Skip to main content

Domain Walls in Ferroelectric Materials

  • Chapter
  • First Online:
Ferroelectric Domain Walls

Part of the book series: Springer Theses ((Springer Theses))

Abstract

Ferroelectric materials are characterized by a finite electric polarization in absence of an external electric field. Furthermore, this polarization must possess at least two stable states, and must have the ability to be reversibly switched from one state to another by the application of an electric field.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Some ferroelectric materials rather undergo a ferroelectric phase transition from a microscopically polar but macroscopically nonpolar high temperature phase (so-called order-disorder phase transition), and in some cases the phase transition can exhibit both characters together.

  2. 2.

    The cubic group 432, although noncentrosymmetric, has other symmetry elements that exclude piezoelectricity.

  3. 3.

    The order parameter may be a scalar, a vector, a complex number, or a more complicated quantity. For the purpose of simplicity, we will take it to be a scalar in the present demonstration.

  4. 4.

    Landau’s theory considers the Helmoltz free energy \(F\); instead, one can also expand the Gibbs free energy \(G(p,T,\psi )\) to get pressure- and temperature-dependent coefficients.

References

  1. B. Jaffe, W.R. Cook, H. Jaffe, Piezoelectric Ceramics (R. A. N, Ohio, USA, 2002)

    Google Scholar 

  2. Veeco Instruments Inc. (2008) Piezoresponse Atomic Force Microscopy Using a Nanoscope V Controller

    Google Scholar 

  3. D. Brewster, Observations of the pyro-electrocity of minerals. Edinb. J. Sci. 1, 208 (1824)

    Google Scholar 

  4. J. Curie, P. Curie, Development, via compression, of electric polarization in hemihedral crystals with inclined faces. Bull. Soc. minéral. Fr. 3, 90 (1880)

    Google Scholar 

  5. J. Valasek, Piezo-electric and allied phenomena in rochelle salt. Phys. Rev. 17, 475 (1921)

    Article  ADS  Google Scholar 

  6. J.M. Yeomans, Statistical Mechanics of Phase Transitions (Oxford University Press, New York, 2002)

    Google Scholar 

  7. B.B. Van Aken, J.-P. Rivera, H. Schmid, M. Fiebig, Observation of ferrotoroidic domains. Nature 449, 702 (2007)

    Article  ADS  Google Scholar 

  8. W. Eerenstein, N.D. Mathur, J.F. Scott, Multiferroic and magnetoelectric materials. Nature 442, 759 (2006)

    Article  ADS  Google Scholar 

  9. J.F. Scott, Electrical characterization of magnetoelectrical materials. J. Mat. Res. 22, 2053 (2007)

    Article  ADS  Google Scholar 

  10. P. Ghosez, E. Cockayne, U.V. Waghmare, K.M. Rabe, Lattice dynamics of BaTiO\(_3\), PbTiO\(_3\), and PbZrO\(_3\): a comparative first-principles study. Phys. Rev. B. 60, 836 (1999)

    Article  ADS  Google Scholar 

  11. K.H. Ahn, T. Lookman, A.R. Bishop, Strain-induced metal-insulator phase coexistence in perovskite manganites. Nature 428, 401 (2004)

    Article  ADS  Google Scholar 

  12. G. Catalan, A. Janssens, G. Rispens, S. Csiszar, O. Seeck, G. Rijnders, D.H.A. Blank, B. Noheda, Polar domains in lead titanate films under tensile strain. Phys. Rev. Lett. 96, 127602 (2006)

    Google Scholar 

  13. C. Lichtensteiger, P. Zubko, M. Stengel, P. Aguado-Puente, J.-M. Triscone, P. Ghosez, and J. Junquera, Oxide Ultrathin Films: Science and Technology, chapter 12. (Wiley, Weinheim 2012)

    Google Scholar 

  14. M.E. Lines, A.M. Glass, Principles and Applications of Ferroelectrics and Related Materials (Oxford University Press, Oxford, 1977)

    Google Scholar 

  15. A.V. Bune, V.M. Fridkin, S. Ducharme, L.M. Blinov, S.P. Palto, A.V. Sorokin, S.G. Yudin, A. Zlatkin, Two-dimensional ferroelectric films. Nature 391, 874 (1998)

    Google Scholar 

  16. T. Tybell, C.H. Ahn, J.-M. Triscone, Ferroelectricity in thin perovskite films. Appl. Phys. Lett. 75, 856 (1999)

    Article  ADS  Google Scholar 

  17. J. Junquera, P. Ghosez, Critical thickness for ferroelectricity in perovskite ultrathin films. Nature 422, 506 (2003)

