Skip to main content

Bioremediation of Soils Contaminated with Pesticides: Experiences in Mexico

  • Chapter
  • First Online:
Bioremediation in Latin America

Abstract

The worldwide use of pesticides for pest control in agriculture and some industrial processes has contributed to improve the food and goods production. However, their intensive use has resulted in the release of a wide range of xenobiotic compounds to the environment, widespread among air, water, and soil. The existence of contaminated sites is an important environmental and health concern today. For the treatment of pesticide-contaminated soil, several strategies involving biological, physicochemical, and thermal processes have been developed to remediate them, being the bioremediation approaches, among the more successful because they are environmental friendly, economic, and versatile. The pesticide soil pollution on Mexico, as around the world, is a serious concern, so that different research groups had developed biological strategies for the assessment of pesticide biodegradation, and bioattenuation, biostimulation, bioaugmentation, and composting schemes for the treatment, remediation, and detoxification of pesticide-contaminated sites. In this chapter we present information about involved processes in bioremediation of soils contaminated with pesticides and particularize on the status of pesticides in Mexico as well as the efforts undertaken in the biodegradation of pesticides and the potential for their application in contaminated soil bioremediation.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abdel-Razek SA, Folch-Mallol JL, Perezgasga-Ciscomani L et al (2013) Optimization of methyl parathion biodegradation and detoxification by cells in suspension or immobilized on tezontle expressing the opd gene. J Environ Sci Heal B Pestic Food Contam Agric Wastes 48:449–461

    CAS  Google Scholar 

  • Abraham WR, Nogales B, Golyshin PN et al (2002) Polychlorinated biphenyl-degrading microbial communities and sediments. Curr Opin Microbiol 5:246–253

    PubMed  CAS  Google Scholar 

  • Aislabie J, Lloyd-Jones G (1995) A review of bacterial-degradation of pesticides. Aust J Soil Res 33:925–942

    CAS  Google Scholar 

  • Albert L (2004) Panorama de los Plaguicidas en México. 7° Congreso de Actualización en Toxicología Clínica, Nayarit, México, pp 2–8

    Google Scholar 

  • Alexander M (1994) Biodegradation and bioremediation. Academic Press, San Diego, CA

    Google Scholar 

  • Alexander M (2000) Aging, bioavailability, and overestimation of risk from environmental pollutants. Environ Sci Tech 34:4259–4265

    CAS  Google Scholar 

  • Anjum R, Rahman M, Masood F, Malik A et al (2012) Bioremediation of pesticides from soil and wastewater. In: Malik A (ed) Environmental protection strategies for sustainable development. Springer, Amsterdam, pp 295–328

    Google Scholar 

  • Antizar-Ladislao B (2010) Bioremediation: working with bacteria. Elements 6:389–394

    CAS  Google Scholar 

  • Aronstein BN, Calvillo YM, Alexander M (1991) Effect of surfactants at low concentrations on the desorption and biodegradation of sorbed aromatic compounds in soil. Environ Sci Technol 25:1728–1731

    CAS  Google Scholar 

  • Bailey GW, White JL (1970) Factors influencing the adsorption, desorption and movement of pesticides in soil. Residue Rev 32:29–92

    PubMed  CAS  Google Scholar 

  • Banasiak L, Schafer A, Van der Bruggen B (2011) Sorption of pesticide endosulfan by electrodialysis membranes. Chem Eng J 166:233–239

    CAS  Google Scholar 

  • Banat IM, Makkar RS, Cameotra SS (2000) Potential commercial application of microbial surfactants. Appl Microbiol Biotechnol 53:495–508

    PubMed  CAS  Google Scholar 

  • Barragán-Huerta BE, Rodríguez-Vázquez R (2010) Green bean coffee as nutrient source for pesticide degrading-bacteria. In: Mendez-Vilas A (ed) Current research, technology and education topics in applied microbiology and microbial biotechnology. Microbiology boock series, No 2, vol 2. FORMATEX Reserch Center, Extremadura, pp 1322–1327

