Skip to main content

Etiology and Prevention of Acute Leukemias in Children

  • Chapter
  • First Online:
Book cover Etiology of Acute Leukemias in Children

Abstract

Acute leukemia (AL) is the most common type of cancer in children under 15 years of age and represents one of the leading causes of mortality among children worldwide. Despite advancements in the knowledge of the biology and treatment of AL, the etiology remains unresolved. A small number of risk factors have been reported as established for the development of this disease, but they explain less than 10 % of cases, leaving 90 % of cases without an identified causation.

Case-control studies have been the main research designs used to investigate the causes of AL in children. The importance of case-control studies rests on the assumption that data on individuals is essential for gaining an understanding of the environmental causes of childhood leukemia and adds great value to the genetic research.

Genetic or environmental factors alone may not be responsible for causing childhood AL. Rather, it is thought that an interaction between genetic susceptibility and exposures to certain environmental factors in a specific time window can contribute to the development of this disease.

Identifying the causes of childhood AL would lead to the establishment of effective preventive measures in children who are at high risk of developing this disease, reducing incidence and mortality rates, the costs of medical care, and other consequences associated with childhood leukemia. Therefore, we need to implement a new framework for the etiology of AL. We believe that solving key elements of this puzzle can lead to prevention of the development of AL in children.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 179.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Ahlbom A, et al. A pooled analysis of magnetic fields and childhood leukaemia. Br J Cancer. 2000;83(5):692–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Allergy UK British Allergy Foundation. Allergy UK. Allergy medications. 2012. Available at: http://www.allergyuk.org/what-is-an-allergy/what-is-an-allergy. Accessed 20 Oct 2014.

  • Alter BP. Cancer in Fanconi anemia, 1927–2001. Cancer. 2003;97(2):425–40.

    Article  PubMed  Google Scholar 

  • Alter BP, et al. Malignancies and survival patterns in the National Cancer Institute inherited bone marrow failure syndromes cohort study. Br J Haematol. 2010;150(2):179–88.

    PubMed  PubMed Central  Google Scholar 

  • American College of Radiology. ACR practice guideline for imaging pregnant or potentially pregnant adolescents and women with ionizing radiation. Reston: American College of Radiology; 2008.

    Google Scholar 

  • Annegers JF, Johnson CC. Studying parental occupation and childhood cancer. Epidemiology (Cambridge, Mass). 1992;3(1):1–2.

    Article  CAS  Google Scholar 

  • Antó JM, Sunyer J, Kogevinas M. Environment and health: the long journey of environmental epidemiology at the turn of the millennium. J Epidemiol Biostat. 2000;5(1):49–60.

    PubMed  Google Scholar 

  • Bailey HD, et al. Maternal dietary intake of folate and vitamins B6 and B12 during pregnancy and the risk of childhood acute lymphoblastic leukemia. Nutr Cancer. 2012;64(7):1122–30.

    Article  CAS  PubMed  Google Scholar 

  • Begleiter A, Robotham E, Leith MK. Role of NAD(P)H:(quinone acceptor) oxidoreductase (DT-diaphorase) in activation of mitomycin C under hypoxia. Mol Pharmacol. 1992;41(4):677–82.

    CAS  PubMed  Google Scholar 

  • Begleiter A, et al. Induction of DT-diaphorase in cancer chemoprevention and chemotherapy. Oncol Res. 1997;9(6–7):371–82.

    CAS  PubMed  Google Scholar 

  • Bhatia S. Disparities in cancer outcomes: lessons learned from children with cancer. Pediatr Blood Cancer. 2011;56(6):994–1002.

    Article  PubMed  PubMed Central  Google Scholar 

  • Bhatti P, et al. Increased frequency of chromosome translocations associated with diagnostic x-ray examinations. Radiat Res. 2008;170(2):149–55.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bollag G, et al. Loss of NF1 results in activation of the Ras signaling pathway and leads to aberrant growth in haematopoietic cells. Nat Genet. 1996;12(2):144–8.

    Article  CAS  PubMed  Google Scholar 

  • Brain JD, et al. Childhood leukemia: electric and magnetic fields as possible risk factors. Environ Health Perspect. 2003;111(7):962–70.

    Article  PubMed  PubMed Central  Google Scholar 

  • Brent RL. Carcinogenic risks of prenatal ionizing radiation. Semin Fetal Neonatal Med. 2014;19(3):203–13.

    Article  PubMed  Google Scholar 

  • Buffler PA, et al. Environmental and genetic risk factors for childhood leukemia: appraising the evidence. Cancer Investig. 2005;23(1):60–75.

    Article  CAS  Google Scholar 

  • Butturini A, et al. Hematologic abnormalities in Fanconi anemia: an International Fanconi Anemia Registry study. Blood. 1994;84(5):1650–5.

    CAS  PubMed  Google Scholar 

  • Byrd JC, et al. Pretreatment cytogenetic abnormalities are predictive of induction success, cumulative incidence of relapse, and overall survival in adult patients with de novo acute myeloid leukemia: results from Cancer and Leukemia Group B (CALGB 8461). Blood. 2002;100(13):4325–36.

    Article  CAS  PubMed  Google Scholar 

  • Calvente I, et al. Exposure to electromagnetic fields (non-ionizing radiation) and its relationship with childhood leukemia: a systematic review. Sci Total Environ. 2010;408(16):3062–9.

