Skip to main content

Molecular Dynamics Simulations of Laser-Materials Interactions: General and Material-Specific Mechanisms of Material Removal and Generation of Crystal Defects

  • Chapter
  • First Online:
Fundamentals of Laser-Assisted Micro- and Nanotechnologies

Part of the book series: Springer Series in Materials Science ((SSMATERIALS,volume 195))

Abstract

Molecular dynamics simulations of laser-materials interactions are capable of providing detailed information on the complex processes induced by the fast laser energy deposition and can help in the advancement of laser-driven applications. This chapter provides a brief overview of recent progress in the atomic- and molecular-level modeling of laser-materials interactions and presents several examples of the application of atomistic simulations for investigation of laser melting and resolidification, generation of crystal defects, photomechanical spallation, and ablation of metals and molecular targets. A particular focus of the analysis of the computational results is on revealing the general and material-specific phenomena in laser-materials interactions and on making connections to experimental observations.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. P.L. Silvestrelli, A. Alavi, M. Parrinello, D. Frenkel, Ab initio molecular dynamics simulation of laser melting of silicon. Phys. Rev. Lett. 77, 3149–3152 (1996)

    Article  ADS  Google Scholar 

  2. T. Dumitrica, A. Burzo, Y. Dou, R.E. Allen, Response of Si and InSb to ultrafast laser pulses. Phys. Status Solidi B 241, 2331–2342 (2004)

    Article  ADS  Google Scholar 

  3. V. Recoules, J. Clérouin, G. Zérah, P.M. Anglade, S. Mazevet, Effect of intense laser irradiation on the lattice stability of semiconductors and metals. Phys. Rev. Lett. 96, 055503 (2006)

    Article  ADS  Google Scholar 

  4. Z. Lin, L.V. Zhigilei, V. Celli, Electron-phonon coupling and electron heat capacity of metals under conditions of strong electron-phonon nonequilibrium. Phys. Rev. B 77, 075133 (2008)

    Article  ADS  Google Scholar 

  5. H.O. Jeschke, M.S. Diakhate, M.E. Garcia, Molecular dynamics simulations of laser-induced damage of nanostructures and solids. Appl. Phys. A 96, 33–42 (2009)

    Article  ADS  Google Scholar 

  6. Z. Lin, R.E. Allen, Ultrafast equilibration of excited electrons in dynamic simulations. J. Phys. Condens. Matter 21, 485503 (2009)

    Article  Google Scholar 

  7. C.F. Richardson, P. Clancy, Picosecond laser processing of copper and gold: a computer simulation study. Mol. Sim. 7, 335–355 (1991)

    Article  Google Scholar 

  8. X. Wang, X. Xu, Molecular dynamics simulation of heat transfer and phase change during laser material interaction. J. Heat Transf. 124, 265–274 (2002)

    Article  Google Scholar 

  9. D.S. Ivanov, L.V. Zhigilei, Combined atomistic-continuum modeling of short pulse laser melting and disintegration of metal films. Phys. Rev. B 68, 064114 (2003)

    Article  ADS  Google Scholar 

  10. D.S. Ivanov, L.V. Zhigilei, The effect of pressure relaxation on the mechanisms of short pulse laser melting. Phys. Rev. Lett. 91, 105701 (2003)

    Article  ADS  Google Scholar 

  11. Z. Lin, L.V. Zhigilei, Time-resolved diffraction profiles and atomic dynamics in short pulse laser induced structural transformations: molecular dynamics study. Phys. Rev. B 73, 184113 (2006)

    Article  ADS  Google Scholar 

  12. L.V. Zhigilei, Z. Lin, D.S. Ivanov, Atomistic modeling of short pulse laser ablation of metals: Connections between melting, spallation, and phase explosion. J. Phys. Chem. C 113, 11892–11906 (2009)

    Google Scholar 

  13. D.A. Thomas, Z. Lin, L.V. Zhigilei, E.L. Gurevich, S. Kittel, R. Hergenröder, Atomistic modeling of femtosecond laser-induced melting and atomic mixing in Au film - Cu substrate system. Appl. Surf. Sci. 255, 9605–9612 (2009)