    Google Scholar 

  • Bedard DL, May RJ (1995) Characterization of the polychlorinated biphenyls in the sediments of Woods Pond: evidence for microbial dechlorination of Aroclor 1260 in situ. Environ Sci Technol 30:237–245

    Google Scholar 

  • Beigel C, Barriuso E, Calvet R (1998) Sorption of low levels of nonionic and anionic surfactants on soil: effects on sorption of triticonazole fungicide. Pest Sci 54:52–60

    CAS  Google Scholar 

  • Bollag JM, Bollag WB (1995) Soil contamination and the feasibility of biological remediation. In: Skipper HD, Turco RF (eds) Bioremediation: science and applications. Soil Science Society of America, Madison, WI, pp 1–10, Special publication

    Google Scholar 

  • Boopathy R (2000) Factors limiting bioremediation technologies. Biores Technol 74:63–67

    CAS  Google Scholar 

  • Boopathy R, Manning J (1999) Surfactant-enhanced bioremediation of soil contaminated with 2, 4, 6-trinitrotoluene in soil slurry reactors. Water Environ Res 74:119–124

    Google Scholar 

  • Bustamante M, Durán N, Diez MC (2012) Biosurfactants are useful tools for the bioremediation of contaminated soil: a review. J Soil Sci Plant Nutr 12:667–687

    Google Scholar 

  • Cameotra SS, Makkar RS (2010) Biosurfactant-enhanced bioremediation of hydrophobic pollutants. Pure Appl Chem 82:97–116

    CAS  Google Scholar 

  • Chakraborty R, Wu CH, Hazen TC (2012) Systems biology approach to bioremediation. Curr Opin Biotechnol 23:483–490

    PubMed  CAS  Google Scholar 

  • Chávez-López C, Blanco-Jarvio A, Luna-Guido M et al (2011) Removal of methyl parathion from a chinampa agricultural soil of Xochimilco Mexico: a laboratory study. Eur J Soil Biol 47:264–269

    Google Scholar 

  • Chino-Flores C, Dantán-González E, Vázquez-Ramos A et al (2011) Isolation of the opdE gene that encodes for a new hydrolase of Enterobacter sp. capable of degrading organophosphorus pesticides. Biodegradation 23:387–397

    PubMed  Google Scholar 

  • Chowdhury S, Bala NN, Dhauria P (2012) Bioremediation – a natural way for cleaner environment. Int J Pharmaceut Chem Biol Sci 2:600–611

    Google Scholar 

  • Christofi N, Ivshina IB (2002) Microbial surfactants and their use in field studies of soil remediation. J Appl Microbiol 93:915–929

    PubMed  CAS  Google Scholar 

  • Commandeur LCM, Parsons JR (1994) Biodegradation of halegonated aromatic compounds. In: Ratledge C (ed) Biochemistry of microbial degradation. Kluwer Academic Publishers, Dordrecht, pp 423–458

    Google Scholar 

  • Crawford RL, Rosenberg E (2013) Bioremediation. In: Rosenberg E, DeLong EF, Lory S et al (eds) The prokaryotes. Springer-Verlag, Heidelberg, pp 295–307

    Google Scholar 

  • Csizer Z (2002) Persistent organic pollutants (POPs). UNIDO programmes on persistent organic pollutants (POPs). International forum on strategies and priorities for environmental industries. UNIDO, Bratislava, p 17

    Google Scholar 

  • Dua M, Singh A, Sethunathan N et al (2002) Biotechnology and bioremediation: successes and limitations. Appl Microbiol Biotechnol 59:143–152

    PubMed  CAS  Google Scholar 

  • Edwards CA, Bohlen PJ (1992) The effects of toxic chemicals on earthworms. In: Ware GW (ed) Reviews of environmental contamination and toxicology. Spriger-Verlag, New York, pp 23–99

