brasilense. J Agric Sci 110:271–277

    Article  Google Scholar 

  • Schloter M, Borlinghaus R, Bode W, Hartmann A (1993) Direct identification, and localization of Azospirillum in the rhizosphere of wheat using fluorescence-labeled monoclonal antibodies and confocal scanning laser microscopy. J Microsc 171:173–177

    Article  Google Scholar 

  • Schloter M, Kirchhof G, Heinzmann U, Doebereiner J, Hartmann A. (1994b) Immunological studies of the wheat-root-colonization by the Azospirillum brasilense strains Sp7 and Sp245 using strain-specific monoclonal antibodies. The 6th International Symposium on Nitrogen Fixation with Non-Legumes, Ismailia/Egypt, The American University in Cairo Press

    Google Scholar 

  • Shah S, Karkhanis V, Desai A (1992) Isolation and characterization of siderophore, with antimicrobial activity, from Azospirillum lipoferum. Curr Opin Microbiol 25:34–35

    Google Scholar 

  • Somers E, Ptacek D, Gysegom P, Srinivasan M, Vanderleyden J (2005) Azospirillum brasilense produces the auxin-like phenylacetic acid by using the key enzyme for indole-3-acetic acid biosynthesis. Appl Environ Microbiol 71:1803–1810

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Stevenson LH, Socolofsky MD (1966) Cyst formation and poly-β-hydroxybutyric acid accumulation in Azotobacter. J Bacteriol 91:304–310

    PubMed Central  CAS  PubMed  Google Scholar 

  • Sudhakar P, Gangwar SK, Satpathy B, Sahu PK, Ghosh JK, Saratchandra B (2000) Evaluation of some nitrogen fixing bacteria for control of foliar diseases of mulberry (Morus alba). Indian J Seric 39:9–11

    Google Scholar 

  • Tal S, Smirnoff P, Okon Y (1990) The regulation of poly-β-hydroxybutyrate metabolism in Azospirillum brasilense during balanced growth and starvation. J Gen Microbiol 136:1191–1196

    Article  CAS  Google Scholar 

  • Tapia-Hernandez A, Mascarua-Esparza MA, Caballero-Mellado J (1990) Production of bacteriocins and siderophore-like activity in Azospirillum brasilense. Microbios 64:73–83

    CAS  PubMed  Google Scholar 

  • Tarrand JJ, Krieg NR, Döbereiner J (1978) A taxonomic study of the Spirillum lipoferum group, with descriptions of a new genus, Azospirillum gen. nov. and two species, Azospirillum lipoferum (Beijerinck) comb. nov. and Azospirillum brasilense sp. nov. Can J Microbiol 24:967–980

    Article  CAS  PubMed  Google Scholar 

  • Tortora ML, Díaz-Ricci JC, Pedraza RO (2011) Azospirillum brasilense siderophores with antifungal activity against Colletotrichum acutatum. Arch Microbiol 193:275–286

    Article  CAS  PubMed  Google Scholar 

  • Van Rhijn P, Vanstockem M, Vanderleyden J, De Mot R (1990) Isolation of behavioral mutants of Azospirillum brasilense by using Tn5 lacZ. Appl Environ Microbiol 56:990–996

    PubMed Central  PubMed  Google Scholar 

  • Vande Broek A, Vanderleyden J (1995) Review: genetics of the Azospirillum-plant root association. Crit Rev Plant Sci 14:445–466

    Article  CAS  Google Scholar 

  • Vande Broek A, Michiels J, Van Gool A, Vanderleyden J (1993) Spatial-temporal colonization patterns of Azospirillum brasilense on the wheat root surface and expression of the bacterial nifH gene during association. Mol Plant Microbe Interact 6:592–600

    Article  Google Scholar 

  • Vazquez-Cruz C, Tapia-Hernandez A, Mascarua-Esparza MA, Caballero-Mellado J (1992) Plasmid profile modification after elimination of bacteriocin activity in some Azospirillum brasilense strains. Microbios 69:195–204

    CAS  Google Scholar 

  • Vieille C, Elmerich C (1990) Characterization of two Azospirillum brasilense Sp7 plasmid genes homologous to R. meliloti nodPQ. Mol Plant Microbe Interact 3:389–400

    Article  CAS  PubMed  Google Scholar 

  • Wilson KJ (1995) Molecular techniques for the study of rhizobial ecology in the field. Soil Biol Biochem 27:501–514

    Article  CAS  Google Scholar 

  • Wilson KJ, Sessitsch A, Corbo JC, Giller KE, Akkermans ADL, Jefferson RA (1995) β-Glucuronidase (GUS) transposons for ecological and genetic studies of rhizobia and other Gram-negative bacteria. Microbiology 141:1691–1705

    Article  CAS  PubMed  Google Scholar 

  • Yasuda M, Isawa T, Minamisawa K, Shinozaki S, Nakashita H (2010) Effects of colonization of bacterial endophyte, Azospirillum sp. B510 on disease resistance in rice. Biosci Biotechnol Biochem 73:2595–2599

    Article  Google Scholar 

  • Zimmer W, Stephan MP, Bothe H (1984) Denitrification by A. brasilense Sp7. I. Growth with nitrite as respiratory electron acceptor. Arch Microbiol 138:206–211

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lily Pereg .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Pereg, L. (2015). Azospirillum Cell Aggregation, Attachment, and Plant Interaction. In: Cassán, F., Okon, Y., Creus, C. (eds) Handbook for Azospirillum. Springer, Cham. https://doi.org/10.1007/978-3-319-06542-7_10

Download citation

Publish with us

Policies and ethics