    Article  ADS  Google Scholar 

  14. Z. Lin, E.M. Bringa, E. Leveugle, L.V. Zhigilei, Molecular dynamics simulation of laser melting of nanocrystalline Au. J. Phys. Chem. C 114, 5686–5699 (2010)

    Article  Google Scholar 

  15. E.T. Karim, Z. Lin, L.V. Zhigilei, Molecular dynamics study of femtosecond laser interactions with Cr targets. AIP Conf. Proc. 1464, 280–293 (2012)

    Article  ADS  Google Scholar 

  16. Z. Lin, R.A. Johnson, L.V. Zhigilei, Computational study of the generation of crystal defects in a bcc metal target irradiated by short laser pulses. Phys. Rev. B 77, 214108 (2008)

    Article  ADS  Google Scholar 

  17. D.S. Ivanov, Z. Lin, B. Rethfeld, G.M. O’Connor, Th.J. Glynn, L.V. Zhigilei, Nanocrystalline structure of nanobump generated by localized photo-excitation of metal film. J. Appl. Phys. 107, 013519 (2010)

    Google Scholar 

  18. C. Wu, D.A. Thomas, Z. Lin, L.V. Zhigilei, Runaway lattice-mismatched interface in an atomistic simulation of femtosecond laser irradiation of Ag film—Cu substrate system. Appl. Phys. A 104, 781–792 (2011)

    Google Scholar 

  19. L.V. Zhigilei, B.J. Garrison, Microscopic mechanisms of laser ablation of organic solids in the thermal and stress confinement irradiation regimes. J. Appl. Phys. 88, 1281–1298 (2000)

    Article  ADS  Google Scholar 

  20. S.I. Anisimov, V.V. Zhakhovskii, N.A. Inogamov, K. Nishihara, A.M. Oparin, Yu.V. Petrov, Destruction of a solid film under the action of ultrashort laser pulse. Pis’ma Zh. Eksp. Teor. Fiz. 77, 731 (JETP Lett. 77, 606–610 (2003))

    Google Scholar 

  21. E. Leveugle, D.S. Ivanov, L.V. Zhigilei, Photomechanical spallation of molecular and metal targets: molecular dynamics study. Appl. Phys. A 79, 1643–1655 (2004)

    ADS  Google Scholar 

  22. A.K. Upadhyay, H.M. Urbassek, Melting and fragmentation of ultra-thin metal films due to ultrafast laser irradiation: a molecular-dynamics study. J. Phys. D 38, 2933–2941 (2005)

    Article  ADS  Google Scholar 

  23. B.J. Demaske, V.V. Zhakhovsky, N.A. Inogamov, I.I. Oleynik, Ablation and spallation of gold films irradiated by ultrashort laser pulses. Phys. Rev. B 82, 064113 (2010)

    Article  ADS  Google Scholar 

  24. C. Wu, L.V. Zhigilei, Microscopic mechanisms of laser spallation and ablation of metal targets from large-scale molecular dynamics simulations. Appl. Phys. A 114, 11–32 (2014)

    Google Scholar 

  25. E. Ohmura, I. Fukumoto, Molecular dynamics simulation on laser ablation of fcc metal. Int. J. Jpn. Soc. Precis. Eng. 30, 128–133 (1996)

    Google Scholar 

  26. L.V. Zhigilei, P.B.S. Kodali, B.J. Garrison, Molecular dynamics model for laser ablation of organic solids. J. Phys. Chem. B 101, 2028–2037 (1997)

    Article  Google Scholar 

  27. R.F.W. Herrmann, J. Gerlach, E.E.B. Campbell, Ultrashort pulse laser ablation of silicon: an MD simulation study. Appl. Phys. A 66, 35–42 (1998)

