Skip to main content

Perspective in Bioremediation: Enhancing the Hexavalent Chromium Removal Using Native Yeasts from Tucumán, Argentina

  • Chapter
  • First Online:
Bioremediation in Latin America

Abstract

The occurrence of indigenous Cr(VI)-reducing eukaryotic microorganisms, including those with no history of Cr(VI) contamination, has provided important non-conventional yeasts with significant biological relevance and biotechnological applications. Based on physiological/biochemical characterization and molecular taxonomy analysis, these isolates were identified as Cyberlindnera jadinii M9 and Wickerhamomyces anomalus M10. Cy. jadinii M9 and W. anomalus M10 were grown in medium plus 1 mM Cr(VI) at 25 °C, causing complete chromium removal before reaching 48 h of cultivation. Flame Atomic Absorption Spectroscopy (FAAS) assays suggested that Cr(VI) disappearance was coupled to the Cr(III) concomitant production. These results indicated that reducing capacity of chromate-resistant yeasts would be the main detoxification mechanism. Crude chromate reductase (CChRs) of strains M9 and M10, were characterized based on optimal temperature, pH, use of electron donors, metal ions and initial Cr(VI) concentration in the reaction mixture. Both CChRs showed an increase in Cr(VI) reductase activity with addition of NAD(P)H as electron donor and were highly inhibited by Hg2+ and Mn2+. The CChR from Cy. jadinii M9 showed the highest chromate reductase activity at 60 °C and pH 6.0 in the presence of Cu2+ or Na+, while W. anomalus M10 CChR had the maximum activity at 50 °C and pH 7.0 in presence of Cu2+. Initial Cr(VI) concentrations of 1.3 and 1.7 mM for CChRs of Cy. jadinii M9 and W. anomalus M10 respectively were inhibitory. This chapter presents evidence of the significant potential of native selected yeasts for chromium bioremediation, thus being promising candidates for alleviating this polluting metal from environment.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Bae W, Lee H, Choe Y et al (2005) Purification and characterization of NADPH-dependent Cr(VI) reductase from Escherichia coli ATCC 33456. J Microbiol 43:21–27

    PubMed  CAS  Google Scholar 

  • Baldi F, Vaughan AM, Olson GJ (1990) Chromium(VI)-resistant yeast isolated from a sewage treatment plant receiving tannery wastes. Appl Environ Microbiol 56:913–918

    PubMed  CAS  PubMed Central  Google Scholar 

  • Barceloux DG (1999) Chromium. Clin Toxicol 37:173–194

    Article  CAS  Google Scholar 

  • Bobrowski A, Mocak J, Dominik J et al (2004) Metrological characteristics and comparison of analytical methods for determination of chromium traces in water samples. Acta Chim Slov 51:77–93

    CAS  Google Scholar 

  • Camargo FAO, Okeke BC, Bento FM et al (2003) In vitro reduction of hexavalent chromium by a cell-free extract of Bacillus sp. ES 29 stimulated by Cu2+. Appl Microbiol Biot 65:569–573

    Article  Google Scholar 

  • Camargo FAO, Bento FM, Okeke BC et al (2004) Hexavalent chromium reduction by an actinomycete, Arthrobacter crystallopoietes ES 32. Biol Trace Elem Res 97:183–194

    Article  PubMed  CAS  Google Scholar 

  • Cheung KH, Gu JD (2007) Mechanisms of hexavalent chromium detoxification by microorganisms and bioremediation application potential: a review. Inte Biodeter Biodegr 59:8–15

    Article  CAS  Google Scholar 

  • Elangovan R, Abhipsa S, Rohit B et al (2006) Reduction of Cr(VI) by a Bacillus sp. Biotechnol Lett 28:247–252

    Article  PubMed  CAS  Google Scholar 

  • Fernández PM, Figueroa LIC, Fariña JI (2009) Critical influence of culture medium and Cr(III) quantification protocols on the interpretation of Cr(VI) bioremediation by environmental fungal isolates. Water Air Soil Pollut 206:283–293

    Article  Google Scholar 

  • Fernández PM, Fariña JI, Figueroa LIC (2010) The significance of inoculum standardization and cell density on the Cr(VI) bioremediation by environmental yeast isolates. Water Air Soil Pollut 212:275–279

    Article  Google Scholar 

  • Fernández PM, Cabral ME, Delgado OD et al (2013) Textile-dye polluted waters as a source for selecting chromate-reducing yeasts through Cr(VI)-enriched microcosms. Int Biodeter Biodegr 79:28–35