    Article  CAS  PubMed  Google Scholar 

  • Carroll WL, Raetz EA. Clinical and laboratory biology of childhood acute lymphoblastic leukemia. J Pediatr. 2012;160(1):10–8.

    Article  PubMed  Google Scholar 

  • Carroll WL, et al. Pediatric acute lymphoblastic leukemia. Hematology Am Soc Hematol Educ Program. 2003:102–31. Review. PubMed PMID: 14633779.

    Google Scholar 

  • Chang JS, Wiemels JL, Buffler PA. Allergies and childhood leukemia. Blood Cells Mol Dis. 2009;42(2):99–104.

    Article  CAS  PubMed  Google Scholar 

  • Chen CL, et al. Higher frequency of glutathione S-transferase deletions in black children with acute lymphoblastic leukemia. Blood. 1997;89(5):1701–7.

    CAS  PubMed  Google Scholar 

  • Chokkalingam AP, Buffler P a. Genetic susceptibility to childhood leukaemia. Radiat Prot Dosim. 2008;132(2):119–29.

    Article  CAS  Google Scholar 

  • Chokkalingam AP, et al. Haplotypes of DNA repair and cell cycle control genes, X-ray exposure, and risk of childhood acute lymphoblastic leukemia. Cancer Causes Control: CCC. 2011;22(12):1721–30.

    Article  PubMed  PubMed Central  Google Scholar 

  • Chokkalingam AP, et al. Variation in xenobiotic transport and metabolism genes, household chemical exposures, and risk of childhood acute lymphoblastic leukemia. Cancer Causes Control: CCC. 2012;23(8):1367–75.

    Article  PubMed  PubMed Central  Google Scholar 

  • Choong K, et al. Juvenile myelomonocytic leukemia and Noonan syndrome. J Pediatr Hematol Oncol. 1999;21(6):523–7.

    Article  CAS  PubMed  Google Scholar 

  • Colborn T, vom Saal FS, Soto AM. Developmental effects of endocrine-disrupting chemicals in wildlife and humans. Environ Health Perspect. 1993;101(5):378–84.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Coles BF, Kadlubar FF. Detoxification of electrophilic compounds by glutathione S-transferase catalysis: determinants of individual response to chemical carcinogens and chemotherapeutic drugs? BioFactors (Oxford, England). 2003;17(1–4):115–30.

    Article  CAS  Google Scholar 

  • Collins-Underwood JR, Mullighan CG. Genetic alterations targeting lymphoid development in acute lymphoblastic leukemia. In: Dyer MA, editor. Cancer and development. San Diego: Academic; 2011. p. 384.

    Google Scholar 

  • Colt JS, Blair A. Parental occupational exposures and risk of childhood cancer. Environ Health Perspect. 1998;106(Suppl):909–25.

    Article  PubMed  PubMed Central  Google Scholar 

  • Comisión Mundial de Ética del Conocimiento Científico y la Tecnología (COMEST). Informe del Grupo de Expertos sobre el principio precautorio. Paris: UNESCO; 2005.

    Google Scholar 

  • Committee to Assess Health Risks from Exposure to Low Levels of Ionizing Radiation. Health risks from exposure to low levels of ionizing radiation: BEIR VII phase 2. Washington, DC: The National Academies Press; 2006.

    Google Scholar 

  • Does M, et al. Exposure to electrical contact currents and the risk of childhood leukemia. Radiat Res. 2011;175(3):390–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Eichbaum W, et al. In: Raffensperger C, Tickner J, editors. Protecting public health and the environment: implementing the precautionary principle. 1st ed. Washington, DC: Island Press; 1999.

    Google Scholar 

  • Ernster L. DT-diaphorase: a historical review. Chem Scr. 1987;27(A):1–13.

    Google Scholar 

  • Fabia J, Thuy TD. Occupation of father at time of birth of children dying of malignant diseases. Br J Prev Soc Med. 1974;28(2):98–100.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Faig M, et al. Structures of recombinant human and mouse NAD(P)H:quinone oxidoreductases: species comparison and structural changes with substrate binding and release. Proc Natl Acad Sci U S A. 2000;97(7):3177–82.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Farioli A, et al. Tobacco smoke and risk of childhood acute lymphoblastic leukemia: findings from the SETIL case-control study. Cancer Causes Control: CCC. 2014;25(6):683–92.

    Article  PubMed  Google Scholar 

  • Feychting M, Svensson D, Ahlbom A. Exposure to motor vehicle exhaust and childhood cancer. Scand J Work Environ Health. 1998;24(1):8–11.

    Article  CAS  PubMed  Google Scholar 

  • Fletcher RH, Fletcher SW, Fletcher GS. Clinical epidemiology: the essentials. 5th ed. Philadelphia: Wolters Kluwer Health/Lippincott Williams & Wilkins; 2014.

    Google Scholar 

  • Flores-Lujano J, et al. Breastfeeding and early infection in the aetiology of childhood leukaemia in Down syndrome. Br J Cancer. 2009;101(5):860–4.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Flores-Lujano, J. et al. Clinical epidemiology of acute lymphoblastic leukemia – from the molecules to the clinic. In: Mejia-Arangure JM, editor. Clinical epidemiology of acute lymphoblastic leukemia – from the molecules to the clinic. Rijeka, Croatia: InTech; 2013. p. 342.

    Google Scholar 

  • Florig HK. Safe, fair, affordable, practical and predictable: multiple objectives in EMF policy. Paper presented at: Annual Meeting of the National Council on Radiation Protection and Measurement; April 6–7, 1994; Arlington, Va.