    Article  ADS  Google Scholar 

  28. X. Wu, M. Sadeghi, A. Vertes, Molecular dynamics of matrix-assisted laser desorption of leucine enkephalin guest molecules from nicotinic acid host crystal. J. Phys. Chem. B 102, 4770–4778 (1998)

    Article  Google Scholar 

  29. L.V. Zhigilei, P.B.S. Kodali, B.J. Garrison, A microscopic view of laser ablation. J. Phys. Chem. B 102, 2845–2853 (1998)

    Article  Google Scholar 

  30. Y.G. Yingling, L.V. Zhigilei, B.J. Garrison, The role of photochemical fragmentation in laser ablation: a molecular dynamics study. J. Photochem. Photobiol. A 145, 173–181 (2001)

    Article  Google Scholar 

  31. T.E. Itina, L.V. Zhigilei, B.J. Garrison, Microscopic mechanisms of matrix assisted laser desorption of analyte molecules: insights from molecular dynamics simulation. J. Phys. Chem. B 106, 303–310 (2002)

    Article  Google Scholar 

  32. C. Schäfer, H.M. Urbassek, L.V. Zhigilei, Metal ablation by picosecond laser pulses: A hybrid simulation. Phys. Rev. B 66, 115404 (2002)

    Article  ADS  Google Scholar 

  33. L.V. Zhigilei, Dynamics of the plume formation and parameters of the ejected clusters in short-pulse laser ablation. Appl. Phys. A 76, 339–350 (2003)

    Article  ADS  Google Scholar 

  34. L.V. Zhigilei, E. Leveugle, B.J. Garrison, Y.G. Yingling, M.I. Zeifman, Computer simulations of laser ablation of molecular substrates. Chem. Rev. 103, 321–348 (2003)

    Article  Google Scholar 

  35. P. Lorazo, L.J. Lewis, M. Meunier, Short-pulse laser ablation of solids: from phase explosion to fragmentation. Phys. Rev. Lett. 91, 225502 (2003)

    Article  ADS  Google Scholar 

  36. N.N. Nedialkov, P.A. Atanasov, S.E. Imamova, A. Ruf, P. Berger, F. Dausinger, Dynamics of the ejected material in ultra-short laser ablation of metals. Appl. Phys. A 79, 1121–1125 (2004)

    Article  ADS  Google Scholar 

  37. C. Cheng, X. Xu, Mechanisms of decomposition of metal during femtosecond laser ablation. Phys. Rev. B 72, 165415 (2005)

    Article  ADS  Google Scholar 

  38. P. Lorazo, L.J. Lewis, M. Meunier, Thermodynamic pathways to melting, ablation, and solidification in absorbing solids under pulsed laser irradiation. Phys. Rev. B 73, 134108 (2006)

    Article  ADS  Google Scholar 

  39. M.B. Agranat, S.I. Anisimov, S.I. Ashitkov, V.V. Zhakhovskii, N.A. Inogamov, K. Nishihara, Yu.V. Petrov, V.E. Fortov, V.A. Khokhlov, Dynamics of plume and crater formation after action of femtosecond laser pulse. Appl. Surf. Sci. 253, 6276–6282 (2007)

    Google Scholar 

  40. E. Leveugle, L.V. Zhigilei, Molecular dynamics simulation study of the ejection and transport of polymer molecules in matrix-assisted pulsed laser evaporation. J. Appl. Phys. 102, 074914 (2007)

    Article  ADS  Google Scholar 

  41. M. Prasad, P.F. Conforti, B.J. Garrison, On the role of chemical reactions in initiating ultraviolet ablation in poly (methyl methacrylate). J. Appl. Phys. 101, 103113 (2007)

    Google Scholar 

  42. M. Gill-Comeau, L.J. Lewis, Ultrashort-pulse laser ablation of nanocrystalline aluminum. Phys. Rev. B 84, 224110 (2011)

    Article  ADS  Google Scholar 

  43. L.V. Zhigilei, A.N. Volkov, E. Leveugle, M. Tabetah, The effect of the target structure and composition on the ejection and transport of polymer molecules and carbon nanotubes in matrix-assisted pulsed laser evaporation. Appl. Phys. A 105, 529–546 (2011)

