Skip to main content

Laboratory Model Systems and Field Systems: Some Final Thoughts

  • Chapter
  • First Online:
Plant-Plant Allelopathic Interactions II
  • 763 Accesses

Abstract

This Chapter compares field systems with past and present laboratory bioassay systems, provides some thoughts on how to minimize the impacts of atypical factors in present seed and seedling laboratory bioassays, points out which factors limit our ability to design field-relevant model systems, suggests future directions for laboratory and field research on plant-plant allelopathic interactions in a question format, and outlines the central tenets (i.e., opinions, doctrines, or principles) articulated in this volume.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • An M, Johnson IR, Lovett J (1993) Mathematical modeling of allelopathy: biological response to allelochemicals and its interpretation. J Chem Ecol 19:2379–2388

    Article  CAS  Google Scholar 

  • Appel HM (1993) Phenolics in ecological interactions: the importance of oxidation. J Chem Ecol 39:1521–1552

    Article  Google Scholar 

  • Bates-Smith EC (1956) The commoner phenolic constituents of plants and their systematic distribution. Proc R Dublin Sci Soc 27:165–176

    Google Scholar 

  • Belz RG, Hurle K, Duke SO (2005) Dose response—a challenge for allelopathy? Nonlinearity Biol Toxicol Med 3:173–211

    Article  CAS  Google Scholar 

  • Berner DK, Schaad NW, Völksch B (1999) Use of ethylene-producing bacteria for stimulation of Striga spp. seed germination. Biol Control 15:274–282

    Article  Google Scholar 

  • Blum U (1996) Allelopathic interactions involving phenolic acids. J Nematol 28:259–267

    CAS  Google Scholar 

  • Blum U (2004) Fate of phenolic allelochemicals in soils-the role of the soil and rhizosphere microorganisms. In: Maciás FA, Galindo JCG, Molinillo JMG, Cutler HG (eds) Allelopathy: chemistry and mode of action of allelopathic chemicals. CRC Press, Boca Raton, pp 57–76

    Google Scholar 

  • Blum U (2006) Allelopathy: a soil system perspective. In: Reigosa MJ, Pedrol N, González L (eds) Allelopathy: a physiological process with ecological implications. Springer, Dordrecht, pp 299–340

    Google Scholar 

  • Blum U (2011) Plant-plant allelopathic interactions. Phenolic acids, cover crops, and weed emergence. Springer Science and Business Media, Dordrecht

    Book  Google Scholar 

  • Blum U, Rice EL (1969) Inhibition of symbiotic nitrogen-fixation by gallic and tannic acid, and possible roles in old field succession. Bull Torrey Bot Club 96:531–544

    Article  CAS  Google Scholar 

  • Blum U, Shafer SR (1988) Microbial populations and phenolic acids in soils. Soil Biol Biochem 20:793–800

    Article  CAS  Google Scholar 

  • Blum U, Gerig TM (2006) Interrelationships between p-coumaric acid, evapotranspiration, soil water content, and leaf expansion. J Chem Ecol 32:1817–1834

    Article  CAS  Google Scholar 

  • Blum U, Dalton BR, Rawlings JO (1984) Effects of ferulic acid and some of its microbial metabolic products on radicle growth of cucumber. J Chem Ecol 10:1169–1191

    Article  CAS  Google Scholar 

  • Blum U, Dalton BR, Shann JR (1985a) Effects of various mixtures of ferulic acid and some of its microbial metabolic products on cucumber leaf expansion and dry matter in nutrient bioassay. J Chem Ecol 11:619–641

    Article  CAS  Google Scholar 

  • Blum U, Dalton BR, Shann JR (1985b) Effects of ferulic and p-coumaric acids in nutrient culture of cucumber leaf expansion as influenced by pH. J Chem Ecol 11: 1567–1582

    Article  CAS  Google Scholar 

  • Blum U, Weed SB, Dalton BR (1987) Influence of various soil factors on the effects of ferulic acid on leaf expansion of cucumber seedlings. Plant Soil 98:111–130

    Article  CAS  Google Scholar 

  • Blum U, Gerig TM, Weed SB (1989) Effects of mixtures of phenolic acids on leaf expansion of cucumber seedlings grown in different pH Portsmouth A1 soil materials. J Chem Ecol 15:2413–2423

    Article  CAS  Google Scholar 

  • Blum U, Wentworth TR, Klein K, Worsham AD, King LD, Gerig TM, Lyu S-W (1991) Phenolic acid content of soils from wheat-no till, wheat-conventional till, and fallow-conventional till soybean cropping systems. J Chem Ecol 17:1045–1068

    Article  CAS  Google Scholar 

  • Blum U, Austin MF, Shafer SR (1999a) The fate and effects of phenolic acids in a plant-microbial-soil model system. In: Macías FA, Galindo JCG, Molinillo JMG, Cutler HG (eds) Recent advances in allelopathy I: a science for the future. Cádiz University Press, Puerto Real, pp 159–166