    Google Scholar 

  • FAO (2002) Código internacional de conducta para la distribución y utilización de plaguicidas. Food and Agriculture Organization, Roma, p 7

    Google Scholar 

  • FAOSTAT (2012) División estadística. http://faostat3.fao.org/home/index_es.html?locale=es# DOWNLOAD. Accessed Aug 2013

  • Gevao B, Semple KT, Jones KC (2000) Bound pesticide residues in soils: a review. Environ Pollut 108:3–14

    PubMed  CAS  Google Scholar 

  • Grosser RJ, Friedrich M, Ward DM et al (2000) Effect of model sorptive phases on phenanthrene biodegradation: different enrichment conditions influence bioavailability and selection of phenanthrene-degrading isolates. Appl Environ Microbiol 66:2695–2702

    PubMed  CAS  PubMed Central  Google Scholar 

  • Guha S, Jaffé PR (1996) Bioavailability of hydrophobic compounds partitioned into the micellar phase of nonionic surfactants. Environ Sci Technol 30:1382–1391

    CAS  Google Scholar 

  • Guillén-Jiménez FM, Cristiani-Urbina E, Cancino-Díaz JC et al (2012) Lindane biodegradation by the Fusarium verticillioides AT-100 strain, isolated from Agave tequilana leaves: kinetic study and identification of metabolites. Int Biodet Biodeg 74:36–47

    Google Scholar 

  • Guo Y, Mulligan CN (2006) Combined treatment of styrene-contaminated soil by rhamnolipid washing followed by anaerobic treatment. In: Hudson RC (ed) Hazardous materials in soil and atmosphere, treatment, removal and analysis. Nova Science Publishers, New York, pp 1–38

    Google Scholar 

  • Haritash AK, Kaushik CP (2009) Biodegradation aspects of polycyclic aromatic hydrocarbons (PAHs): a review. J Hazard Mater 169:1–15

    PubMed  CAS  Google Scholar 

  • Harms H, Bosma TNP (1997) Mass transfer limitation of microbial growth and pollutant degradation. J Ind Microbiol Biotechnol 18:97–105

    CAS  Google Scholar 

  • Harms H, Zehnder A (1995) Bioavailability of sorbed 3-chlorodibenzofuran. Appl Environ Microbiol 61(1):27–33

    PubMed  CAS  PubMed Central  Google Scholar 

  • Ibekwe AM, Papiernik SK, Gan J et al (2001) Impacts of fumigants on soil microbial communities. Appl Environ Microbiol 67:3245–3257

    PubMed  CAS  PubMed Central  Google Scholar 

  • Iglesias-Jiménez E, Sanchez-Martin MJ, Sánchez-Camazano M (1996) Pesticide adsorption in a soil-water system in the presence of surfactants. Chemosphere 32:1771–1782

    Google Scholar 

  • INEGI (2011) Instituto Nacional de Estadística y Geografía, México. Producto Interno Bruto. http://www.inegi.org.mx/sistemas/bie/cuadrosestadisticos/GeneraCuadro.aspx?s=est&nc=785&c=24393. Accessed June 2013

  • Islas-Pelcastre M, Villagómez-Ibarra JR, Madariaga-Navarrete JA et al (2013) Bioremediation perspectives using autochthonous species of Trichoderma sp. for degradation of atrazine in agricultural soil from the Tulancingo Valley, Hidalgo, Mexico. Trop Subtrop Agroecosyst 16: 265–276

    Google Scholar 

  • Jain RK, Kapur M, Labana S et al (2005) Microbial diversity: application of microorganisms for the biodegradation of xenobiotics. Curr Sci 89:101–112

    CAS  Google Scholar 

  • Jayashree R, Vasudevan N, Chandrasekaran S (2006) Surfactants enhanced recovery of endosulfan from contaminated soils. Int J Environ Sci Technol 3:251–259