    Article  ADS  Google Scholar 

  44. X. Li, L. Jiang, Size distribution control of metal nanoparticles using femtosecond laser pulse train: a molecular dynamics simulation. Appl. Phys. A 109, 367–376 (2012)

    Article  ADS  Google Scholar 

  45. R.K. Singh, J. Narayan, Pulsed-laser evaporation technique for deposition of thin films: Physics and theoretical model. Phys. Rev. B 41, 8843–8858 (1990)

    Article  ADS  Google Scholar 

  46. A. Peterlongo, A. Miotello, R. Kelly, Laser-pulse sputtering of aluminum: Vaporization, boiling, superheating, and gas-dynamic effects. Phys. Rev. E 50, 4716–4727 (1994)

    Article  ADS  Google Scholar 

  47. J.R. Ho, C.P. Grigoropoulos, J.A.C. Humphrey, Computational study of heat transfer and gas dynamics in the pulsed laser evaporation of metals. J. Appl. Phys. 78, 4696–4709 (1995)

    Article  ADS  Google Scholar 

  48. X. Xu, G. Chen, K.H. Song, Experimental and numerical investigation of heat transfer and phase change phenomena during excimer laser interaction with nickel. Int. J. Heat Mass Transf. 42, 1371–1382 (1999)

    Article  Google Scholar 

  49. O.A. Bulgakova, N.M. Bulgakova, V.P. Zhukov, A model of nanosecond laser ablation of compound semiconductors accounting for non-congruent vaporization. Appl. Phys. A 101, 53–59 (2010)

    Article  ADS  Google Scholar 

  50. K. Eidmann, J. Meyer-ter-Vehn, T. Schlegel, S. Huller, Hydrodynamic simulation of subpicosecond laser interaction with solid-density matter. Phys. Rev. E 62, 1202–1214 (2000)

    Article  ADS  Google Scholar 

  51. J.P. Colombier, P. Combis, F. Bonneau, R. Le Harzic, E. Audouard, Hydrodynamic simulations of metal ablation by femtosecond laser irradiation. Phys. Rev. B 71, 165406 (2005)

    Article  ADS  Google Scholar 

  52. A.N. Volkov, L.V. Zhigilei, Hydrodynamic multi-phase model for simulation of laser-induced non-equilibrium phase transformations. J. Phys. Conf. Ser. 59, 640–645 (2007)

    Google Scholar 

  53. M.E. Povarnitsyn, T.E. Itina, K.V. Khishchenko, P.R. Levashov, Suppression of ablation in femtosecond double-pulse experiments. Phys. Rev. Lett. 103, 195002 (2009)

    Article  ADS  Google Scholar 

  54. M.E. Povarnitsyn, T.E. Itina, P.R. Levashov, K.V. Khishchenko, Mechanisms of nanoparticle formation by ultra-short laser ablation of metals in liquid environment. Phys. Chem. Chem. Phys. 15, 3108–3114 (2013)

    Article  Google Scholar 

  55. C. Schäfer, H.M. Urbassek, L.V. Zhigilei, B.J. Garrison, Pressure-transmitting boundary conditions for molecular dynamics simulations. Comp. Mater. Sci. 24, 421–429 (2002)

    Article  Google Scholar 

  56. L.V. Zhigilei, A.N. Volkov, A.M. Dongare, in Encyclopedia of Nanotechnology, ed. by B. Bhushan (Springer, Heidelberg, 2012), Part 4, pp. 470–480

    Google Scholar 

  57. S.I. Anisimov, B.L. Kapeliovich, T.L. Perel’man, Electron emission from metal surfaces exposed to ultrashort laser pulses. Sov. Phys. JETP 39, 375–377 (1974)

    ADS  Google Scholar 

  58. R. Holenstein, S.E. Kirkwood, R. Fedosejevs, Y.Y. Tsui, Simulation of femtosecond laser ablation of silicon. Proc. SPIE 5579, 688–695 (2004)