    Article  Google Scholar 

  • Ferraz AI, Tavares T, Texeira JA (2004) Cr(III) removal and recorvery from Sacchoromyces cerevisiae. Chem Eng J 105:11–20

    Article  CAS  Google Scholar 

  • Gonzalez CF, Ackerley DF, Park C et al (2003) A soluble flavoprotein contributes to chromate reduction and tolerance by Pseudomonas putida. Acta Biotechnol 2:233–239

    Article  Google Scholar 

  • Goyal N, Jain SC, Banerjee UC (2003) Comparative studies on the microbiol adsorption of heavy metals. Adv Environ Res 7:311–319

    Article  CAS  Google Scholar 

  • Jamnik P, Raspor P (2003) Stress response of yeast Candida intermedia to Cr(VI). J Biochem Mol Toxicol 17:316–323

    Article  PubMed  CAS  Google Scholar 

  • Juvera-Espinosa J, Morales-Barrera L, Cristiani-Urbina E (2006) Isolation and characterization of a yeast strain capable of removing Cr(VI). Enzyme Microb Technol 40:114–121

    Article  CAS  Google Scholar 

  • Kamaludeen SPB, Megharaj M, Juhasz AL et al (2003) Chromium-microorganism interactions in soils: remediation implications. Rev Environ Contam T 178:93–164

    CAS  Google Scholar 

  • Kaszycki P, Fedorovych D, Ksheminska H et al (2004) Chromium accumulation by living yeast at various environmental conditions. Microbiol Res 159:11–17

    Article  PubMed  CAS  Google Scholar 

  • Ksheminska H, Jaglarz A, Fedorovych D et al (2003) Bioremediation of chromium by the yeast Pichia guilliermondii: toxicity and accumulation of Cr(III) and Cr(VI) and the influence of riboflavin on Cr tolerance. Microbiol Res 158:59–67

    Article  PubMed  CAS  Google Scholar 

  • Ksheminska H, Fedorovych D, Babyak L et al (2005) Chromium(III) and (VI) tolerance and bioaccumulation in yeast: a survey of cellular chromium content in selected strains of representative genera. Process Biochem 40:1565–1572

    Article  CAS  Google Scholar 

  • Kurtzman CP, Robnett CJ, Basehoar-Powers E (2008) Phylogenetic relationships among species of Pichia, Issatchenkia and Williopsis determined from multigene sequence analysis, and the proposal of Barnettozyma gen. nov., Lindnera gen. nov. and Wickerhamomyces gen. nov. FEMS Yeast Res 8:939–954

    Article  PubMed  CAS  Google Scholar 

  • Malik A (2003) Metal bioremediation through growing cells. Environ Int 30:261–278

    Article  Google Scholar 

  • Martorell MM, Fernández PM, Fariña JI et al (2012) Cr(VI) reduction by cell-free extracts of Pichia jadinii and Pichia anomala isolated from textile-dye factory effluents. Int Biodeter Biodegr 70:81–85

    Google Scholar 

  • Mclean JS, Beveridge TJ, Phipps D (2000) Isolation and characterization of a chromium-reducing bacterium from a chromated copper arsenate contaminated site. Environ Microbiol 2:611–619

    Article  PubMed  CAS  Google Scholar 

  • Molokwane PE, Meli CK, Evans and Chirwa MN (2008) Chromium (VI) reduction in activated sludge bacteria exposed to high chromium loading: Brits culture (South Africa). Water Res 42:4538–4548

    Article  PubMed  CAS  Google Scholar 

  • Morales-Barrera L, Guillén-Jiménez F, Ortiz-Moreno A et al (2008) Isolation, identification and characterization of a Hypocrea tawa strain with high Cr(VI) reduction potential. Biochem Eng J 40:284–292

    Article  CAS  Google Scholar 

  • Morales-Barrera L, Cristiani-Urbina E (2006) Removal of hexavalent chromium by Trichoderma viride in an airlift bioreactor. Enzyme Microb Technol 40:107–113

    Article  CAS  Google Scholar 

  • Muter O, Patmalnieks A, Rapoport A (2001) Interrelations of the yeast Candida utilis and Cr(VI): metal reduction and its distribution in the cell and medium. Process Biochem 36:963–970

    Article  CAS  Google Scholar 

  • Opperman DJ, Piater LA, van Heerden E (2008) A novel chromate reductase from Thermus scotoductus SA-01 related to old yellow enzyme. J Bacteriol 190:3076–3082

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Pal A, Dutta S, Mukherjee PK et al (2005) Occurrence of heavy metal resistance in microflora from serpentine soil of Andaman. J Basic Microbiol 45:207–218