    CAS  Google Scholar 

  • Joutey NT, Bahafid W, Sayel H, El Ghachtouli N (2013) Biodegradation: involved microorganisms and genetically engineered microorganisms. In: Chamy R (ed) Biodegradation-life of science. InTech, Rijeka, pp 289–320

    Google Scholar 

  • Juwarkar AA, Dubey KV, Nair A et al (2008) Bioremediation of multi-metal contaminated soil using biosurfactant-a novel approach. Ind J Microbiol 48:142–146

    CAS  Google Scholar 

  • Juwarkar AA, Singh SK, Mudhoo A (2010) Comprehensive overview of elements in bioremediation. Rev Environ Sci Biotechnol 9:215–288

    CAS  Google Scholar 

  • Kaufman DD (1983) Fate of toxic organic compounds in land-applied wastes. In: Parr JF, Marsh PB, Kla JM (eds) Land treatment of hazardous wastes. Corp, Park Ridge, New Jersey, pp 77–151

    Google Scholar 

  • Kile DE, Chiou CT (1989) Water solubility enhancements of DDT and trichlorobenzene by some surfactants below and above the critical micelle concentration. Environ Sci Technol 23: 832–838

    CAS  Google Scholar 

  • Klose S, Acosta-Martinez V, Ajwa HA (2006) Microbial community composition and enzyme activities in a sandy loam soil after fumigation with metal bromide or alternative biocides. Soil Biol Biochem 38:1243–1254

    CAS  Google Scholar 

  • Komancová M, Jurčová I, Kochánková L et al (2003) Metabolic pathways of polychlorinated biphenyls degradation by Pseudomonas sp. 2. Chemosphere 50:537–543

    PubMed  Google Scholar 

  • Kreinfeld F, Stoll G (1997) Surfactants in consumer products and raw materials situation – a brief survey. In: Hill K, von Rybinski W, Stoll F (eds) Alkyl polyglycosides technology, properties, and applications. VCH Verlagsgesellschaft, Weinheim, pp 225–233

    Google Scholar 

  • Laha S, Tansel B, Ussawarujikulchai A (2009) Surfactant-soil interactions during surfactant-amended remediation of contaminated soils by hydrophobic organic compounds: a review. J Environ Manage 90:95–100

    PubMed  CAS  Google Scholar 

  • Leahy JG, Colwell RR (1990) Microbial degradation of hydrocarbons in the environent. Microbiol Rev 54:305–315

    PubMed  CAS  PubMed Central  Google Scholar 

  • Li X, Schuler MA, Berenbaum MR (2007) Molecular mechanisms of metabolic resistance to synthetic and natural xenobiotics. Annu Rev Entomol 52:231–253

    PubMed  Google Scholar 

  • Madrigal-Monárrez I, Benoit P, Barriuso E et al (2008) Caracterización de la sorción y desorción de herbicidas en suelos con diferentes tipos de ocupación. Rev Ing Inv 28:96–104

    Google Scholar 

  • Malato S, Blanco J, Estrada C et al (2012) Tratamiento y disposición final. Degradación de Plaguicidas. http://www.estrucplan.com.ar/Producciones/entrega.asp?IdEntrega=2960. Accessed Dec 2013

  • Martikainen E, Haimi J, Ahtiainen J (1998) Effects of dimethoate and benomyl on soil organisms and soil processes – a microcosm study. Appl Soil Ecol 9:381–387

    Google Scholar 

  • Master ER, Lai VW, Kuipers B et al (2002) Sequential anaerobic-aerobic treatment of soil contaminated with weathered Aroclor 1260. Environ Sci Technol 36:100–103

    PubMed  CAS  Google Scholar 

  • McCarthy JF, Zachara JM (1989) Subsurface transport of contaminants. Environ Sci Technol 23:496–502