    Google Scholar 

  59. Y. Wang, X. Xu, L. Zheng, Molecular dynamics simulation of ultrafast laser ablation of fused silica film. Appl. Phys. A 92, 849–852 (2008)

    Article  ADS  Google Scholar 

  60. Y. Cherednikov, N.A. Inogamov, H.M. Urbassek, Atomistic modeling of ultrashort-pulse ultraviolet laser ablation of a thin Lif film. J. Opt. Soc. Am. B 28, 1817–1824 (2011)

    Article  Google Scholar 

  61. E. Leveugle, L.V. Zhigilei, A. Sellinger, J.M. Fitz-Gerald, Computational and experimental study of the cluster size distribution in MAPLE. Appl. Surf. Sci. 253, 6456–6460 (2007)

    Article  ADS  Google Scholar 

  62. A. Sellinger, E. Leveugle, J.M. Fitz-Gerald, L.V. Zhigilei, Generation of surface features in films deposited by matrix-assisted pulsed laser evaporation: the effects of the stress confinement and droplet landing velocity. Appl. Phys. A 92, 821–829 (2008)

    Article  ADS  Google Scholar 

  63. R. Knochenmuss, L.V. Zhigilei, Molecular dynamics model of ultraviolet matrix-assisted laser desorption/ionization including ionization processes. J. Phys. Chem. B 109, 22947–22957 (2005)

    Article  Google Scholar 

  64. R. Knochenmuss, L.V. Zhigilei, Molecular dynamics simulations of MALDI: laser fluence and pulse width dependence of plume characteristics and consequences for matrix and analyte ionization. J. Mass Spectrom. 45, 333–346 (2010)

    Google Scholar 

  65. R. Knochenmuss, L.V. Zhigilei, What determines MALDI ion yields? A molecular dynamics study of ion loss mechanisms. Anal. Bioanal. Chem. 402, 2511–2519 (2012)

    Article  Google Scholar 

  66. Y.G. Yingling, B.J. Garrison, Coarse-grained chemical reaction model. J. Phys. Chem. B 108, 1815–1821 (2004)

    Article  Google Scholar 

  67. L.V. Zhigilei, C. Wei, D. Srivastava, Mesoscopic model for dynamic simulations of carbon nanotubes. Phys. Rev. B 71, 165417 (2005)

    Article  ADS  Google Scholar 

  68. A.N. Volkov, L.V. Zhigilei, Mesoscopic interaction potential for carbon nanotubes of arbitrary length and orientation. J. Phys. Chem. C 114, 5513–5531 (2010)

    Article  Google Scholar 

  69. L. V. Zhigilei, Z. Lin, D.S. Ivanov, E. Leveugle, W.H. Duff, D. Thomas, C. Sevilla, S. J. Guy, Atomic/molecular-level simulations of laser-materials interactions. in Laser-Surface Interactions for New Materials Production: Tailoring Structure and Properties, ed. by A. Miotello, P.M. Ossi. Springer Series in Materials Science, vol. 130.(Springer, New York, 2010), pp. 43–79

    Google Scholar 

  70. L.V. Zhigilei, E. Leveugle, D.S. Ivanov, Z. Lin, A.N. Volkov, Molecular dynamics simulations of short pulse laser ablation: Mechanisms of material ejection and particle generation. in Nanosized Material Synthesis by Action of High-Power Energy Fluxes on Matter (Siberian Branch of the Russian Academy of Sciences, Novosibirsk, 2010), pp. 147–220 (in Russian)

    Google Scholar 

  71. C. Wu, E. T. Karim, A. N. Volkov, and L. V. Zhigilei, Atomic movies of laser-induced structural and phase transformations from molecular dynamics simulations. in Lasers in Materials Science, ed. by M. Castillejo, P.M. Ossi, L.V. Zhigilei. Springer Series in Materials Science, vol. 191. (Springer, New York, 2014), pp. 67–100