    Google Scholar 

  • Fonatsch C. The role of chromosome 21 in hematology and oncology. Genes, Chromosome Cancer. 2010;49(6):497–508.

    CAS  Google Scholar 

  • German J. Bloom syndrome: a mendelian prototype of somatic mutational disease. Medicine. 1993;72(6):393–406.

    Article  CAS  PubMed  Google Scholar 

  • Gobba F, et al. Extremely low frequency-magnetic fields (ELF-EMF) occupational exposure and natural killer activity in peripheral blood lymphocytes. Sci Total Environ. 2009;407(3):1218–23.

    Article  CAS  PubMed  Google Scholar 

  • Greaves MF. Speculations on the cause of childhood acute lymphoblastic leukemia. Leuk: Off J Leuk Soc Am Leuk Res Fund UK. 1988;2(2):120–5.

    CAS  Google Scholar 

  • Greaves M. Pre-natal origins of childhood leukemia. Rev Clin Exp Hematol. 2003;7(3):233–45.

    CAS  PubMed  Google Scholar 

  • Greenberg P, et al. International scoring system for evaluating prognosis in myelodysplastic syndromes. Blood. 1997;89(6):2079–88.

    CAS  PubMed  Google Scholar 

  • Greenland S, et al. A pooled analysis of magnetic fields, wire codes, and childhood leukemia. Childhood Leukemia-EMF Study Group. Epidemiology (Cambridge, Mass). 2000;11(6):624–34.

    Article  CAS  Google Scholar 

  • Greenlee RT, et al. Cancer statistics, 2000. CA Cancer J Clin. 2000;50(1):7–33.

    Article  CAS  PubMed  Google Scholar 

  • Grimwade D, et al. The importance of diagnostic cytogenetics on outcome in AML: analysis of 1,612 patients entered into the MRC AML 10 trial. The Medical Research Council Adult and Children’s Leukaemia Working Parties. Blood. 1998;92(7):2322–33.

    CAS  PubMed  Google Scholar 

  • Gurney JG, Davis S, et al. Childhood cancer occurrence in relation to power line configurations: a study of potential selection bias in case-control studies. Epidemiology (Cambridge, Mass). 1995a;6(1):31–5.

    Article  CAS  Google Scholar 

  • Gurney JG, Severson RK, et al. Incidence of cancer in children in the United States. Sex-, race-, and 1-year age-specific rates by histologic type. Cancer. 1995b;75(8):2186–95.

    Article  CAS  PubMed  Google Scholar 

  • Hakulinen T, Salonen T, Teppo L. Cancer in the offspring of fathers in hydrocarbon-related occupations. Br J Prev Soc Med. 1976;30(2):138–40.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Harbron RW. Cancer risks from low dose exposure to ionising radiation – is the linear no-threshold model still relevant? Radiography. 2012;18(1):28–33.

    Article  Google Scholar 

  • Hasle H. Pattern of malignant disorders in individuals with Down’s syndrome. Lancet Oncol. 2001;2(7):429–36.

    Article  CAS  PubMed  Google Scholar 

  • Hatch EE, et al. Do confounding or selection factors of residential wiring codes and magnetic fields distort findings of electromagnetic fields studies? Epidemiology (Cambridge, Mass). 2000;11(2):189–98.

    Article  CAS  Google Scholar 

  • Hitzler JK, Zipursky A. Origins of leukaemia in children with Down syndrome. Nat Rev Cancer. 2005;5(1):11–20.

    Article  CAS  PubMed  Google Scholar 

  • Hoffmann L, et al. Therapy-related acute promyelocytic leukemia with t(15;17) (q22;q12) following chemotherapy with drugs targeting DNA topoisomerase II. A report of two cases and a review of the literature. Ann Oncol: Off J Eur Soc Med Oncol ESMO. 1995;6(8):781–8.

    CAS  Google Scholar 

  • Hughes AM, et al. Allergy and risk of childhood leukaemia: results from the UKCCS. Int J Cancer J Int Cancer. 2007;121(4):819–24.

    Article  CAS  Google Scholar 

  • Hyakuna N, et al. Germline mutation of CBL is associated with moyamoya disease in a child with juvenile myelomonocytic leukemia and Noonan syndrome-like disorder. Pediatr Blood Cancer. 2015;62(3):542–4.

    Google Scholar 

  • Inaba H, Greaves M, Mullighan CG. Acute lymphoblastic leukaemia. Lancet. 2013;381(9881):1943–55.

    Article  PubMed  Google Scholar 

  • Infante-Rivard C. Diagnostic x rays, DNA repair genes and childhood acute lymphoblastic leukemia. Health Phys. 2003;85(1):60–4.

    Article  CAS  PubMed  Google Scholar 

  • Infante-Rivard C, et al. Acute lymphoblastic leukaemia among Spanish children and mothers’ occupation: a case-control study. J Epidemiol Community Health. 1991;45(1):11–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Infante-Rivard C, et al. Parental smoking, CYP1A1 genetic polymorphisms and childhood leukemia (Québec, Canada). Cancer Causes Control: CCC. 2000;11(6):547–53.

    Article  CAS  PubMed  Google Scholar 

  • Izraeli S. Congenital syndromes and leukemia: clues to pathogenesis. Rev Clin Exp Hematol. 2003;7(3):246–60.