    CAS  Google Scholar 

  • Megharaj M, Ramakrishnan B, Venkateswarlu K (2011) Bioremediation approaches for organic pollutants: a critical perspective. Environ Int 37:1362–1375

    PubMed  CAS  Google Scholar 

  • Mishra M, Muthuprasanna P, Prabha KS et al (2009) Basics and potential applications of surfactants. A review. Int J Pharm Tech Res 1:1354–1365

    CAS  Google Scholar 

  • Moreno-Medina D, Sanchez-Salinas E, Ortiz-Hernández ML (2014) Removal of methyl parathion and coumaphos pesticides by a bacterial consortium immobilized in Luffa cylindrical. Rev Int Contam Ambient 30:51–63

    Google Scholar 

  • Mörner J, Bos R, Fredrix M (2002) Reducing and eliminating the use of persistent organic pesticides. Inter-organization programme for the sound management of chemicals (IOMC). http://www.chem.unep.ch/Publications/pdf/POPred_E.pdf. Accessed Nov 2013

  • Mosleh YY, Paris-Palacios S, Couderchet M et al (2003) Acute and sublethal effects of two insecticides on earthworms (Lumbricus terrestris L.) under laboratory conditions. Environ Toxicol 18:1–8

    PubMed  CAS  Google Scholar 

  • Mulchandani A, Kaneva I, Chen W (1999) Detoxification of organophosphate nerve agents by immobilized Escherichia coli with surface‐expressed organophosphorus hydrolase. Biotechnol Bioeng 63:216–223

    PubMed  CAS  Google Scholar 

  • Mulligan CN (2005) Environmental applications for biosurfactants. Environ Pollut 133:183–198

    PubMed  CAS  Google Scholar 

  • Mulligan CN, Yong RN, Gibbs BF (2001) Surfactant-enhanced remediation of contaminated soil: a review. Eng Geol 60:371–380

    Google Scholar 

  • Nawaz K, Hussain K, Choudary N et al (2011) Eco-friendly role of biodegradation against agricultural pesticides hazards. Afr J Microbiol Res 5:177–183

    Google Scholar 

  • Niti C, Sunita S, Kamlesh K et al (2013) Bioremediation: an emerging technology for remediation of pesticides. Res J Chem Environ 17:88–105

    CAS  Google Scholar 

  • Odukkathil G, Vasudevan M (2013) Toxicity and bioremediation of pesticides in agricultural soil. Rev Environ Sci Biotechnol 12:421–444

    CAS  Google Scholar 

  • Olivera NL, Commendatore MG, Moran AC et al (2000) Biosurfactant-enhanced degradation of residual hydrocarbons from ship bilge wastes. J Ind Microbiol Biotechnol 25:70–73

    CAS  Google Scholar 

  • Olvera-Velona A, Benoit P, Barriuso E et al (2008) Sorption and desorption of organophosphate pesticides, parathion and cadusafos, on tropical agricultural soils. Agron Sustain Dev 28: 231–238

    CAS  Google Scholar 

  • Ortız I, Velasco A, Le Borgne S et al (2013) Biodegradation of DDT by stimulation of indigenous microbial populations in soil with cosubstrates. Biodegradation 4:215–225

    Google Scholar 

  • Ortiz-Hernández ML (2002) Biodegradación de plaguicidas organofosforados por nuevas bacterias aisladas del suelo. Universidad Autónoma del Estado de Morelos, Dissertation

    Google Scholar 

  • Ortiz-Hernández ML, Sánchez-Salinas E (2010) Biodegradation of the organophosphate pesticide tetrachlorvinphos by bacteria isolated from agricultural soils in Mexico. Rev Int Contam Ambient 26:27–38

    Google Scholar 

  • Ortiz-Hernández ML, Monterrosas-Brisson M, Yáñez-Ocampo G et al (2001) Biodegradation of methyl-parathion by bacteria isolated of agricultural soil. Rev Int Contam Ambient 17: 147–155