    Google Scholar 

  • Blum U, Shafer SR, Lehman ME (1999b) Evidence for inhibitory allelopathic interactions involving phenolic acids in field soils: concepts vs an experimental model. Crit Rev Plant Sci 18:673–693

    Article  CAS  Google Scholar 

  • Boyette CD, Abbas HK (1995) Weed control with mycoherbicides and phytotoxins. In: Inderjit, Dakshini KMM, Einhellig FA (eds) Allelopathy: organisms, processes and applications. ACS Symposium Series, vol 582. American Chemical Society, Washington DC, pp 280–299

    Google Scholar 

  • Chen F, Liu C-J, Tschaplinski TJ, Zhao N (2009) Genomics of secondary metabolism in Populus: interactions with biotic and abiotic environments. Crit Rev Plant Sci 28:375–392

    Article  CAS  Google Scholar 

  • Connell JH (1990) Apparent versus “real” competition in plants. In: Grace JB, Tilman D (eds) Perspectives of plant competition. Academic Press, New York, pp 9–26

    Google Scholar 

  • Dalton BR (1999) The occurrence and behavior of plant phenolic acids in soil environments and their potential involvement in allelochemical interference interactions: methodological limitations in establishing conclusive proof of allelopathy. In: Inderjit, Daskshini KMM, Foy CL (eds) Principles and practices in plant ecology: allelochemical interactions. CRC Press, Boca Raton, pp 57–74

    Google Scholar 

  • Dayan FE (2007) Natural pesticides. In: Encyclopedia of pest management. Taylor and Francis, New York, pp 521–525. http://dx.doi.org/10.1081/E-EPM-100001314. Accessed 12 Dec 2007

  • Demain AL, Fang A (2000) The natural functions of secondary metabolites. Adv Biochem Eng Biotechnol 69:1–39

    CAS  Google Scholar 

  • Duke SO (1986) Microbially produced phytotoxins as herbicides—a perspective. In: Putnam AR, Tang C-S (eds) The science of allelopathy. Wiley, New York, pp 287–304

    Google Scholar 

  • Duke SO, Bajsa J, Pan Z (2013) Omics methods for probing the mode of action of natural and synthetic phytotoxins. J Chem Ecol 39:333–347

    Article  CAS  Google Scholar 

  • Duke SO, Dayan FE (2006) Modes of action of phytotoxins from plants. In: Reigosa MJ, Pedrol N, González L (eds) Allelopathy: a physiological process with ecological implication. Springer, Dordrecht, pp 511–536

    Google Scholar 

  • Dunn WB, Ellis DI (2005) Metabolomics: current analytical platforms and methodologies. Trends Anal Chem 24:285–294

    Article  CAS  Google Scholar 

  • Gauthier M (1997) Hydrophilic and hydrophobic interactions. In: Lagowski JJ (ed) Macmillan encyclopedia of chemistry, vol 2. Simon and Shuster Macmillan, New York, pp 763–765

    Google Scholar 

  • Gawronska H, Golisz A (2006) Allelopathy and biotic stresses. In: Reigosa MJ, Pedrol N, González L (eds) Allelopathy: a physiological process with ecological implications. Springer, Dordrecht, pp 211–227

    Google Scholar 

  • Goodwin TW, Mercer EI (1983) Introduction to plant biochemistry, 2nd ed. Pergaman Press, Oxford

    Google Scholar 

  • Haider K, Martin JP (1975) Decomposition of specifically carbon-14-labeled benzoic and cinnamic acid derivatives in soil. Soil Sci Soc Am Proc 39:657–662

    Article  CAS  Google Scholar 

  • Haider K, Martin JP, Rietz E (1977) Decomposition in soil of 14C-labeled coumaryl alcohols; free and linked into dehydropolymer and plant lignins and model humic acids. Soil Sci Soc Am J 41:556–562

    Article  CAS  Google Scholar 

  • Harborne JB (1982) Introduction to ecological biochemistry. Academic Press, London

    Google Scholar 

  • Harborne JB (1984) Phytochemical methods: a guide to moderns plant analysis. Chapman and hall, New York

    Google Scholar 

  • Harborne JB (1990) Plant phenolics. In: Bell EA, Charlwood BV (eds) Secondary plant products. Springer, Berlin, pp 331–401

    Google Scholar 

  • Harper JL (1975) Allelopathy (a review). Q Rev Biol 50:493–495

    Article  Google Scholar 

  • Harper JL (1977) Population biology of plants. Academic Press, New York

    Google Scholar 

  • Harper JR, Balke NE (1981) Characterization of the inhibition of K + absorption in oat roots by salicylic acid. Plant Physiol 68:1349–1353

