SpringerBriefs in Computer Science

Series Editors

Stan Zdonik

Peng Ning

Shashi Shekhar

Jonathan Katz

Xindong Wu

Lakhmi C. Jain

David Padua

Xuemin (Sherman) Shen

Borko Furht

V.S. Subrahmanian

Martial Hebert

Katsushi Ikeuchi

Bruno Siciliano

For further volumes: http://www.springer.com/series/10028

Hongwei Li

Enabling Secure and Privacy Preserving Communications in Smart Grids

Hongwei Li University of Electronic Science and Technology of China Chengdu, Sichuan People's Republic of China

ISSN 2191-5768 ISSN 2191-5776 (electronic)
ISBN 978-3-319-04944-1 ISBN 978-3-319-04945-8 (eBook)
DOI 10.1007/978-3-319-04945-8
Springer Cham Heidelberg New York Dordrecht London

Library of Congress Control Number: 2014933524

© The Author(s) 2014

This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of the material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation, broadcasting, reproduction on microfilms or in any other physical way, and transmission or information storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now known or hereafter developed. Exempted from this legal reservation are brief excerpts in connection with reviews or scholarly analysis or material supplied specifically for the purpose of being entered and executed on a computer system, for exclusive use by the purchaser of the work. Duplication of this publication or parts thereof is permitted only under the provisions of the Copyright Law of the Publisher's location, in its current version, and permission for use must always be obtained from Springer. Permissions for use may be obtained through RightsLink at the Copyright Clearance Center. Violations are liable to prosecution under the respective Copyright Law.

The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication does not imply, even in the absence of a specific statement, that such names are exempt from the relevant protective laws and regulations and therefore free for general use.

While the advice and information in this book are believed to be true and accurate at the date of publication, neither the authors nor the editors nor the publisher can accept any legal responsibility for any errors or omissions that may be made. The publisher makes no warranty, express or implied, with respect to the material contained herein.

Printed on acid-free paper

Springer is part of Springer Science+Business Media (www.springer.com)

Preface

A smart grid has emerged as a promising solution to the next generation power grid system. It utilizes information and communications technology to gather and act on information, such as the behavior of suppliers and consumers, in an automated fashion to improve the reliability, efficiency, economics, and sustainability of the generation and distribution of electricity. However, security and privacy issues still present practical concerns to the deployment of smart grids. In this book, we investigate three schemes for secure and privacy-preserving smart grid communications.

In Chap. 2, we present an efficient privacy-preserving demand response scheme which employs a homomorphic encryption to achieve privacy-preserving demand aggregation and efficient response. In addition, an adaptive key evolution technique is further investigated to ensure the users' session keys to be forward secure. In Chap. 3, we introduce an efficient authentication scheme which utilizes the Merkle hash tree technique to secure smart grid communication. Specifically, the proposed authentication scheme considers the smart meters with computation-constrained resources and puts the minimum computation overhead on them. In Chap. 4, an efficient fine-grained keywords comparison scheme is proposed. Based on the homomorphic Pailier cryptosystem, we use two super-increasing sequences to aggregate multidimensional keywords. As a result, the comparison between the keywords of all sellers and those of one buyer can be achieved with only one calculation.

This book presents an overview of the state-of-the-art solutions to secure and privacy-preserving communications in smart grids. It not only reveals unique security and privacy characteristics but also offers effective solutions. Security analysis and performance evaluation demonstrate effectiveness and efficiency of three schemes. Last but not least, this book highlights promising future research directions to guide interested readers.

Sichuan, China Hongwei Li

Acknowledgments

This book is supported by the National Natural Science Foundation of China under Grants 61350110238, 61103207, U1233108, 61272525, 61073106, and 61003232; the Fundamental Research Funds for Chinese Central Universities under Grant ZYGX2011J059; and the 2011 Korea-China Young Scientist Exchange Program.

Contents

1	Intr	oductio	on to Smart Grids	1	
	1.1	Smart	Grids	1	
		1.1.1	Communication Network Architecture	1	
		1.1.2	Characteristics of Smart Grids	2	
	1.2	Resea	rch Topics in Smart Grids	4	
	1.3	Securi	Security Primitives		
		1.3.1	Homomorphic Encryption	6	
		1.3.2	Bilinear Pairing	7	
		1.3.3	Identity-Based Signature	7	
		1.3.4	Merkle Hash Tree	7	
	1.4	Summ	nary	8	
	Refe	erences		9	
2	Priv		eserving Demand Response in Smart Grids	11	
	2.1	2.1 Introduction			
	2.2	Mode	Is and Design Goal	12	
		2.2.1	Network Model	12	
		2.2.2	Security Model	13	
		2.2.3	Design Goal	14	
	2.3	Meth	odologies	14	
		2.3.1	System Initialization	14	
		2.3.2	Demand Aggregation	15	
		2.3.3	Demand Processing and Response	17	
		2.3.4	Key Evolution	18	
	2.4	2.4 Security Analysis		20	
		2.4.1	Authenticity, Data Integrity and Confidentiality	20	
		2.4.2	Privacy Preservation of Electricity Demand	21	
		2.4.3	Forward Secrecy of Users' Session Keys	22	
		2.4.4	Evolution of Users' Private Keys	24	

x Contents

	2.5	Performance Evaluation	25			
		2.5.1 Communication Overhead	25			
			26			
	2.6		27			
	2.7		29			
	Refe		29			
3	An 1	Efficient Authentication Scheme in Smart Grids	31			
	3.1		31			
	3.2	Models and Design Goal				
		•	33 33			
			33			
			34			
	3.3		35			
		e	35			
		•	37			
			37			
	3.4		39			
			39			
			39			
		3.4.3 Resist the Replay Attack	40			
			40			
	3.5		41			
		3.5.1 Communication Overhead	41			
		1 1 7	42			
	3.6 Related Works		43			
3.7 Summary		•	44			
	Refe	erences	45			
4	An 1	Efficient Fine-Grained Keywords Comparison Scheme				
	in tł	ne Smart Grid Auction Market	47			
	4.1	Introduction	47			
	4.2	, , , , , ,	48			
			48			
		7 1	49			
		ϵ	49			
	4.3	e	50			
			50			
		4.3.2 Auction Message Creating	51			
		e e e e e e e e e e e e e e e e e e e	52			
	4.4		54			
		4.4.1 Secure Fine-Grained Keywords Comparison				
			55			
			55			
		4.4.3 Encrypted Messages' Authentication and Data Integrity	55			

Contents xi

		4.4.4 Private Messages' Authentication, Data Integrity		
		and Confidentiality	56	
	4.5	Performance Evaluation	56	
		4.5.1 Computation Overhead	56	
		4.5.2 Communication Overhead	58	
	4.6	Related Works	59	
	4.7	Summary	59	
References				
5 Conclusions and Future Directions				
	5.1	Research Conclusions	61	
	5.2	Future Extensions	62	