    CAS  PubMed  Google Scholar 

  • Jamieson D, Wartenberg D. The precautionary principle and electric and magnetic fields. Am J Public Health. 2001;91(9):1355–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jamroziak K, et al. Functional C3435T polymorphism of MDR1 gene: an impact on genetic susceptibility and clinical outcome of childhood acute lymphoblastic leukemia. Eur J Haematol. 2004;72(5):314–21.

    Article  CAS  PubMed  Google Scholar 

  • Jamroziak K, et al. Multi-drug transporter MDR1 gene polymorphism and prognosis in adult acute lymphoblastic leukemia. Pharmacol Rep: PR. 2005;57(6):882–8.

    CAS  PubMed  Google Scholar 

  • Jensen CD, et al. Maternal dietary risk factors in childhood acute lymphoblastic leukemia (United States). Cancer Causes Control: CCC. 2004;15(6):559–70.

    Article  PubMed  Google Scholar 

  • Joannides M, Grimwade D. Molecular biology of therapy-related leukaemias. Clin Trans Oncol: Off Publ Feder Span Oncol Soc Natl Cancer Inst Mex. 2010;12(1):8–14.

    Article  Google Scholar 

  • Jones TL, et al. Selection bias from differential residential mobility as an explanation for associations of wire codes with childhood cancer. J Clin Epidemiol. 1993;46(6):545–8.

    Article  CAS  PubMed  Google Scholar 

  • Keegan TJ, et al. Case-control study of paternal occupation and childhood leukaemia in Great Britain, 1962–2006. Br J Cancer. 2012;107(9):1652–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kheifets L, Shimkhada R. Childhood leukemia and EMF: review of the epidemiologic evidence. Bioelectromagnetics Suppl. 2005;7:S51–9.

    Article  Google Scholar 

  • Kheifets L, Mezei G, Greenland S. Comment concerning “Childhood leukemia and residential magnetic fields: are pooled analyses more valid than the original studies?” (Bioelectromagnetics 27:1–7 [2006]). Bioelectromagnetics. 2006;27(8):674–5; discussion 675–6.

    Article  PubMed  Google Scholar 

  • Kheifets L, et al. A pooled analysis of extremely low-frequency magnetic fields and childhood brain tumors. Am J Epidemiol. 2010a;172(7):752–61.

    Article  PubMed  PubMed Central  Google Scholar 

  • Kheifets L, et al. Pooled analysis of recent studies on magnetic fields and childhood leukaemia. Br J Cancer. 2010b;103(7):1128–35.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kim YI. Methylenetetrahydrofolate reductase polymorphisms, folate, and cancer risk: a paradigm of gene-nutrient interactions in carcinogenesis. Nutr Rev. 2000;58(7):205–9.

    Article  CAS  PubMed  Google Scholar 

  • Kinlen LJ. Epidemiological evidence for an infective basis in childhood leukaemia. Br J Cancer. 1995;71(1):1–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kinzler KW, Vogelstein B. Landscaping the cancer terrain. Science (New York, NY). 1998;280(5366):1036–7.

    Article  CAS  Google Scholar 

  • Kotnis A, Sarin R, Mulherkar R. Genotype, phenotype and cancer: role of low penetrance genes and environment in tumour susceptibility. J Biosci. 2005;30(1):93–102.

    Article  CAS  PubMed  Google Scholar 

  • Kraft P, Cox DG. Study designs for genome-wide association studies. Adv Genet. 2008;60:465–504.

    Article  CAS  PubMed  Google Scholar 

  • Krajinovic M, et al. Genetic polymorphisms of N-acetyltransferases 1 and 2 and gene-gene interaction in the susceptibility to childhood acute lymphoblastic leukemia. Cancer Epidemiol Biomark Prev: Publ Am Assoc Cancer Res Cosponsored Am Soc Prev Oncol. 2000;9(6):557–62.

    CAS  Google Scholar 

  • Krajinovic M, et al. Role of MTHFR genetic polymorphisms in the susceptibility to childhood acute lymphoblastic leukemia. Blood. 2004;103(1):252–7.

    Article  CAS  PubMed  Google Scholar 

  • Kratz CP, et al. The mutational spectrum of PTPN11 in juvenile myelomonocytic leukemia and Noonan syndrome/myeloproliferative disease. Blood. 2005;106(6):2183–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kusters MAA, et al. Intrinsic defect of the immune system in children with Down syndrome: a review. Clin Exp Immunol. 2009;156(2):189–93.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kwan ML, et al. Maternal diet and risk of childhood acute lymphoblastic leukemia. Publ Health Rep (Washington, DC). 2009;124(4):503–14.

    Google Scholar 

  • Labuda D, et al. Rapid detection of CYP1A1, CYP2D6, and NAT variants by multiplex polymerase chain reaction and allele-specific oligonucleotide assay. Anal Biochem. 1999;275(1):84–92.

    Article  CAS  PubMed  Google Scholar 

  • Lagroye I, et al. ELF magnetic fields: animal studies, mechanisms of action. Prog Biophys Mol Biol. 2011;107(3):369–73.

    Article  PubMed  Google Scholar 

  • Levine EG, Bloomfield CD. Secondary myelodysplastic syndromes and leukaemias. Clin Haematol. 1986;15(4):1037–80.

    CAS  PubMed  Google Scholar 

  • Lim JY-S, et al. Genomics of racial and ethnic disparities in childhood acute lymphoblastic leukemia. Cancer. 2014;120(7):955–62.