    Google Scholar 

  72. X.W. Zhou, H.N.G. Wadley, R.A. Johnson, D.J. Larson, N. Tabat, A. Cerezo, A.K. Petford-Long, G.D.W. Smith, P.H. Clifton, R.L. Martens, T.F. Kelly, Atomic scale structure of sputtered metal multilayers. Acta Mater. 49, 4005–4015 (2001)

    Article  Google Scholar 

  73. B.J. Siwick, J.R. Dwyer, R.E. Jordan, R.J.D. Miller, An atomic-level view of melting using femtosecond electron diffraction. Science 302, 1382–1385 (2003)

    Article  ADS  Google Scholar 

  74. J.R. Dwyer, R.E. Jordan, C.T. Hebeisen, M. Harb, R. Ernstorfer, T. Dartigalongue, R.J.D. Miller, Femtosecond electron diffraction: an atomic perspective of condensed phase dynamics. J. Mod. Opt. 54, 905–922 (2007)

    Article  MATH  ADS  Google Scholar 

  75. W.-L. Chan, R.S. Averback, D.G. Cahill, Y. Ashkenazy, Solidification velocities in deeply undercooled silver. Phys. Rev. Lett. 102, 095701 (2009)

    Google Scholar 

  76. B.J. Garrison, T.E. Itina, L.V. Zhigilei, The limit of overheating and the threshold behavior in laser ablation. Phys. Rev. E 68, 041501 (2003)

    Article  ADS  Google Scholar 

  77. A. Miotello, R. Kelly, Laser-induced phase explosion: new physical problems when a condensed phase approaches the thermodynamic critical temperature. Appl. Phys. A 69, S67–S73 (1999)

    Article  ADS  Google Scholar 

  78. N.M. Bulgakova, A.V. Bulgakov, Pulsed laser ablation of solids: transition from normal vaporization to phase explosion. Appl. Phys. A 73, 199–208 (2001)

    Article  ADS  Google Scholar 

  79. S. Amoruso, R. Bruzzese, C. Pagano, X. Wang, Features of plasma plume evolution and material removal efficiency during femtosecond laser ablation of nickel in high vacuum. Appl. Phys. A 89, 1017–1024 (2007)

    Article  ADS  Google Scholar 

  80. K. Sokolowski-Tinten, J. Bialkowski, A. Cavalleri, D. von der Linde, A. Oparin, J. Meyer-ter-Vehn, S.I. Anisimov, Transient states of matter during short pulse laser ablation. Phys. Rev. Lett. 81, 224–227 (1998)

    Article  ADS  Google Scholar 

  81. N.A. Inogamov, Y.V. Petrov, S.I. Anisimov, A.M. Oparin, N.V. Shaposhnikov, D. von der Linde, J. Meyer-ter-Vehn, Expansion of matter heated by an ultrashort laser pulse. JETP Lett. 69, 310–316 (1999)

    Article  ADS  Google Scholar 

  82. A.A. Ionin, S.I. Kudryashov, L.V. Seleznev, D.V. Sinitsyn, Dynamics of the spallative ablation of a GaAs surface irradiated by femtosecond laser pulses. JETP Lett. 94, 753–758 (2011)

    Article  ADS  Google Scholar 

  83. S.M. Foiles, M.I. Baskes, M.S. Daw, Embedded-atom-method functions for the fcc metals Cu, Ag, Au, Ni, Pd, Pt, and their alloys. Phys. Rev. B 33, 7983–7991 (1986)

    Article  ADS  Google Scholar 

  84. P.T. Mannion, J. Magee, E. Coyne, G.M. O’Connor, T.J. Glynn, The effect of damage accumulation behaviour on ablation thresholds and damage morphology in ultrafast laser micro-machining of common metals in air. Appl. Surf. Sci. 233, 275–287 (2004)

    Article  ADS  Google Scholar 

  85. S.E. Kirkwood, A.C. Van Popta, Y.Y. Tsui, R. Fedosejevs, Single and multiple shot near-infrared femtosecond laser pulse ablation thresholds of copper. Appl. Phys. A 81, 729–735