    Google Scholar 

  • Ortiz-Hernández ML, Quintero-Ramirez R, Nava-Ocampo A et al (2003) Study of the mechanism of Flavobacterium sp. for hydrolyzing organophosphate pesticides. Fund Clin Pharmacol 17:717–723

    Google Scholar 

  • Ortiz-Hernández ML, Sánchez-Salinas E, Olvera-Velona A et al (2011) Pesticides in the environment: impacts and its biodegradation as a strategy for residues treatment, pesticides. In: Stoytcheva M (ed) Formulations, effects, fate. InTech, Rijeka, pp 551–574

    Google Scholar 

  • Pandey S, Singh DK (2004) Total bacterial and fungal population after chlorpyrifos and quinalphos treatments ingroundnut (Arachis hypogaea L.) soil. Chemosphere 55:197–205

    PubMed  CAS  Google Scholar 

  • Pongrac P, Vogel-Mikuš K, Kump P et al (2007) Changes in elemental uptake and arbuscular mycorrhizal colonisation during the life cycle of Thlaspi praecox Wulfen. Chemosphere 69:1602–1609

    PubMed  CAS  Google Scholar 

  • Popoca-Ursino C (2012) Aislamiento de bacterias con capacidad de degradación de plaguicidas organofosforados y caracterización genómica y molecular de sus actividades. Dissertation, Universidad Autónoma del Estado de Morelos

    Google Scholar 

  • Prince RC (1997) Bioremediation of marine oil spills. Trends Biotechnol 15:158–160

    CAS  Google Scholar 

  • Ramírez-Sandoval M, Melchor-Partida GN, Muñiz-Hernández S et al (2011) Phytoremediatory effect and growth of two species of Ocimum in endosulfan polluted soil. J Hazard Mater 192:388–392

    PubMed  Google Scholar 

  • Ramírez-Sandoval M, Muñiz-Hernández S, Velázquez-Fernández JB (2013) Mechanisms of phytoremediatory effect of Ocimum basilicum L. and its rhizosphere exposed to different concentrations of the organochlorine pesticide endosulfan. Chem Eng Trans 34:73–78

    Google Scholar 

  • Rayu S, Karpouzas DG, Singh BK (2012) Emerging technologies in bioremediation: constraints and opportunities. Biodegradation 23:917–926

    PubMed  CAS  Google Scholar 

  • Richins RD, Kaneva I, Mulchandani A et al (1997) Biodegradation of organophosphorus pesticides by surface-expressed organophosphorus hydrolase. Nat Biotechnol 15:984–987

    PubMed  CAS  Google Scholar 

  • Riojas-González HH, Torres BLG, Mondaca FI et al (2010) Efectos de los surfactantes en la biorremediación de suelos contaminados con hidrocarburos. Rev Quim Viva 3:120–145

    Google Scholar 

  • Robles-González I, Ríos-Leal E, Ferrera-Cerrato R et al (2006) Bioremediation of a mineral soil with high contents of clay and organic matter contaminated with herbicide 2,4-dichlorophenoxyacetic acid using slurry bioreactors: Effect of electron acceptor and supplementation with an organic carbon source. Proc Biochem 41:1951–1960

    Google Scholar 

  • Rosen MJ, Kunjappu JT (2012) Surfactants and interfacial phenomena. Wiley, Hoboken, NJ, 600

    Google Scholar 

  • Rubilar O, Tortella G, Cea M et al (2011) Bioremediation of a Chilean Andisol contaminated with pentachlorophenol (PCP) by solid substrate cultures of white rot fungi. Biodegradation 22:31–41

    PubMed  CAS  Google Scholar 

  • Satpute SK, Banat IM, Dhakephalkar PK et al (2010) Biosurfactants, bioemulsifiers and exopolysaccharides from marine microorganisms. Biotechnol Adv 28:436–450