    Article  PubMed  PubMed Central  Google Scholar 

  • Linabery AM, et al. The association between atopy and childhood/adolescent leukemia: a meta-analysis. Am J Epidemiol. 2010;171(7):749–64.

    Article  PubMed  PubMed Central  Google Scholar 

  • Ludwig W-D, et al. Classification of acute leukemias. Perspective 1 – perspective 2. In: Pui C-H, editor. Treatment of acute leukemias: new directions for clinical research. Totowa: Humana Press; 2003. p. 3–58.

    Google Scholar 

  • Margolin J, Steuber C, Poplack D. Acute lymphocytic leukemia. In: Pizzo P, Poplack D, editors. Principles and practice of pediatric oncology. Philadelphia: JB Lippincott; 2006. p. 538–90.

    Google Scholar 

  • McEvoy MW, Mann JR. Neurofibromatosis with leukaemia. Br Med J. 1971;3(5775):641.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • McNally RJQ, Eden TOB. An infectious aetiology for childhood acute leukaemia: a review of the evidence. Br J Haematol. 2004;127(3):243–63.

    Article  PubMed  Google Scholar 

  • Meinert R, et al. Leukemia and non-Hodgkin’s lymphoma in childhood and exposure to pesticides: results of a register-based case-control study in Germany. Am J Epidemiol. 2000;151(7):639–46; discussion 647–50.

    Article  CAS  PubMed  Google Scholar 

  • Mejía-Arangure JM. Model for identifying the etiology of acute lymphoblastic leukemia in children. In: Mejia-Arangure JM, editor. Clinical epidemiology of acute lymphoblastic leukemia – from the molecules to the clinic. Rijeka, Croatia: InTech; 2013. p. 342.

    Google Scholar 

  • Mejía-Aranguré JM, et al. Environmental factors contributing to the development of childhood leukemia in children with Down’s syndrome. Leuk: Off J Leuk Soc Am Leuk Res Fund UK. 2003;17(9):1905–7.

    Google Scholar 

  • Mejia-Arangure JM, et al. Magnetic fields and acute leukemia in children with Down syndrome. Epidemiology (Cambridge, Mass). 2007;18(1):158–61.

    Article  Google Scholar 

  • Metayer C, Milne E, et al. The childhood leukemia international consortium. Cancer Epidemiol. 2013a;37(3):336–47.

    Article  PubMed  PubMed Central  Google Scholar 

  • Metayer C, Zhang L, et al. Tobacco smoke exposure and the risk of childhood acute lymphoblastic and myeloid leukemias by cytogenetic subtype. Cancer Epidemiol Biomark Prev: Publ Am Assoc Cancer Res Cosponsored Am Soc Prev Oncol. 2013b;22(9):1600–11.

    Article  Google Scholar 

  • Mezei G, et al. Assessment of selection bias in the Canadian case-control study of residential magnetic field exposure and childhood leukemia. Am J Epidemiol. 2008;167(12):1504–10.

    Article  PubMed  Google Scholar 

  • Mezei G, et al. Epidemiology of childhood leukemia in the presence and absence of Down syndrome. Cancer Epidemiol. 2014;38(5):479–89.

    Article  PubMed  Google Scholar 

  • Miller R. Epidemiologic conclusions from radiation toxicity studies. In: Fry R, editor. Late effects of radiation: proceedings of the colloquium held at the center for continuing education. Illinois: University of Chicago; 1969. p. 1970.

    Google Scholar 

  • Milne E, et al. Parental prenatal smoking and risk of childhood acute lymphoblastic leukemia. Am J Epidemiol. 2012;175(1):43–53.

    Article  PubMed  Google Scholar 

  • Moldovan G-L, D’Andrea AD. How the fanconi anemia pathway guards the genome. Annu Rev Genet. 2009;43:223–49.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Monge P, et al. Parental occupational exposure to pesticides and the risk of childhood leukemia in Costa Rica. Scand J Work Environ Health. 2007;33(4):293–303.

    Article  CAS  PubMed  Google Scholar 

  • Morales-Sánchez A, et al. Lack of evidence for human T-lymphotropic virus type 1 and mouse mammary tumor-like virus involvement in the genesis of childhood acute lymphoblastic leukemia. Cancer Epidemiol Biomark Prev: Publ Am Assoc Cancer Res Cosponsored Am Soc Prev Oncol. 2013;22(11):2130–3.

    Article  CAS  Google Scholar 

  • Myhr AI. A precautionary approach to genetically modified organisms: challenges and Implications for policy and science. J Agric Environ Ethics. 2010;23(6):501–25.

    Article  Google Scholar 

  • National Research Council (US)/Committee on the Possible Effects of Electromagnetic Fields on Biologic Systems. Possible health effects of exposure to residential electric and magnetic fields. Washington, DC: National Academy Press (US); 1997.

    Google Scholar 

  • Niemeyer CM, et al. Germline CBL mutations cause developmental abnormalities and predispose to juvenile myelomonocytic leukemia. Nat Genet. 2010;42(9):794–800.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Niihori T, et al. Functional analysis of PTPN11/SHP-2 mutants identified in Noonan syndrome and childhood leukemia. J Hum Genet. 2005;50(4):192–202.

    Article  CAS  PubMed  Google Scholar 

  • Núñez-Enríquez JC, et al. Allergy and acute leukaemia in children with Down syndrome: a population study. Report from the Mexican inter-institutional group for the identification of the causes of childhood leukaemia. Br J Cancer. 2013;108(11):2334–8.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • O’Leary LM, et al. Parental occupational exposures and risk of childhood cancer: a review. Am J Ind Med. 1991;20(1):17–35.