    Article  PubMed  CAS  Google Scholar 

  • Park CH, Keyhan M, Wielinga B et al (2000) Purification to homogeneity and characterization of a novel Pseudomonas putida chromate reductase. Appl Environ Microbiol 66:1788–1795

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Paš M, Milačič R, Drašlar K et al (2004) Uptake of chromium(III) and chromium(VI) compounds in the yeast cell structure. Biometals 17:25–33

    Article  PubMed  Google Scholar 

  • Pawlisz AV, Kent RA, Schnider UA et al (1997) Canadian water quality guidelines for chromium. Environ Toxic Water Qual 12:123

    Article  CAS  Google Scholar 

  • Penninckx MJ, Elsekens MT (1993) Modulation of chromium (VI) toxicity by organic and inorganic sulfur species in yeasts from industrial wastes. Biometals 5:170–185

    Google Scholar 

  • Poljsak B, Pócsi I, Raspor P et al (2010) Interference of chromium with biological systems in yeasts and fungi: a review. J Basic Microbiol 50:21–36

    Article  PubMed  CAS  Google Scholar 

  • Poljsak B, Pócsi I, Pesti M (2011) Interference of chromium with cellular functions. In: Banfalvi G (ed) Cellular effects of heavy metals. Springer, Amsterdam

    Google Scholar 

  • Polti MA, Amoroso MJ, Abate CM (2007) Chromium(VI) resistance and removal by actinomycete strains isolated from sediments. Chemosphere 67:660–667

    Article  PubMed  CAS  Google Scholar 

  • Ramirez-Díaz MI, Díaz-Pérez C, Vargas E et al (2008) Mechanisms of bacterial resistance to chromium compounds. Biometals 21:321–332

    Article  PubMed  Google Scholar 

  • Ramírez-Ramírez R, Calvo-Méndez C, Avila-Rodríguez M et al (2004) Cr(VI) reduction in a chromate-resistant strain of Candida maltosa isolated from the leather industry. A van Leeuw 85:63–68

    Article  Google Scholar 

  • Raspor P, Batic M, Jamnik P et al (2000) The influence of chromium compounds on yeast physiology (a review). Acta Microbiol Imm H 47:143–173

    Article  CAS  Google Scholar 

  • Reynolds MF, Peterson Roth EC, Bespalov IA et al (2009) Rapid DNA double-strand breaks resulting from processing of Cr-DNA cross-links by both MutS dimers. Cancer Res 69:1071–1079

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Sarangi A, Krishnan C (2007) Comparison of in vitro Cr(VI) reduction by CFEs of chromate resistant bacteria isolated from chromate contaminated soil. Bioresour Technol 99:4130–4137

    Article  PubMed  Google Scholar 

  • Srivastava S, Thakur IS (2006) Isolation and process parameter optimization of Aspergillus sp. for removal of chromium from tannery effluent. Bioresour Technol 97:1167–1173

    Article  PubMed  CAS  Google Scholar 

  • Sultan S, Hasnain S (2005) Chromate reduction capability of a gram positive bacterium isolated from effluent of dying industry. Bull Environ Contam Tox 75:699–706

    Article  CAS  Google Scholar 

  • Thacker U, Parikh R, Schouche Y et al (2006) Hexavalent chromium reduction by Providencia sp. Process Biochem 41:1332–1337

    Article  CAS  Google Scholar 

  • Tseng JK, Bielefeldt AR (2002) Low-temperature chromium(VI) biotransformation in soil with varying electron acceptors. J Environ Qual 31:1831–1841

    Article  PubMed  CAS  Google Scholar 

  • Urone PF (1955) Stability of colorimetric reagent for chromium, S-diphenylcarbazide, in various solvents. Anal Chem 27:1354–1355

    Article  CAS  Google Scholar 

  • Villegas LB, Fernández PM, Amoroso MJ et al (2008) Chromate removal by yeasts isolated from sediments of a tanning factory and a mine site in Argentina. Biometals 21:591–600

    Article  PubMed  CAS  Google Scholar 

  • Zetic VG, Stehlik-Tomas V, Grba S et al (2001) Chromium uptake by Saccharomyces cerevisiae and isolation of glucose tolerance factor from yeast biomass. J Biosci 26:217–223

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pablo M. Fernández .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Fernández, P.M., Cruz, E.L., de Figueroa, L.I.C. (2014). Perspective in Bioremediation: Enhancing the Hexavalent Chromium Removal Using Native Yeasts from Tucumán, Argentina. In: Alvarez, A., Polti, M. (eds) Bioremediation in Latin America. Springer, Cham. https://doi.org/10.1007/978-3-319-05738-5_13

Download citation

Publish with us

Policies and ethics