    Google Scholar 

  86. G. Raciukaitis, M. Brikas, P. Gecys, M. Gedvilas, Accumulation effects in laser ablation of metals with high-repetition-rate lasers. Proc. SPIE 7005, 70052L (2008)

    Google Scholar 

  87. L.V. Zhigilei, D.S. Ivanov, E. Leveugle, B. Sadigh, E.M. Bringa, Computer modeling of laser melting and spallation of metal targets, in High-Power Laser Ablation V, ed. by C.R. Phipps. Proc. SPIE 5448, 505–519 (2004)

    Google Scholar 

  88. Animated sequences of snapshots from a MD simulation of laser spallation of a molecular target, http://www.faculty.virginia.edu/CompMat/spallation/animations/

  89. J.-M. Savolainen, M.S. Christensen, P. Balling, Material swelling as the first step in the ablation of metals by ultrashort laser pulses. Phys. Rev. B 84, 193410 (2011)

    Article  ADS  Google Scholar 

  90. Y. Mishin, D. Farkas, M.J. Mehl, D.A. Papaconstantopoulos, Interatomic potentials for monoatomic metals from experimental data and ab initio calculations. Phys. Rev. B 59, 3393–3407 (1999)

    Google Scholar 

  91. L.V. Zhigilei, Computational model for multiscale simulation of laser ablation, ed. by V.V. Bulatov, F. Cleri, L. Colombo, L.J. Lewis, N. Mousseau. Advances in Materials Theory and Modeling-Bridging Over Multiple-Length and Time Scales Mat. Res. Soc. Symp. Proc. 677, AA2.1.1–AA2.1.11 (2001)

    Google Scholar 

  92. S. Noël, J. Hermann, T. Itina, Investigation of nanoparticle generation during femtosecond laser ablation of metals. Appl. Surf. Sci. 253, 6310–6315 (2007)

    Article  ADS  Google Scholar 

  93. T.E. Itina, K. Gouriet, L.V. Zhigilei, S. Noël, J. Hermann, M. Sentis, Mechanisms of small clusters production by short and ultra-short pulse laser ablation. Appl. Surf. Sci. 253, 7656–7661 (2007)

    Google Scholar 

  94. O. Albert, S. Roger, Y. Glinec, J.C. Loulergue, J. Etchepare, C. Boulmer-Leborgne, J. Perriere, E. Millon, Time-resolved spectroscopy measurements of a titanium plasma induced by nanosecond and femtosecond lasers. Appl. Phys. A 76, 319–323 (2003)

    Article  ADS  Google Scholar 

  95. N. Jegenyes, J. Etchepare, B. Reynier, D. Scuderi, A. Dos-Santos, Z. Tóth, Time-resolved dynamics analysis of nanoparticles applying dual femtosecond laser pulses. Appl. Phys. A 91, 385–392 (2008)

    Article  ADS  Google Scholar 

Download references

Acknowledgments

Financial support for this work was provided by the National Science Foundation (NSF) through Grants DMR-0907247 and CMMI-1301298, Electro Scientific Industries, Inc., and the Air Force Office of Scientific Research through Grant FA9550-10-1-0541. Computational support was provided by the Oak Ridge Leadership Computing Facility (project MAT048) and NSF through the Extreme Science and Engineering Discovery Environment (project TG-DMR110090).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Leonid V. Zhigilei .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Karim, E.T., Wu, C., Zhigilei, L.V. (2014). Molecular Dynamics Simulations of Laser-Materials Interactions: General and Material-Specific Mechanisms of Material Removal and Generation of Crystal Defects. In: Veiko, V., Konov, V. (eds) Fundamentals of Laser-Assisted Micro- and Nanotechnologies. Springer Series in Materials Science, vol 195. Springer, Cham. https://doi.org/10.1007/978-3-319-05987-7_2

Download citation

Publish with us

Policies and ethics