    Article  CAS  Google Scholar 

  • Hiradate S, Ohse K, Furubayashi A, Fujii Y (2010) Quantitative evaluation of allelopathic potentials in soils: total activity. Weed Sci 58:258–264

    Article  CAS  Google Scholar 

  • Holappa LD, Blum U (1991) Effects of exogenously applied ferulic acid, a potential allelopathic compound, on leaf growth, water utilization, and endogenous abscisic acid levels of tomato, cucumber, and bean. J Chem Ecol 17:865–886

    Article  CAS  Google Scholar 

  • Inderjit, del Moral R (1997) Is separating resource competition from allelopathy realistic? Bot Rev 63:221–230

    Google Scholar 

  • Inderjit, von Dahl CC, Baldwin IT (2009) Use of silenced plants in allelopathy bioassays: a novel approach. Planta 229:569–575

    Google Scholar 

  • Leão PN, Vasconcelos LMTSD, Vasconcelos VM (2009) Allelopathy in freshwater cynanobacteria. Crit Rev Microbiol 35:271–282

    Article  CAS  Google Scholar 

  • Li H-H, Inoue M, Nishimura H, Mizutani J, Tsuzuki E (1993) Interactions of trans-cinnamic acid, its related phenolic allelochemicals, and abscisic acid in seedling growth and seed germination of lettuce. J Chem Ecol 19:1775–1787

    Article  CAS  Google Scholar 

  • Macías FA (1995) Allelopathy in the search for natural herbicide models. In: Inderjit, Dakshini KMM, Einhellig FA (eds) Allelopathy: organisms, processes and applications. ACS Symposium Series, vol 582. American Chemical Society, Washington DC, pp 310–329

    Google Scholar 

  • Macías FA, Galindo JCG, Molinillo JMG, Cutler HG (2004) Allelopathy: chemistry and mode of action of allelochemicals. CRC Press LLC, Boca Raton

    Google Scholar 

  • Macías FA, Molinillo JMG, Valera RM, Galindo JCG (2007) Allelopathy—a natural alternative for weed control. Pest Manag Sci 63:327–348

    Article  CAS  Google Scholar 

  • Martin JP, Haider K (1976) Decomposition of specifically carbon-14-labeled ferulic acid: free and linked into model humic acid-type polymers. Soil Sci Soc Am J 40:377–380

    Article  CAS  Google Scholar 

  • Martin JP, Haider K (1979) Effects of concentration on decomposition of some 14C-labeled phenolic compounds, benzoic acid, glucose, cellulose, wheat straw, and Chlorella protein in soil. Soil Sci Soc Am J 43:917–920

    Article  CAS  Google Scholar 

  • McNaught AD, Wilkinson A (1997) Compendium of chemical terminology, 2nd edn. Blackwell Science, Oxford

    Google Scholar 

  • Molisch H (1937) Der Einfluss einer Pflanze auf the andere—alleopathie. Fisher, Jena

    Google Scholar 

  • Molisch H (2001) The influence of one plant on another: allelopathy. In: Narwal SS (ed) LaFleur LJ, Mallik MAB (trans: from German). Scientific Publisher, Jodhpur, India

    Google Scholar 

  • Muller CH (1953) The association of desert annuals with shrubs. Am J Bot 40:53–60

    Article  Google Scholar 

  • Muscolo A, Sidari M (2006) Seasonal fluctuations in soil phenolics of a coniferous forest: effects on seed germination of different coniferous species. Plant Soil 284:305–318

    Article  CAS  Google Scholar 

  • Owens DK, Nanayakkara NPD, Dayan FE (2013) In planta mechanism of action of leptospermone: impact of its physico-chemical properties on uptake, translocation, and metabolism. J Chem Ecol 39:262–270

    Article  CAS  Google Scholar 

  • Patrick ZA (1971) Phytotoxic substances associated with decomposition in the soil of plant residues. Soil Sci 111:13–18

    Article  CAS  Google Scholar 

  • Pedrol N, González L, Reigosa MJ (2006) Allelopathy and abiotic stresses. In: Reigosa MJ, Pedrol N, González L (eds) Allelopathy: a physiological process with ecological implications. Springer, Dordrecht, pp 171–209

    Google Scholar 

  • Prince EK, Pohnert G (2010) Searing for signals in the noise: metabolomics in chemical ecology. Anal Bioanal Chem 396:193–197

    Article  CAS  Google Scholar 

  • Rice EL (1984) Allelopathy. Academic Press, London

    Google Scholar 

  • Rice EL (1995) Biological control of weeds and plant diseases: advances in applied allelopathy. University of Oklahoma Press, Norman

    Google Scholar 

  • Sardans J, Penuelas J, Rivas-Ubach A (2011) Ecological metabolic: overview of current developments and future challenges. Chemoecology 21:191–225