    PubMed  CAS  Google Scholar 

  • Schippers C, Gessner K, Müller T et al (2000) Microbial degradation of phenanthrene by addition of a sophorolipid mixture. J Biotechnol 83:189–198

    PubMed  CAS  Google Scholar 

  • Sekhon KK, Khanna S, Cameotra SS (2011) Enhanced biosurfactant production through cloning of three genes and role of esterase in biosurfactant release. Microb Cell Fact 10:49

    PubMed  CAS  PubMed Central  Google Scholar 

  • SEMARNAT (2012) Secretaría de Medio Ambiente y Recursos Naturales. Base de datos estadísticos. Producción de insecticidas y plaguicidas. http://dgeiawf.semarnat.gob.mx:8080/ibi_apps/WFServlet?IBIF_ex=D2_AGRIGAN05_04&IBIC_user=dgeia_mce&IBIC_pass=dgeia_mce. Accessed Sept 2013

  • Semple KT, Doick KJ, Jones KC, Burauel P et al (2004) Defining bioavailability and bioaccessibility of contaminated soil and sediment is somplicated (view point). Environ Sci Tech 15: 229–231

    Google Scholar 

  • Shelton DR, Doherty MA (1997) A model describing pesticide bioavailability and biodegradation in soil. Soil Sci Soc Am J 61:1078–1084

    CAS  Google Scholar 

  • Shukla KP, Singh NK, Sharma S (2010) Bioremediation: developments, current practices and perspectives. Gen Eng Biotechnol J 3:1–20

    CAS  Google Scholar 

  • Singh BK, Walker A (2006) Microbial degradation of organophosphorus compounds. FEMS Microbiol Rev 30:428–471

    PubMed  CAS  Google Scholar 

  • Singh N, Megharaj M, Gates WPJ (2003) Bioavailability of an organophosphorus pesticide, fenamiphos, sorbed on an organo clay. J Agric Food Chem 51:2653–2658

    PubMed  CAS  Google Scholar 

  • Singh N, Sethunathan N, Megharaj M (2008) Bioavailability of sorbed pesticides to bacteria: an overview. In: Naidu R et al (eds) Chemical bioavailability in terrestrial environment. Developments in soil science series, vol 32. Elsevier, Amsterdam, pp 73–82

    Google Scholar 

  • Smulders E, von Rybinski W, Sung E et al (2001) Laundry detergents. Ullmann’s encyclopedia of industrial chemistry. Wiley, Weinheim, pp 38–98

    Google Scholar 

  • Suyala A, Chauhana SS, Srivastava A et al (2013) Adsorption-desorption behaviour of chlorimuron-ethyl herbicide on homoionic clays. Eur J Soil Sci 2:28–34

    Google Scholar 

  • Tang WC, White JC, Alexander M (1998) Utilization of sorbed compounds by microorganisms specifically isolated for that purpose. Appl Microbiol Biotechnol 49:117–121

    PubMed  CAS  Google Scholar 

  • Tecon R, Van der Meer JR (2010) Effect of two types of biosurfactants on phenanthrene availability to the bacterial bioreporter Burkholderia sartisoli strain RP037. Appl Microbiol Biotechnol 85:1131–1139

    PubMed  CAS  Google Scholar 

  • Tejeda M, Gómez I, Del Toro M (2011) Use of organic amendments as a bioremediation strategy to reduce the bioavailability of chlorpyrifos insecticide in soils. Effects on soil biology. Ecotoxicol Environ Saf 74:2075–2081

    Google Scholar 

  • Tiehm A, Stieber M, Werner P et al (1997) Surfactant-enhanced mobilization and biodegradation of polycyclic aromatic hydrocarbons in manufactured gas plant soil. Environ Sci Technol 31:2570–2576

    CAS  Google Scholar 

  • Van Hamme JD, Singh A, Ward OP (2003) Recent advances in petroleum microbiology. Microbiol Mol Biol Rev 67:503–549