    Article  ADS  Google Scholar 

  18. R.V. Wang, D.D. Fong, F. Jiang, M.J. Highland, P.H. Fuoss, C. Thompson, A.M. Kolpak, J.A. Eastman, S.K. Streiffer, A.M. Rappe, G.B. Stephenson, Reversible chemical switching of a ferroelectric film. Phys. Rev. Lett. 102, 047601 (2009)

    Google Scholar 

  19. C. Kittel, Theory of the structure of ferromagnetic domains in films and small particles. Phys. Rev. 70, 965 (1946)

    Article  ADS  Google Scholar 

  20. C. Lichtensteiger, M. Dawber, N. Stucki, J.-M. Triscone, J. Hoffman, J.-B. Yau, C.H. Ahn, L. Despont, P. Aebi, Monodomain to polydomain transition in ferroelectric PbTiO\(_3\) thin films with La\(_{0.67}\)Sr\(_{0.33}\)Mno\(_3\) electrodes. Appl. Phys. Lett. 90, 052907 (2007)

    Article  ADS  Google Scholar 

  21. G. Catalan, J.F. Scott, A. Schilling, J.M. Gregg, Wall thickness dependence of the scaling law for ferroic stripe domains. J. Phys.: Condens. Matter. 19, 022201 (2007)

    ADS  Google Scholar 

  22. G. Catalan, H. Béa, S. Fusil, M. Bibes, P. Paruch, A. Barthélémy, J.F. Scott, Fractal dimension and size scaling of domains in thin films of multiferroic BiFeO\(_3\). Phys. Rev. Lett. 100, 027602 (2008)

    Article  ADS  Google Scholar 

  23. D. Lee, R.K. Behera, P. Wu, H. Xu, Y.L. Li, S.B. Sinnott, W.R. Phillpot, L.Q. Chen, V. Gopalan, Mixed bloch-Néel-ising character of 180\(^\circ \) ferroelectric domain walls. Phys. Rev. B. 80, 060102 (2009)

    Article  ADS  Google Scholar 

  24. P. Aguado-Puente, J. Junquera, Ferromagneticlike closure domains in ferroelectric ultrathin films: first-principles simulations. Phys. Rev. Lett. 100, 177601 (2008)

    Article  ADS  Google Scholar 

  25. B. Meyer, D. Vanderbilt, Ab initio study of ferroelectric domain walls in PbTio\(_3\). Phys. Rev. B. 65, 104111 (2002)

    Article  ADS  Google Scholar 

  26. C.-L. Jia, K.W. Urban, M. Alexe, D. Hesse, I. Vrejoiu, Direct observation of continuous electric dipole rotation in flux-closure domains in ferroelectric Pb(Zr, Ti)O\(_3\). Science 331, 1420 (2011)

    Article  ADS  Google Scholar 

  27. L. He, D. Vanderbilt, First-principles study of oxygen-vacancy pinning of domain walls in PbTiO3. Phys. Rev. B. 68, 134103 (2003)

    Article  ADS  Google Scholar 

  28. J. Seidel, L.W. Martin, Q. He, Q. Zhan, Y.-H. Chu, A. Rother, M.E. Hawkridge, P. Maksymovych, P. Yu, M. Gajek, N. Balke, S.V. Kalinin, S. Gemming, F. Want, G. Catalan, J.F. Scott, N.A. Spaldin, J. Orenstein, R. Ramesh, Conduction at domain walls in oxide multiferroics. Nature Mater. 8, 229 (2009)

    Google Scholar 

  29. S.Y. Yang, J. Seidel, S.J. Byrnes, P. Shafer, C.-H Yang, M.D. Rossell, P. Yu, Y.-H. Chu, J.F. Scott, J.W. Ager III, L.W. Martin, R. Ramesh, Above-bandgap voltages from ferroelectric photovoltaic devices. Nature Nanotech. 5, 143 (2010)

    Google Scholar 

  30. P. Zubko, G. Catalan, A. Buckley, P.R.L. Welche, J.F. Scott, Strain-gradient-induced polarization in SrTiO\(_3\) single crystals. Phy. Rev. Lett. 99, 167601 (2007)

    Article  ADS  Google Scholar 

  31. J. Privratska, V. Janovec, Spontaneous polarization and or magnetization in non-ferroelastic domain walls: symmetry predictions. Ferroelectrics 222, 23 (1999)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jill Guyonnet .

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Guyonnet, J. (2014). Domain Walls in Ferroelectric Materials. In: Ferroelectric Domain Walls. Springer Theses. Springer, Cham. https://doi.org/10.1007/978-3-319-05750-7_2

Download citation

Publish with us

Policies and ethics