    Article  PubMed  Google Scholar 

  • Patrick K, et al. Outcome of Down syndrome associated acute lymphoblastic leukaemia treated on a contemporary protocol. Br J Haematol. 2014;165(4):552–5.

    Article  PubMed  Google Scholar 

  • Parkin DM, Kramarova E, Draper GJ, Masuyer E, Michaelis J, Neglia J, Qureshi S, Stiller CA, eds. International Incidence of Childhood Cancer vol. 2. IARC Scientific Publications no. 144. Lyon: International Agency for Research on Cancer. 1998.

    Google Scholar 

  • Pedersen-Bjergaard J, Andersen MK, Johansson B. Balanced chromosome aberrations in leukemias following chemotherapy with DNA-topoisomerase II inhibitors. J Clin Oncol: Off J Am Soc Clin Oncol. 1998;16(5):1897–8.

    CAS  Google Scholar 

  • Perentesis JP. Genetic predisposition and treatment-related leukemia. Med Pediatr Oncol. 2001;36(5):541–8.

    Article  CAS  PubMed  Google Scholar 

  • Perez-Saldivar ML, et al. Father’s occupational exposure to carcinogenic agents and childhood acute leukemia: a new method to assess exposure (a case-control study). BMC Cancer. 2008;8:7.

    Article  PubMed  PubMed Central  Google Scholar 

  • Pérez-Saldivar ML, et al. Childhood acute leukemias are frequent in Mexico City: descriptive epidemiology. BMC Cancer. 2011;11:355.

    Article  PubMed  PubMed Central  Google Scholar 

  • Petridou E, et al. Maternal diet and acute lymphoblastic leukemia in young children. Cancer Epidemiol Biomark Prev: Publ Am Assoc Cancer Res Cosponsored Am Soc Prev Oncol. 2005;14(8):1935–9.

    Article  Google Scholar 

  • Pizzo P. Principles and practice of pediatric oncology. 6th ed. Philadelphia: Wolters Kluwer/Lippincott Williams & Wilkins Health; 2011.

    Google Scholar 

  • Popp HD, Bohlander SK. Genetic instability in inherited and sporadic leukemias. Genes Chromosome Cancer. 2010;49(12):1071–81.

    Article  CAS  Google Scholar 

  • Poppe B, et al. Chromosomal aberrations in Bloom syndrome patients with myeloid malignancies. Cancer Genet Cytogenet. 2001;128(1):39–42.

    Article  CAS  PubMed  Google Scholar 

  • Ratain MJ, et al. Acute nonlymphocytic leukemia following etoposide and cisplatin combination chemotherapy for advanced non-small-cell carcinoma of the lung. Blood. 1987;70(5):1412–7.

    CAS  PubMed  Google Scholar 

  • Resnik DB. The precautionary principle and medical decision making. J Med Philos. 2004;29(3):281–99.

    Article  PubMed  Google Scholar 

  • Riley RJ, Workman P. DT-diaphorase and cancer chemotherapy. Biochem Pharmacol. 1992;43(8):1657–69.

    Article  CAS  PubMed  Google Scholar 

  • Rosenbaum PF, Buck GM, Brecher ML. Allergy and infectious disease histories and the risk of childhood acute lymphoblastic leukaemia. Paediatr Perinat Epidemiol. 2005;19(2):152–64.

    Article  PubMed  Google Scholar 

  • Rosenberg PS, Greene MH, Alter BP. Cancer incidence in persons with Fanconi anemia. Blood. 2003;101(3):822–6.

    Article  CAS  PubMed  Google Scholar 

  • Ross JA, et al. Periconceptional vitamin use and leukemia risk in children with Down syndrome: a Children’s Oncology Group study. Cancer. 2005;104(2):405–10.

    Article  PubMed  Google Scholar 

  • Rothman KJ. Methodologic frontiers in environmental epidemiology. Environ Health Perspect. 1993;101(Suppl):19–21.

    Article  PubMed  PubMed Central  Google Scholar 

  • Rowley JD. The role of chromosome translocations in leukemogenesis. Semin Hematol. 1999;36(4 Suppl 7):59–72.

    CAS  PubMed  Google Scholar 

  • Rudant J, et al. Childhood acute leukemia, early common infections, and allergy: the ESCALE Study. Am J Epidemiol. 2010;172(9):1015–27.

    Article  PubMed  Google Scholar 

  • Sanderson RN, et al. Population-based demographic study of karyotypes in 1709 patients with adult acute myeloid leukemia. Leukemia. 2006;20(3):444–50.

    Article  CAS  PubMed  Google Scholar 

  • Sanz MM, German J. Bloom’s syndrome. In: Pagon R, Adam M, Ardinger H, editors. GeneReviews®. Seattle: University of Washington, Seattle; 2014.

    Google Scholar 

  • Savage SA. Genomic clues to ethnic differences in ALL. Blood. 2014;123(16):2440–2.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Savitz DA, Chen JH. Parental occupation and childhood cancer: review of epidemiologic studies. Environ Health Perspect. 1990;88:325–37.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Schmiegelow K, et al. Etiology of common childhood acute lymphoblastic leukemia: the adrenal hypothesis. Leukemia. 2008;22(12):2137–41.