    PubMed  PubMed Central  Google Scholar 

  • Vasseur P, Bonnard M, Palais F et al (2008) Bioavailability of chemical pollutants in contaminated soils and pitfalls of chemical analyses in hazard assessment. Environ Toxicol 23:652–656

    PubMed  CAS  Google Scholar 

  • Vidali M (2001) Bioremediation. An overview. Pure Appl Chem 73:1163–1172

    CAS  Google Scholar 

  • Villavicencio M, Pérez B (2010) Plantas tradicionalmente usadas como plaguicidas en el Estado de Hidalgo, México. Polibotánica 30:193–238

    Google Scholar 

  • Volkering F, Breure AM, Rulkens WH (1998) Microbiological aspects of surfactant use for biological soil remediation. Biodegradation 8:401–417

    CAS  Google Scholar 

  • Volke-Sepúlveda T, Velasco-Trejo JA (2002) Tecnologías de remediación para suelos contaminados. INE-SEMARNAT, México

    Google Scholar 

  • Wattanaphon HT, Kerdsin A, Thammacharoen C et al (2008) A biosurfactant from Burkholderia cenocepacia BSP3 and its enhancement of pesticide solubilization. J Appl Microbiol 105:416–423

    PubMed  CAS  Google Scholar 

  • Wiegel J, Wu Q (2000) Microbial reductive dehalogenation of polychlorinated biphenyls. FEMS Microbiol Ecol 32:1–15

    PubMed  CAS  Google Scholar 

  • Worrall F, Fernandez-Perez M, Johnson AC et al (2001) Limitations on the role of incorporated organic matter in reducing pesticide leaching. J Contam Hydrol 49:241–262

    PubMed  CAS  Google Scholar 

  • Yáñez-Ocampo G, Sanchez-Salinas E, Jimenez-Tobon GA et al (2009) Removal of two organophosphate pesticides by a bacterial consortium immobilized in alginate or tezontle. J Hazard Mater 168:1554–1561

    PubMed  Google Scholar 

  • Yáñez-Ocampo G, Sánchez-Salinas E, Ortiz-Hernández ML (2011) Removal of methyl parathion and tetrachlorvinphos by a bacterial consortium immobilized on tezontle-packed up-flow reactor. Biodegradation 22:1203–1213

    PubMed  Google Scholar 

  • Yeomans J, Carrillo E, Ruiz A (2004) Biodegradación de Plaguicidas. BIOtecnia (Sonora, México) 6:3–62

    Google Scholar 

  • Yin J, Qiang Y, Jia Y et al (2008) Characteristics of biosurfactant produced by Pseudomona aeruginosa S6 from oil containing wastewater. Proc Biochem 44:302–308

    Google Scholar 

  • Zhang L, Hong S, Zhou L et al (2003) Fate and assessment of persistent organic pollutants in water and sediment from Minjian River Estuary, Southeast China. Chemosphere 52:1423–1430

    PubMed  CAS  Google Scholar 

  • Zhang C, Wang S, Yan Y (2011) Isomerization and biodegradation of beta-cypermethrin by Pseudomonas aeruginosa CH7 with biosurfactant production. Biores Technol 102:7139–7146

    CAS  Google Scholar 

  • Zheng G, Wong JW (2010) Application of microemulsion to remediate organochlorine pesticides contaminated soils. Proc Annu Int Conf Soils Sediment Water Energ 15:21–35

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Laura Ortiz-Hernández .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Ortiz-Hernández, M.L., Rodríguez, A., Sánchez-Salinas, E., Castrejón-Godínez, M.L. (2014). Bioremediation of Soils Contaminated with Pesticides: Experiences in Mexico. In: Alvarez, A., Polti, M. (eds) Bioremediation in Latin America. Springer, Cham. https://doi.org/10.1007/978-3-319-05738-5_5

Download citation

Publish with us

Policies and ethics