    Article  CAS  Google Scholar 

  • Schmidt SK, Ley RE (1999) Microbial competition and soil structure limit the expression of allelopathy. In: Inderjit, Dakshini KMM, Foy CL (eds) Principles and practices in plant ecology: allelochemical interactions. CRC Press, Boca Raton

    Google Scholar 

  • Shann JR, Blum U (1987) The uptake of ferulic and p-hydroxybenzoic acids by Cucumis sativus. Phytochemistry 26:2959–2964

    Article  CAS  Google Scholar 

  • Sinkkonen A (2001) Density-dependent chemical interference—an extension of the biological response model. J Chem Ecol 27:1513–1523

    Article  CAS  Google Scholar 

  • Sinkkonen A (2003) A model describing chemical interference caused by decomposing residues at different densities of growing plants. Plant Soil 250:315–322

    Article  CAS  Google Scholar 

  • Sinkkonen A (2007) Modeling the effects of autotoxicity on density-dependent phytotoxicity. J Theor Biol 244:218–227

    Article  CAS  Google Scholar 

  • Siqueira JO, Nair MG, Hammerschmidt R, Safir GR (1991) Significance of phenolic compounds in plant-microbial systems. Crit Rev Plant Sci 10:63–121

    Article  CAS  Google Scholar 

  • Soltys D, Rudzińska-Langwald A, Gniazdowska A, Wiśniewska A, Bogatek R (2012) Inhibition of tomato (Solanum lycopersicum L) root growth by cyanamide is due to altered cell division, phytohormone balance and expansion gene expression. Planta 236:1629–1638

    Article  CAS  Google Scholar 

  • Stowe LG (1979) Allelopathy and its influence on the distribution of plants in an Illinois old-field. J Ecol 67:1065–1985

    Article  CAS  Google Scholar 

  • Summer LW, Mendes P, Dixon RA (2003) Plant metabolomics: large-scale phytochemistry in their functional genomics era. Phytochemistry 62:817–836

    Article  Google Scholar 

  • Thijs H, Shann JR, Weidenhamer JD (1994) The effects of phytotoxins on competitive outcome in a model system. Ecology 75:1959–1964

    Article  Google Scholar 

  • Weidenhamer JD (1996) Distinguishing resource competition and chemical interference: overcoming the methodological impasse. Agron J 88:866–875

    Article  Google Scholar 

  • Weidenhamer JD, Hartnett DC, Romeo JT (1989) Density-dependent phytotoxicity: distinguishing resource competition and allelopathic interference in plants. J Appl Ecol 26:613–624

    Article  CAS  Google Scholar 

  • Weidenhamer JD, Macías FA, Fisher NH, Williamson GB (1993) Just how insoluble are monoterpenes? J Chem Ecol 19:1799–1807

    Article  CAS  Google Scholar 

  • Whitehead DC (1964) Identification of p-hydroxybenzoic, vanillic, p-coumaric and ferulic acids in soils. Nature 202:417–418

    Article  CAS  Google Scholar 

  • Whitehead DC, Dibb H, Hartley RD (1981) Extractant pH and the release of phenolic compounds from soils, plant roots and leaf litter. Soil Biol Biochem 13:343–348

    Article  CAS  Google Scholar 

  • Whitehead DC, Dibb H, Hartley RD (1982) Phenolic compounds in soil as influenced by the growth of different plant species. J App Ecol 19:579–588

    Article  CAS  Google Scholar 

  • Willis RJ (1985) The historical bases of the concept of allelopathy. J Hist Biol 18:71–102

    Article  Google Scholar 

  • Willis RJ (1994) Terminology and trends in allelopathy. Allelopathy J 1:6–28

    Google Scholar 

  • Willis RJ (2007) The history of allelopathy. Springer Science and Business Media, Dordrecht

    Google Scholar 

  • Xi Y, de Ropp JS, Viant MR, Woodruff DL, Yu P (2008) Improved identification of metabolite in complex mixtures using HSQC NMR spectroscopy. Anal Chim Acta 614:127–133

    Article  CAS  Google Scholar 

  • Xu M, Galhano R, Wiemann P, Bueno E, Tiernan M, Wu W, Chung I-M, Gershenzon J, Tudzynski B, Sesma A, Peters RJ (2012) Genetic evidence for natural product-mediated plant-plant allelopathy in rice (Oryza sativa). New Phytol 193:570–575

    Article  CAS  Google Scholar 

  • Zhao H, Peng S, Chen Z (2011) Abscisic acid in soil facilitates community succession in three forests in China. J Chem Ecol 37:785–793

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Udo Blum .

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Blum, U. (2014). Laboratory Model Systems and Field Systems: Some Final Thoughts. In: Plant-Plant Allelopathic Interactions II. Springer, Cham. https://doi.org/10.1007/978-3-319-04732-4_7

Download citation

Publish with us

Policies and ethics