    Article  CAS  PubMed  Google Scholar 

  • Schneider M, et al. Fanconi anaemia: genetics, molecular biology, and cancer – implications for clinical management in children and adults. Clin Genet. 2015;88(1):13–24.

    Google Scholar 

  • Schoch C, et al. Karyotype is an independent prognostic parameter in therapy-related acute myeloid leukemia (t-AML): an analysis of 93 patients with t-AML in comparison to 1091 patients with de novo AML. Leukemia. 2004;18(1):120–5.

    Article  CAS  PubMed  Google Scholar 

  • Schüz J, et al. Atopic disease and childhood acute lymphoblastic leukemia. Int J Cancer J Int Cancer. 2003;105(2):255–60.

    Article  CAS  Google Scholar 

  • Schüz J, et al. Nighttime exposure to electromagnetic fields and childhood leukemia: an extended pooled analysis. Am J Epidemiol. 2007;166(3):263–9.

    Article  PubMed  Google Scholar 

  • Seif AE. Pediatric leukemia predisposition syndromes: clues to understanding leukemogenesis. Cancer Genet. 2011;204(5):227–44.

    Article  PubMed  Google Scholar 

  • Sermage-Faure C, et al. Childhood leukaemia close to high-voltage power lines – the Geocap study, 2002–2007. Br J Cancer. 2013;108(9):1899–906.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shannon KM, et al. Loss of the normal NF1 allele from the bone marrow of children with type 1 neurofibromatosis and malignant myeloid disorders. N Engl J Med. 1994;330(9):597–601.

    Article  CAS  PubMed  Google Scholar 

  • Shimamura A, Alter BP. Pathophysiology and management of inherited bone marrow failure syndromes. Blood Rev. 2010;24(3):101–22.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shu XO, et al. Parental exposure to medications and hydrocarbons and ras mutations in children with acute lymphoblastic leukemia: a report from the Children’s Oncology Group. Cancer Epidemiol Biomark Prev: Publ Am Assoc Cancer Res Cosponsored Am Soc Prev Oncol. 2004;13(7):1230–5.

    CAS  Google Scholar 

  • Siegel D, Ross D. Immunodetection of NAD(P)H:quinone oxidoreductase 1 (NQO1) in human tissues. Free Radic Biol Med. 2000;29(3–4):246–53.

    Article  CAS  PubMed  Google Scholar 

  • Siegel D, Kepa JK, Ross D. NAD(P)H:quinone oxidoreductase 1 (NQO1) localizes to the mitotic spindle in human cells. PLoS ONE. 2012a;7(9):e44861.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Siegel R, et al. Cancer treatment and survivorship statistics, 2012. CA Cancer J Clin. 2012b;62(4):220–41.

    Article  PubMed  Google Scholar 

  • Sinnett D, Krajinovic M, Labuda D. Genetic susceptibility to childhood acute lymphoblastic leukemia. Leuk Lymphoma. 2000;38(5–6):447–62.

    Article  CAS  PubMed  Google Scholar 

  • Slovak ML, et al. Karyotypic analysis predicts outcome of preremission and postremission therapy in adult acute myeloid leukemia: a Southwest Oncology Group/Eastern Cooperative Oncology Group Study. Blood. 2000;96(13):4075–83.

    CAS  PubMed  Google Scholar 

  • Smith M. Considerations on a possible viral etiology for B-precursor acute lymphoblastic leukemia of childhood. J Immunother. 1997;20(2):89–100.

    Article  CAS  PubMed  Google Scholar 

  • Söderberg KC, et al. Allergic conditions and risk of hematological malignancies in adults: a cohort study. BMC Public Health. 2004;4:51.

    Article  PubMed  PubMed Central  Google Scholar 

  • Söderberg KC, et al. Autoimmune diseases, asthma and risk of haematological malignancies: a nationwide case-control study in Sweden. Eur J Cancer (Oxford, England). 2006;42(17):3028–33.

    Article  Google Scholar 

  • Spector L, et al. Medically recorded allergies and the risk of childhood acute lymphoblastic leukaemia. Eur J Cancer (Oxford, England). 2004;40(4):579–84.

    Article  CAS  Google Scholar 

  • Stewart A, Kneale GW. Radiation dose effects in relation to obstetric x-rays and childhood cancers. Lancet. 1970;1(7658):1185–8.

    Article  CAS  PubMed  Google Scholar 

  • Stewart A, et al. Preliminary communication: malignant disease in childhood and diagnostic irradiation in-utero. Lancet. 1956;2:447.

    Article  Google Scholar 

  • Stijkel A, Reijnders L. Implementation of the precautionary principle in standards for the workplace. Occup Environ Med. 1995;52(5):304–12.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Stiller CA, Chessells JM, Fitchett M. Neurofibromatosis and childhood leukaemia/lymphoma: a population-based UKCCSG study. Br J Cancer. 1994;70(5):969–72.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Straughen J, et al. Physical mapping of the bloom syndrome region by the identification of YAC and P1 clones from human chromosome 15 band q26.1. Genomics. 1996;35(1):118–28.

    Article  CAS  PubMed  Google Scholar 

  • Strick R, et al. Dietary bioflavonoids induce cleavage in the MLL gene and may contribute to infant leukemia. Proc Natl Acad Sci U S A. 2000;97(9):4790–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Strullu M, et al. Juvenile myelomonocytic leukaemia and Noonan syndrome. J Med Genet. 2014;51(10):689–97.

    Article  CAS  PubMed  Google Scholar 

  • Swanson J, Kheifets L. Could the geomagnetic field be an effect modifier for studies of power-frequency magnetic fields and childhood leukaemia? J Radiol Prot: Off J Soc Radiol Prot. 2012;32(4):413–8.

    Article  CAS  Google Scholar 

  • Tartaglia M, Zampino G, Gelb BD. Noonan syndrome: clinical aspects and molecular pathogenesis. Mol Syndromology. 2010;1(1):2–26.

    Article  CAS  Google Scholar 

  • Thompson JR, et al. Maternal folate supplementation in pregnancy and protection against acute lymphoblastic leukaemia in childhood: a case-control study. Lancet. 2001;358(9297):1935–40.

    Article  CAS  PubMed  Google Scholar 

  • Tickner JA. Precaution, environmental science, and preventive public policy. New Solutions: J Environ Occup Health Policy: NS. 2003;13(3):275–82.

    Article  Google Scholar 

  • Tower RL, Spector LG. The epidemiology of childhood leukemia with a focus on birth weight and diet. Crit Rev Clin Lab Sci. 2007;44(3):203–42.

    Article  PubMed  Google Scholar 

  • Urayama KY, et al. A meta-analysis of the association between day-care attendance and childhood acute lymphoblastic leukaemia. Int J Epidemiol. 2010;39(3):718–32.

    Article  PubMed  PubMed Central  Google Scholar 

  • Van Maele-Fabry G, et al. Childhood leukaemia and parental occupational exposure to pesticides: a systematic review and meta-analysis. Cancer Causes Control: CCC. 2010;21(6):787–809.

    Article  PubMed  Google Scholar 

  • Vaz F, et al. Mutation of the RAD51C gene in a Fanconi anemia-like disorder. Nat Genet. 2010;42(5):406–9.

    Article  CAS  PubMed  Google Scholar 

  • Ward G. The infective theory of acute leukemia. Br J Childhood’s Dis. 1917;14:10–20.

    Google Scholar 

  • Ward EM, et al. Priorities for development of research methods in occupational cancer. Environ Health Perspect. 2003;111(1):1–12.

    PubMed  PubMed Central  Google Scholar 

  • Weisberg I, et al. A second genetic polymorphism in methylenetetrahydrofolate reductase (MTHFR) associated with decreased enzyme activity. Mol Genet Metab. 1998;64(3):169–72.

    Article  CAS  PubMed  Google Scholar 

  • Wen W, et al. Parental medication use and risk of childhood acute lymphoblastic leukemia. Cancer. 2002;95(8):1786–94.

    Article  PubMed  Google Scholar 

  • Wiedemann PM, Schütz H. The precautionary principle and risk perception: experimental studies in the EMF area. Environ Health Perspect. 2005;113(4):402–5.

    Article  PubMed  PubMed Central  Google Scholar 

  • Wiemels JL, et al. A lack of a functional NAD(P)H:quinone oxidoreductase allele is selectively associated with pediatric leukemias that have MLL fusions. United Kingdom Childhood Cancer Study Investigators. Cancer Res. 1999;59(16):4095–9.

    CAS  PubMed  Google Scholar 

  • Wynder EL. Invited commentary: studies in mechanism and prevention. Striking a proper balance. Am J Epidemiol. 1994;139(6):547–9.

    CAS  PubMed  Google Scholar 

  • Yan Y, et al. Association of MDR1 G2677T polymorphism and leukemia risk: evidence from a meta-analysis. Tumour Biol: J Int Soc Oncodevelopment Biol Med. 2014;35(3):2191–7.

    Article  CAS  Google Scholar 

  • Yohay K. Neurofibromatosis type 1 and associated malignancies. Curr Neurol Neurosci Rep. 2009;9(3):247–53.

    Article  CAS  PubMed  Google Scholar 

  • Zack M, et al. Cancer in children of parents exposed to hydrocarbon-related industries and occupations. Am J Epidemiol. 1980;111(3):329–36.

    CAS  PubMed  Google Scholar 

  • Zvulunov A. Juvenile xanthogranuloma, neurofibromatosis, and juvenile chronic myelogenous leukemia. Arch Dermatol. 1996;132(6):712–3.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by the Consejo Nacional de la Ciencia y la Tecnología (CONACYT) through its program, Fondo Sectorial de Investigación en Salud y Seguridad Social (SALUD 2007-1-71223/FIS/IMSS/PROT/592); by the Fondo Sectorial de Investigación para la Educación (CB-2007-1-83949/FIS/IMSS/PROT/616); by the Convocatoria de Proyectos de Investigación para Atender Problemas Nacionales 2013 (PDCPN2013-01-215726, FIS/IMSS/PROT/1364); and by the Instituto Mexicano del Seguro Social (FIS/IMSS/PROT/PRIO/14/031, FIS/IMSS/PROT/G10/846, FIS/IMSS/PROT/G12/1134 and FIS/IMSS/PROT/G11/951).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Juan Manuel Mejía-Aranguré .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Núñez-Enríquez, J.C., Flores-Lujano, J., Bekker-Méndez, V.C., Duarte-Rodríguez, D.A., Mejía-Aranguré, J.M. (2016). Etiology and Prevention of Acute Leukemias in Children. In: Mejía-Aranguré, J. (eds) Etiology of Acute Leukemias in Children. Springer, Cham. https://doi.org/10.1007/978-3-319-05798-9_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-05798-9_2

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-05797-2

  • Online ISBN: 978-3-319-05798-9

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics