Skip to main content

Background for Designing Laboratory Bioassays

  • Chapter
  • First Online:
Plant-Plant Allelopathic Interactions II

Abstract

This chapter provides a general introduction to this volume, discusses the nature of plant-plant allelopathic interactions, describes the nature and sources of allelopathic compounds in soils, discusses the concepts of holism and reductionism as they relate to laboratory bioassays, provides a listing of benefits, limits, and common pit falls (e.g., false assumptions and misconceptions) for laboratory bioassays, and answers or sets the stage for answering the following questions: (a) Why is it important to design laboratory bioassays that are more holistic or stated in a more pragmatic way more relevant to field environments? (b) What can be done to make laboratory bioassays more relevant to field environments? and (c) Is it always necessary to make laboratory bioassays relevant to field environments?

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Andreasson F, Bergkvist B, Bååth E (2009) Bioavailabiltiy of DOC in leachates, soil matrix solutions, and soil water extracts from beech forest floor. Soil Biol Biochem 41:1652–1658

    CAS  Google Scholar 

  • Bais HP, Weir TL, Perry LG, Gilroy S, Vivanco JM (2006) The role of root exudates in rhizosphere interactions with plants and other organisms. Ann Rev Plant Biol 57:233–266

    CAS  Google Scholar 

  • Barazani O, Friedman J (1999) Alleopathic bacteria. In: Inderjit, Daksini KMM, Foy CL (eds) Principles and practices in plant ecology: allelochemical interactions. CRC Press, Boca Raton, pp 149–163

    Google Scholar 

  • Barto EK, Hilker M, Müller F, Mohney BK, Weidenhamer JD, Rillig MC (2011) The fungal fast lane: common mycorrhizal networks extend bioactive zones of allelochemicals in soil. PLoS One 6(11):e27195. doi:10.1371/journal.pone0027195 (www.plosone.org)

    CAS  Google Scholar 

  • Bates TE (1971) Factors affecting critical nutrient concentrations in plants and their evaluation: a review. Soil Sci 112:116–130

    CAS  Google Scholar 

  • Belz RG (2008) Stimulation versus inhibition—bioactivity of parthenin, a phytochemical from Parthenium hysterophorus L. Int Dose-Response Soc 6:80–96

    CAS  Google Scholar 

  • Belz RG, Hurle K, Duke SO (2005) Dose-response—a challenge for allelopathy. Nonlin Biol Toxicol Med 3:173–211

    CAS  Google Scholar 

  • Belz RG, Velini ED, Duke SO (2007) Dose/response relationships in allelopathy research. In: Fujii Y, Hiradate S (eds) Allelopathy: new concepts and methodologies. Science Publishers, Enfield, pp 3–29

    Google Scholar 

  • Bennie ATP (1996) Growth and mechanical impedance. In: Waisel Y, Eshel A, Kafkafi U (eds) Plant roots: the hidden half. Marcel Dekker, Inc, New York, pp 453–470

    Google Scholar 

  • Bergmark CL, Jackson WA, Volk RJ, Blum U (1992) Differential inhibition by ferulic acid of nitrate and ammonium uptake in Zea mays L. Plant Physiol 98:639–645

    CAS  Google Scholar 

  • Bertin C, Yang X, Weston LA (2003) The role of root exudates and allelochemicals in the rhizosphere. Plant Soil 256:67–83

    CAS  Google Scholar 

  • Bertran HC, Weisbjerg MR, Jensen CS, Pedersen MG, Didion T, Petersen BO, Duus JØ, Larsen MK, Nielsen JH (2010) Seasonal changes in the metabolic fingerprint of 21 grass and legume cultivars studied by nuclear magnetic resonance-based metabolomics. J Agric Food Chem 58:4336–4341

    Google Scholar 

  • Blair N, Faulkner RD, Till AR, Sanchez P (2005) Decomposition of 13C and 15N labeled plant residue materials in two different soil types and its impact on soil carbon, nitrogen, aggregate stability, and aggregate formation. Aust J Soil Res 43:873–886

    CAS  Google Scholar 

  • Blum U (1995) The value of model plant-microbe-soil systems for understanding processes associated with allelopathic interactions: one example. In: Inderjit, Einhellig FA (eds) Allelopathy: organisms, processes, and application. ACS Symposium Series, vol 582. American Chemical Society, Washington DC, pp 127–131

    Google Scholar 

  • Blum U (1996) Allelopathic interactions involving phenolic acids. J Nematol 28:259–267

    CAS  Google Scholar 

  • Blum U (1999) Designing laboratory plant debris-soil bioassays: some reflections. In: Inderjit, Daskshini KMM, Foy CL (eds) Principles and practices in plant ecology: allelochemical interactions. CRC Press, Boca Raton, pp 17–23

    Google Scholar 

  • Blum U (2004) Fate of phenolic allelochemicals in soils-the role of the soil and rhizosphere microorganisms. In: Maciás FA, Galindo JCG, Molinillo JMG, Cutler HG (eds) Allelopathy: chemistry and mode of action of allelopathic chemicals. CRC Press, Boca Raton, pp 57–76

    Google Scholar 

  • Blum U (2006) Allelopathy: a soil system perspective. In: Reigosa MJ, Pedrol N, González L (eds) Allelopathy: a physiological process with ecological implications. Springer, Dordrecht, pp 299–340

    Google Scholar 

  • Blum U (2007) Can data derived from field and laboratory bioassays establish the existence of allelopathic interactions in nature? In: Fujii Y, Hiradate S (eds) Allelopathy: new concepts and methodologies. Science Publishers, Enfield, pp 31–38

    Google Scholar 

  • Blum U (2011) Plant-plant allelopathic interactions: phenolic acids, cover crops, and weed emergence. Springer Science and Business Media, Dordrecht

    Google Scholar 

  • Blum U, Dalton BR (1985) Effects of ferulic acid, an allelopathic compound, on leaf expansion of cucumber seedlings grown in nutrient culture. J Chem Ecol 11:279–301

    CAS  Google Scholar 

  • Blum U, Gerig TM (2005) Relationships between phenolic acid concentrations, transpiration, water utilization, leaf area expansion, and uptake of phenolic acids: nutrient culture studies. J Chem Ecol 31:1907–1932

    CAS  Google Scholar 

  • Blum U, Gerig TM (2006) Interrelationships between p-coumaric acid, evapotranspiration, soil water content, and leaf expansion. J Chem Ecol 32:1817–1834

    CAS  Google Scholar 

  • Blum U, Heck WW (1980) Effects of acute ozone exposures on snap bean at various stages of its life cycle. Environ Exp Bot 20:73–83

    CAS  Google Scholar 

  • Blum U, Rebbeck J (1989) Inhibition and recovery of cucumber roots given multiple treatments of ferulic acid in nutrient culture. J Chem Ecol 15:917–928

    CAS  Google Scholar 

  • Blum U, Rice EL (1969) Inhibition of symbiotic nitrogen-fixation by gallic and tannic acid, and possible roles in old-field succession. Bull Torrey Bot Club 96:531–544

    CAS  Google Scholar 

  • Blum U, Dalton BR, Shann JR (1985a) Effects of various mixtures of ferulic acid and some of its microbial metabolic products on cucumber leaf expansion and dry matter in nutrient culture. J Chem Ecol 11:619–641

    CAS  Google Scholar 

  • Blum U, Dalton BR, Shann JR (1985b) Effects of ferulic and p-coumaric acids in nutrient culture on cucumber leaf expansion as influenced by pH. J Chem Ecol 11:1567–1582

    CAS  Google Scholar 

  • Blum U, Gerig TM, Weed SB (1989) Effects of mixtures of phenolic acids on leaf expansion of cucumber seedlings grown in different pH Portsmouth A1 soil materials. J Chem Ecol 15:2413–2423

    CAS  Google Scholar 

  • Blum U, Gerig TM, Worsham AD, Holappa LD, King LD (1992) Allelopathic activity in wheat-conventional and wheat-no-till soils: development of soil extract bioassays. J Chem Ecol 18:2191–2221

    CAS  Google Scholar 

  • Blum U, Gerig TM, Worsham AD, King LD (1993) Modification of allelopathic effects of p-coumaric acid on morning-glory seedling biomass by glucose, methionine, and nitrate. J Chem Ecol 19:2791–2811

    CAS  Google Scholar 

  • Blum U, Shafer SR, Lehman ME (1999) Evidence for inhibitory allelopathic interactions involving phenolic acids in field soils: concepts vs an experimental model. Crit Rev Plant Sci 18:673–693

    CAS  Google Scholar 

  • Bonanomi G, Sicurezza MG, Caporaso S, Esposito A, Mazzolenti S (2006) Phytotoxicity dynamics of decaying plant materials. New Phytol 169:571–578

    CAS  Google Scholar 

  • Börner H (1960) Liberation of organic substances from higher plants and their role in the soil sickness problem. Bot Rev 26:393–424

    Google Scholar 

  • Bradow JM (1991) Relationships between chemical structure and inhibitory activity of C6 through C9 volatiles emitted by plant residues. J Chem Ecol 17:2193–2212

    CAS  Google Scholar 

  • Bradow JM, Connick WJ Jr (1988a) Volatile methyl ketone seed-germination inhibitors from Amaranthus palmeri S Wats. residues. J Chem Ecol 14:1617–1631

    CAS  Google Scholar 

  • Bradow JM, Connick WJ Jr (1988b) Seed-germination inhibition by volatile alcohols and other compounds associated with Amaranthus palmeri residues. J Chem Ecol 14:1633–1648

    CAS  Google Scholar 

  • Bradow JM, Connick WJ Jr (1990) Volatile seed germination inhibitors from plant residues. J Chem Ecol 16:645–666

    CAS  Google Scholar 

  • Brownlee C, Duddridge JA, Malibari A, Read DJ (1983) The structure and function of mycelial systems of ectomycorrhizal roots with special reference to their role in forming inter-plant connections and providing pathways for assimilates and water transport. Plant Soil 71:433–443

    Google Scholar 

  • Buttery RG, Xu C-J, Ling LC (1985) Volatile components of wheat leaves (and stems): possible insect attractants. J Agric Food Chem 33:115–117

    Google Scholar 

  • Carson EW (1974) The plant root and its environment. University Press of Virginia, Charlottesville

    Google Scholar 

  • Chaves N, Escudero JC (1999) Variation of flavonoids synthesis induced by ecological factors. In: Inderjit, Daskshini KMM, Foy CL (eds) Principles and practices in plant ecology: allelochemical interactions. CRC Press, Boca Raton, pp 267–285

    Google Scholar 

  • Chaves N, Escudero JC, Gutierrez-Merino C (1997) Role of ecological variables in the seasonal variation of flavonoid content of Cistus ladanifer exudates. J Chem Ecol 23:579–603

    CAS  Google Scholar 

  • Chen F, Liu C-J, Tschaplinski TJ, Zhao N (2009) Genomics of secondary metabolism in Populus: interactions with biotic and abiotic environments. Crit Rev Plant Sci 28:375–392

    CAS  Google Scholar 

  • Chen M, Xie LJ, Zhou JR, Song YY, Wang RL, Chen S, Su YJ, Zeng RS (2010) Collection, purification and structure elucidation of allelochemicals in Streptomyces sp. 6803. Allelopath J 25:93–106

    CAS  Google Scholar 

  • Cheng HH (1989) Assessment of the fate and transport of allelochemicals in the soil. In: Chou CH, Waller GR (eds) Phytochemical ecology: allelochemicals, mycotoxins, and insect pheromones and allomones. Institute of Botany. Academia, Sinica Monograph Series, vol 9, Taipei, pp 209–216

    Google Scholar 

  • Cutler HG, Cutler SJ, Matesic D (2004) Mode of action of phytotoxic fungal metabolites. In: Macías FA, Galindo JCG, Molinillo JMG, Cutler HG (eds) Allelopathy: chemistry and mode of action of allelochemicals. CRC Press, Boca Raton, pp 253–270

    Google Scholar 

  • D’Abrosca B, Scognamiglio M, Fiumano V, Esposito A, Choi YH, Verpoorte R, Fiorentino A (2013) Plant bioassays to assess the effects of allelochemicals on the metabolome of the target species Aegilops geniculata by an NMR-based approach. Phytochem 93:27–40

    Google Scholar 

  • Dalton BR (1999) The occurrence and behavior of plant phenolic acids in soil environments and their potential involvement in allelochemical interference interactions: methodological limitations in establishing conclusive proof of allelopathy. In: Inderjit, Daskshini KMM, Foy CL (eds) Principles and practices in plant ecology: allelochemical interactions. CRC Press, Boca Raton, pp 57–74

    Google Scholar 

  • Dayan FE, Howell JL, Weidenhamer JD (2009) Dynamic root exudation of sorgoleone and its in planta mechanism of action. J Exp Bot 60:2107–2117

    CAS  Google Scholar 

  • del Moral R, Muller CH (1969) Fog drip: a mechanism of toxin transport from Eucalyptus globulus. Bull Torrey Bot Club 96:467–475

    CAS  Google Scholar 

  • Demain AL, Fang A (2000) The natural functions of secondary metabolites. Adv Biochem Eng Biotechnol 69:1–39

    CAS  Google Scholar 

  • Drossopoulos B, Kouchaji GG, Bouranis DL (1996) Seasonal dynamics of mineral nutrients and carbohydrates by walnut tree leaves. J Plant Nut 19:493–516

    CAS  Google Scholar 

  • Duke SO (1986) Microbially produced phytotoxins as herbicides—a perspective. In: Putnam AR, Tang C-S (eds) The science of allelopathy. Wiley, New York, pp 287–304

    Google Scholar 

  • Duke SO, Dayan FE (2006) Modes of action of phytotoxins from plants. In: Reigosa MJ, Pedrol N, González L (eds) Allelopathy: a physiological process with ecological implications. Springer, Dordrecht, pp 511–536

    Google Scholar 

  • Duke SO, Williams RD, Markhart AH (1983) Interaction of moisture stress and three phenolic compounds on lettuce seed germination. Ann Bot 52:923–926

    CAS  Google Scholar 

  • Duke SO, Rimando A, Scheffler B, Dayan FE (2002) Strategies for research in applied aspects of allelopathy. In: Reigosa MJ, Pedrol N (eds) Allelopathy: from molecules to ecosystems. Science Publishers Inc, Enfield, pp 139–152

    Google Scholar 

  • Duke SO, Cedergreen N, Velini ED, Belz RG (2006) Hormesis: is it an important factor in herbicide use and allelopathy? Outlook Pest Manag 2006(Feb):29–33

    Google Scholar 

  • Duke SO, Baerson SR, Pan Z, Kagan IA, Sánchez-Moreiras A, Reigosa MJ, Pedrol N, Schultz M (2008) Genomic approaches to understanding allelochemical effects on plants. In: Zeng RS, Mallik AU, Luo SM (eds). Allelopathy in sustainable agriculture and forestry. Spring Science Business Media, New York, pp 157–167

    Google Scholar 

  • Duke SO, Bajsa J, Pan Z (2013) Omics methods for probing the mode of action of natural and synthetic phytotoxins. J Chem Ecol 39:333–347

    CAS  Google Scholar 

  • Dunn WB, Ellis DI (2005) Metabolomics: current analytical platforms and methodologies. Trends Anal Chem 24:285–294

    CAS  Google Scholar 

  • Einhellig FA (1987) Interactions among allelochemicals and other stress factors of the plant environment. In: Waller GR (ed) Allelochemicals: role in agriculture and forestry. ACS Symposium Series, vol 330. American Chemical Society, Washington DC, pp 343–357

    Google Scholar 

  • Einhellig FA (1989) Interactive effects of allelochemicals and environmental stress. In: Chou CH, Waller GR (eds) Phytochemical ecology: allelochemicals, mycotoxins, and insect pheromones and allomones. Institute of Botany. Academia, Sinica Monograph Series, vol 9, Taipei, pp 101–118

    Google Scholar 

  • Einhellig FA (1996) Interactions involving allelopathy in cropping systems. Agron J 88:886–893

    CAS  Google Scholar 

  • Einhellig FA (1999) An integrated view of allelochemicals and multiple stresses. In: Inderjit, Dakshini KMM (eds) Principle and practices in plant ecology: allelochemical interactions. CRC Press, Boca Raton, pp 479–494

    Google Scholar 

  • Einhellig FA, Eckrich PC (1984) Interaction of temperature and ferulic acid stress on grain sorghum and soybean. J Chem Ecol 10:161–170

    CAS  Google Scholar 

  • Ens EJ, Brenner JB, French K, Korth J (2009) Identification of volatile compounds released by roots of an invasive plant, bitou bush (Chrysanthemoides monilifera spp. rotundata), and their inhibition of native seedling growth. Biol Invasions 11:275–287

    Google Scholar 

  • Ens EJ, French K, Brenner JB, Korth J (2010) Novel technique shows different hydrophobic chemical signatures of exotic and indigenous plant soils with similar effects of extracts on indigenous species seedling growth. Plant Soil 326:403–414

    CAS  Google Scholar 

  • Field B, Jordán F, Osbourn A (2006) First encounters—deployment of defence-related natural products by plants. New Phytol 172:193–207

    CAS  Google Scholar 

  • Fisher NH, Williamson GB, Weidenhamer JD, Richardson DR (1994) In search of allelopathy in the Florida scrub: the role of terpenoids. J Chem Ecol 20:1355–1380

    Google Scholar 

  • Foy CL (1999) How to make bioassays for allelopathy more relevant to field conditions with particular reference to cropland weeds. In: Inderjit, Dakshini KMM, Foy CL (eds) Principles and practices in plant ecology: allelopathic interactions. CRC Press, Boca Raton, pp 25–33

    Google Scholar 

  • Francis R, Read DJ (1984) Direct transfer of carbon between plants connected by vesicular-arbuscular mycorrhizal mycelium. Nature 307:53–56

    CAS  Google Scholar 

  • Fujii Y, Hiradate S (2007) Allelopathy: new concepts and methodology. Science Publishers, Enfield

    Google Scholar 

  • Fujita K-I, Kubo I (2003) Synergism of polygodial and trans-cinnamic acid on inhibition of root elongation in lettuce seedling growth biomass. J Chem Ecol 29:2253–2262

    CAS  Google Scholar 

  • Gallardo-Williams MT, Geiger CL, Pidala JA, Martin DF (2002) Essential fatty acids and phenolic acids from extracts and leachates of southern cattail (Typha domingensis P.). Phytochem 59:305–308

    CAS  Google Scholar 

  • Gauthier M (1997) Hydrophilic and hydrophobic interactions. In: Lagowski JJ (ed) Macmillan Encyclopedia of Chemistry, vol 2. Simon and Shuster Macmillan, New York, pp 763–765

    Google Scholar 

  • Gawronska H, Golisz A (2006) Allelopathy and biotic stresses. In: Reigosa MJ, Pedrol N, González L (eds) Allelopathy: a physiological process with ecological implications. Springer, Dordrecht, pp 211–227

    Google Scholar 

  • Gerig TM, Blum U (1991) Effects of mixtures of four phenolic acids on leaf area expansion of cucumber seedlings grown in Portsmouth B1 soil materials. J Chem Ecol 17:29–40

    CAS  Google Scholar 

  • Gerig TM, Blum U (1993) Modification of an inhibition curve to account for effects of a second compound. J Chem Ecol 19:2783–2790

    CAS  Google Scholar 

  • Gerig TM, Blum U, Meier K (1989) Statistical analysis of the joint inhibitory action of similar compounds. J Chem Ecol 15:2403–2412

    CAS  Google Scholar 

  • Ghareib HRA, Abdelhamed MS, Ibrahim OH (2010) Antioxidative effects of the acetone fraction and vanillic acid from Chenopodium murale on tomato plants. Weed Biol Manag 10:64–72

    Google Scholar 

  • Gianinazzi S, Gollotte A, Binet M-N, van Tuinen D, Redecker D, Wipf D (2010) Agroecology: the key role of arbuscular mycorrhizas in ecosystem services. Mycorrhiza 20:519–530

    Google Scholar 

  • Gidman E, Goodacre R, Emmett B, Smith AR, Gwynn-Jones D (2003) Investigating plant-plant interference by metabolic fingerprinting. Phytochemistry 63:705–710

    CAS  Google Scholar 

  • Glass ADM (1976) The allelopathic potential of phenolic acids associated with the rhizosphere of Pteridium aquilinum. Can J Bot 54:2440–2444

    CAS  Google Scholar 

  • Gómez-Aparicio L (2009) The role of plant interactions in the restoration of degraded ecosystems: a meta-analysis across life-forms and ecosystems. J Ecol 97(6):1202–1214

    Google Scholar 

  • Grace JB, Tilman D (1990) Perspectives on plant competition. Academic Press, San Diego

    Google Scholar 

  • Graham BF Jr, Bormann FH (1966) Natural root grafts. Bot Rev 32:255–292

    Google Scholar 

  • Grossmann K (2005) What it takes to get a herbicide’s mode of action, physionomics, a classical approach in a new complexion. Pest Manag Sci 61:423–431

    CAS  Google Scholar 

  • Grossmann K, Christiansen N, Looser R, Tresch S, Hutzier J, Pollmann S, Ehrhardt T (2012) Physionomics and metabolomics—two key approaches in herbicidal mode of action discovery. Pest Manag Sci 68:494–504

    CAS  Google Scholar 

  • Grotewold E (2004) The challenge of moving chemicals within and out of cells: insights into the transport of plant natural products. Planta 219:906–909

    CAS  Google Scholar 

  • Hadas A, Kautsky L, Goek M, Kara EE (2004) Rates of decomposition of plant residues and available nitrogen in soil related to residue composition through simulation of carbon and nitrogen turnover. Soil Biol Biochem 36:255–266

    CAS  Google Scholar 

  • Hall AB, Blum U, Fites RC (1982) Stress modification of allelopathy of Helianthus annuus L. debris on seed germination. Am J Bot 69:776–783

    Google Scholar 

  • Hall AB, Blum U, Fites RC (1983) Stress modification of allelopathy of Helianthus annuus L. debris on seedling biomass production of Amaranthus retroflexus L. J Chem Ecol 9:1213–1222

    CAS  Google Scholar 

  • Harper JL (1975) Allelopathy (a review). Q Rev Biol 50:493–495

    Google Scholar 

  • Harper JL (1977) Population Biology of Plants. Academic Press, London

    Google Scholar 

  • Harley JL, Russell RS (1979) The soil-root interface. Academic Press, London

    Google Scholar 

  • Herridge DF, Pate JS (1977) Utilization of net photosynthate for nitrogen fixation and protein production in annual legumes. Plant Physiol 60:759–764

    CAS  Google Scholar 

  • Hierro JL, Callaway RM (2003) Allelopathy and exotic plant invasion. Plant Soil 256:29–39

    CAS  Google Scholar 

  • Hoagland RE, Williams RD (1985) The influence of secondary plant compounds on the associations of soil microorganisms and plant roots. In: Thompson AC (ed) The Chemistry of allelopathy: biochemical interactions among plants. ACS Symposium Series, vol 268. American Chemical Society, Washington DC, pp 301–325

    Google Scholar 

  • Holappa LD, Blum U (1991) Effects of exogenously applied ferulic acid, a potential allelopathic compound, on leaf growth, water utilization, and exogenous abscisic acid levels of tomato, cucumber, and bean. J Chem Ecol 17:865–886

    CAS  Google Scholar 

  • Huang PM, Wang MC, Wang MK (1999) Catalytic transformation of phenolic compounds in the soils. In: Inderjit, Daskshini KMM, Foy CL (eds) Principles and practices in plant ecology: allelochemical interactions. CRC Press, Boca Raton, pp 287–306

    Google Scholar 

  • Inderjit, Dakshini KMM (1995) On laboratory bioassays in allelopathy. Bot Rev 61:28–44

    Google Scholar 

  • Inderjit, Nilsen ET (2003) Bioassays and field studies for allelopathy in terrestrial plants: progress and problems. Crit Rev Plant Sci 22:221–238

    Google Scholar 

  • Inderjit, Weston LA (2000) Are laboratory bioassays for allelopathy suitable for prediction of field responses? J Chem Ecol 26:2111–2118

    Google Scholar 

  • Inderjit, Dakshini KMM, Enhellig FA (1995) Allelopathy: organisms, processes, and applications. American Chemical Society, Washington DC

    Google Scholar 

  • Inderjit, Muramatsu M, Nishimaru H (1997) On the allelopathic potential of certain terpenoids, phenolics, and their mixtures, and their recovery from soil. Can J Bot 75:888–891

    Google Scholar 

  • Inderjit, Cheng HH, Nishimura H (1999a) Plant phenolics and terpenoids: transformation, degradation, and potential for allelopathic interactions. In: Inderjit, Daskshini KMM, Foy CL (eds) Principles and practices in plant ecology: allelochemical interactions. CRC Press, Boca Raton, pp 255–266

    Google Scholar 

  • Inderjit, Dakshini KMM, Foy CL (1999b) Principles and practices in plant ecology: allelochemical interactions. CRC Press, Boca Raton

    Google Scholar 

  • Inderjit, Streibig JC, Olofsdotter M (2002) Joint action of phenolic acid mixtures and its significance in allelopathy research. Physiol Plant 114:422–428

    Google Scholar 

  • Johnson HE, Broadhurst D, Goodacre R, Smith AR (2003) Metabolic fingerprinting of salt-stressed tomatoes. Phytochem 62:919–928

    CAS  Google Scholar 

  • Jones DL, Hodge A, Kuzyakov Y (2004) Plant and mycorrhizal regulation of rhizodeposition. New Phytol 163:459–480

    CAS  Google Scholar 

  • Jones DL, Nguyen C, Finlay RD (2009) Carbon flow in the rhizosphere: carbon trading at the soil-root interface. Plan Soil 321:5–33

    CAS  Google Scholar 

  • Klein K, Blum U (1990) Inhibition of cucumber leaf expansion by ferulic acid in split-root experiments. J Chem Ecol 16:455–463

    CAS  Google Scholar 

  • Koeppe DE, Rohrbaugh LM, Rice EL, Wender SH (1969) The effects of varying U.V. intensities on the concentration of scopolin and caffeoylquinic acids in tobacco and sunflower. Phytochem 8:889–896

    CAS  Google Scholar 

  • Koeppe DE, Rohrbaugh LM, Rice EL, Wender SH (1970) Tissue age and caffeoylquinic acid concentration in sunflower. Phytochem 9:297–301

    CAS  Google Scholar 

  • Kozel PC, Tukey HB Jr (1968) Loss of gibberellins by leaching from stems and foliage of Chrysanthemum morifolium Princess Anne. Am J Bot 55:1184–1189

    CAS  Google Scholar 

  • Lavelle P, Spain AV (2001) Soil ecology. Kluwer Academic Pub, Dordrecht

    Google Scholar 

  • Leão PN, Vasconcelos LMTSD, Vasconcelos VM (2009) Allelopathy in freshwater cynanobacteria. Crit Rev Microbiol 35:271–282

    Google Scholar 

  • Lehman ME, Blum U (1997) Cover crop debris effects on weed emergence as modified by environmental factors. Allelopath J 4:69–88

    Google Scholar 

  • Lehman ME, Blum U (1999a) Influence of pretreatment stresses on inhibitory effects of ferulic acid, an allelopathic phenolic acid. J Chem Ecol 25:1517–1529

    CAS  Google Scholar 

  • Lehman ME, Blum U (1999b) Evaluation of ferulic acid uptake as a measurement of allelochemical dose: effective concentrations. J Chem Ecol 25:2585–2600

    CAS  Google Scholar 

  • Lehman ME, Blum U, Gerig TM (1994) Simultaneous effects of ferulic and p-coumaric acids on cucumber leaf expansion in split-root experiments. J Chem Ecol 20:1773–1782

    CAS  Google Scholar 

  • Li H-H, Inoue M, Nishimaru H, Mizutani J, Tsuzuki E (1993) Interactions of trans-cinnamic acid, its related phenolic allelochemicals, and abscisic acid in seedling growth and seed germination of lettuce. J Chem Ecol 19:1775–1787

    CAS  Google Scholar 

  • Loi RX, Solar MC, Weidenhamer JD (2008) Solid-phase microextraction method for in vivo measurements of allelopathic uptake. J Chem Ecol 34:70–75

    CAS  Google Scholar 

  • Lynch JM (1990) The rhizosphere. Wiley, Chichester

    Google Scholar 

  • Lyu S-W, Blum U (1990) Effects of ferulic acid, an allelopathic compound, on net P, K, and water uptake by cucumber seedlings in a split-root system. J Chem Ecol 16:2429–2439

    CAS  Google Scholar 

  • Lyu S-W, Blum U, Gerig TM, O’Brien TE (1990) Effects of mixtures of phenolic acids on phosphorus uptake by cucumber seedlings. J Chem Ecol 16:2559–2567

    CAS  Google Scholar 

  • Macías FA (1995) Allelopathy in the search for natural herbicide models. In: Inderjit, Dakshini KMM, Einhellig FA (eds) Allelopathy: organisms, processes, and applications. ACS Symposium Series, vol 582. American Chemical Society, Washington DC, pp 310–329

    Google Scholar 

  • Macías FA, Molinillo JMG, Varela RM, Torres A, Galindo JCG (1999) Bioactive compounds from genus Helianthus. In: Macías FA, Galindo JCG, Molinillo JMG, Cutler HG (eds). Recent advances in allelopathy I: a science for the future. Servicio de Publicaciones- Universidad de Cádiz, Puerto Real, pp 121–148

    Google Scholar 

  • Macías FA, Galindo JCG, Molinillo JMG, Cutler HG (2004a) Allelopathy: chemistry and mode of action of allelochemicals. CRC Press, Boca Raton

    Google Scholar 

  • Macías FA, Molinillo JMG, Chinchilla D, Galindo JCG (2004b) Heliannanes—a structure-activity relationship (SAR) study. In: Macías FA, Galindo JCG, Molinillo JMG, Cutler HG (eds) Allelopathy: chemistry and mode of action of allelochemicals. CRC Press, Boca Raton, pp 103–124

    Google Scholar 

  • Macías FA, Marin D, Oliveros-Bastidas A, Simonet AM, Molinillo JMG (2007a) Ecological relevance of the degradation processes of allelochemicals. In: Fujii Y, Hiradate S (eds) Allelopathy: new concepts and methodology. Science Publishers, Enfield, pp 91–107

    Google Scholar 

  • Macías FA, Molinillo JMG, Valera RM, Galindo JCG (2007b) Allelopathy—a natural alternative for weed control. Pest Manag Sci 63:327–348

    Google Scholar 

  • Marti G, Erb M, Boccard J, Glauser G, Doyen OR, Villard N, Robert CAM, Turlings TCJ, Rudaz SR, Wolfender J-L (2013) Metabolomics reveals herbicide-induced metabolites of resistance and susceptibility in maize leaves and roots. Plant Cell Environ 36:621–639

    CAS  Google Scholar 

  • McNaught AD, Wilkinson A (1997) Compendium of chemical terminology, 2nd ed. Blackwell Science, Oxford

    Google Scholar 

  • Merriam-Webster’s Collegiate Dictionary (2013) www.merriam-webster.com/dictionary

  • Metz TO (2011) Metabolic profiling: methods and protocols. In: Walker JM (ed) Methods in molecular biology. Humana Press, New York

    Google Scholar 

  • Molisch H (2001) The influence of one plant on another: allelopathy. In: Narwal SS (ed) LaFleur LJ and Mallik MAB (translators; from German), Scientific Publishers (India), Jodhpur

    Google Scholar 

  • Mondava NB (1985) Chemistry and biology of allelopathic agents. In: Thompson AC (ed) The chemistry of allelopathy: biochemical interactions among plants. ACS Symposium Series, vol 268. American Chemical Society, Washington DC, pp 33–54

    Google Scholar 

  • Morse PM (1978) Some comments on the assessment of joint action in herbicide mixtures. Weed Sci 26:58–71

    CAS  Google Scholar 

  • Muller CH (1965) Inhibitory terpenes volatilized from Salvia shrubs. Bull Torrey Bot Club 92:38–45

    CAS  Google Scholar 

  • Murthy MS, Shihora SV (1977) Effects of aqueous extracts and leachates of Aristada adscensionis and Indigofera cordifolia. J Exp Bot 28:1229–1230

    Google Scholar 

  • Ohno T, Horesh MY, Merrit KA, Wagai R (2002) Calcium and pH effects on salicylic acid phytotoxicity. Allelopath J 9:19–25

    Google Scholar 

  • Owens DK, Nanayakkara NPD, Dayan FE (2013) In planta mechanism of action of leptospermone: impact of its physico-chemical properties on uptake, translocation, and metabolism. J Chem Ecol 39:262–270

    CAS  Google Scholar 

  • Pandey DK (1994) Inhibition of Salvinia (Salvinia molesta Mitchell) by parthenium (Parthenium hysterophorus L.). II: relative effect of flower, leaf, stem, and root residue on salvinia and paddy. J Chem Ecol 20:3123–3131

    CAS  Google Scholar 

  • Patrick ZA (1971) Phytotoxic substances associated with the decomposition in soil of plant residues. Soil Sci 111:13–18

    CAS  Google Scholar 

  • Pedrol N, González L, Reigosa MJ (2006) Allelopathy and abiotic stresses. In: Reigosa MJ, Pedrol N, González L (eds) Allelopathy: a physiological process with ecological implications. Springer, Dordrecht, pp 171–209

    Google Scholar 

  • Pinton R, Varanini Z, Nannipieri P (2007) The rhizosphere: biochemistry and organic substances at the soil-plant interface, 2nd edn. CRC Press, Boca Raton

    Google Scholar 

  • Pue KJ, Blum U, Gerig TM, Shafer SR (1995) Mechanism by which noninhibitory concentrations of glucose increase inhibitory activity of p-coumaric acid on morning-glory seedling biomass accumulation. J Chem Ecol 21:833–847

    CAS  Google Scholar 

  • Putnam AR (1994) Phytotoxicity of plant residues. In: Unger PW (ed) Managing agricultural residues. Lewis Publishers, Boca Raton, pp 285–314

    Google Scholar 

  • Putnam AR, Tang C-S (1986) The science of allelopathy. Wiley, New York

    Google Scholar 

  • Pyke DA, Archer S (1991) Plant-plant interactions affecting establishment and persistence on revegetated rangeland. J Range Manag 44:550–557

    Google Scholar 

  • Radwan O, Li M, Calla B, Li S, Hartman GL, Clough SJ (2013) Effects of Fusarium virguliforme phytotoxin on soybean gene expression suggests a role in multidimensional defense. Mol Plant Path 14:293–307

    CAS  Google Scholar 

  • Raper CD Jr, Downs RJ (1976) Field phenotypes in phytotron culture—a case study for tobacco. Bot Rev 42:317–343

    Google Scholar 

  • Reigosa MJ, Pedrol N, González L (2006) Allelopathy: a physiological process with ecological implications. Springer, Dordrecht

    Google Scholar 

  • Rice EL (1984) Allelopathy. Academic Press, London

    Google Scholar 

  • Rice EL (1986) Allelopathic growth stimulation. In: Putnam AR, Tang C-S (eds) The science of allelopathy. Wiley, New York, pp 23–42

    Google Scholar 

  • Rice EL (1995) Biological control of weeds and plant diseases: advances in applied allelopathy. University of Oklahoma Press, Norman

    Google Scholar 

  • Romeo JT (2000) Raising the beam: moving beyond phytotoxicity. J Chem Ecol 26:2011–2014

    CAS  Google Scholar 

  • Romeo JT, Weidenhamer JD (1998) Bioassays for allelopathy in terrestrial plants. In: Haynes KF, Millar JG (eds) Methods in chemical ecology, vol 2. Bioassay methods. Kluwer Academic Publishing, Norvell, pp 179–211

    Google Scholar 

  • Rovira AD (1969) Plant root exudates. Bot Rev 35:35–57

    CAS  Google Scholar 

  • Sardans J, Penuelas J, Rivas-Ubach A (2011) Ecological metabolic: overview of current developments and future challenges. Chemecol 21:191–225

    CAS  Google Scholar 

  • Schmidt SK, Ley RE (1999) Microbial competition and soil structure limit the expression of allelopathy. In: Inderjit, Dakshini KMM, Foy CL (eds) Principles and practices in plant ecology: allelochemical interactions. CRC Press, Boca Raton, pp 339–351

    Google Scholar 

  • Seigler DS (2006) Basic pathways for the origin of allelopathic compounds. In: Reigosa MJ, Pedrol N, González L (eds) Allelopathy: a physiological process with ecological implications. Springer, Dordrecht, pp 11–62

    Google Scholar 

  • Smith SE, Read DJ (2008) Mycorrhizal symbiosis, 3rd edn. Elsevier LTD, Amsterdam

    Google Scholar 

  • Steel RGD, Torrie JH (1997) Principles and procedures of statistics: a biometrical approach, 3rd edn. McGraw-Hill, New York

    Google Scholar 

  • Strobel G, Sugawara F, Clardy J (1987) Phytotoxins from plant pathogens of weedy plants. In: Waller GR (ed) Allelochemicals: role of agriculture and forestry. ACS Synposium Series, vol 330. American Chemical Society, Washington DC, pp 517–523

    Google Scholar 

  • Summer LW, Mendes P, Dixon RA (2003) Plant metabolomics: large-scale phytochemistry in their functional genomics era. Phytochem 62:817–836

    Google Scholar 

  • Tang C-S, Young C-C (1982) Collection and identification of allelopathic compounds from the undisturbed root system of bigalta limpograss (Hemarthria altissima). Plant Physiol 69:155–160

    CAS  Google Scholar 

  • Taylor HM (1974) Root behavior as affected by soil structure and strength. In: Carson EW (ed) The plant root and its environment. University Press of Virginia, Charlottesville, pp 271–291

    Google Scholar 

  • Tharayil N, Bhowmik PC, Xing B (2008) Bioavailability of allelochemicals as affected by companion compounds in soil matrices. J Agric Food Chem 56:3706–3713

    CAS  Google Scholar 

  • Thorpe AS, Aschehough ET, Atwater DZ, Callaway RM (2011) Interactions among plants and evolution. J Ecol 99:729–740

    Google Scholar 

  • Toljander JF, Lindahl BD, Paul LR, Elfstrand M, Finlay RD (2007) Influence of arbuscular mycorrhizal mycelial exudates on soil bacterial growth and community structure. FEMS Microbiol Ecol 61:295–304

    CAS  Google Scholar 

  • Tukey HB Jr (1966) Leaching of metabolites from above-ground plant parts and its implications. Bull Torrey Bot Club 93:385–401

    CAS  Google Scholar 

  • Tukey HB Jr (1969) Implications of allelopathy in agricultural plant science. Bot Rev 35:1–16

    CAS  Google Scholar 

  • Waisel Y, Eshel A, Kafkafi U (1996) Plant roots: the hidden half. Marcel Dekker, Inc, New York

    Google Scholar 

  • Walker TS, Bais HP, Grotewold E, Vivanco JM (2003) Root exudates and rhizosphere biology. Plant Physiol 132:44–51

    CAS  Google Scholar 

  • Wallenstein MD, Weintraub MN (2008) Emerging tools for measuring and modeling the in situ activity of soil extracellular enzymes. Soil Biol Biochem 40:2098–2106

    CAS  Google Scholar 

  • Waters ER, Blum U (1987) The effects of single and multiple exposures of ferulic acid on the vegetative and reproductive growth of Phaseolus vulgaris BBL-290. Am J Bot 74:1635–1645

    CAS  Google Scholar 

  • Weidenhamer JD (2008) Allelopathic mechanisms and experimental methodology. In: Zeng RS, Mallik AU, Luo SM (eds) Allelopathy in sustainable agriculture and forestry. Springer Business and Science Media, New York, pp 119–135

    Google Scholar 

  • Weidenhamer JD, Menelaou M, Macías FA, Fisher NH, Richardson DR, Williamson GB (1994) Allelopathic potential of menthofuran monoterpenes from Calamintha ashei. J Chem Ecol 20:3345–3359

    CAS  Google Scholar 

  • Weston LA, Ryan PR, Watt M (2012) Mechanisms for cellular transport and release of allelochemicals from plant roots into the rhizosphere. J Exp Bot 63:3445–3454

    CAS  Google Scholar 

  • Whitehead DC, Buchan H, Hartley RD (1979) Composition and decomposition of roots of ryegrass and red clover. Soil Biol Biochem 11:619–628

    CAS  Google Scholar 

  • Williamson GB, Weidenhamer JD (1990) Bacterial degradation of juglone: evidence against allelopathy? J Chem Ecol 16:1739–1752

    CAS  Google Scholar 

  • Willis RJ (1985) The historical bases of the concept of allelopathy. J Hist Biol 18:71–102

    Google Scholar 

  • Willis RJ (1994) Terminology and trends in allelopathy. Allelopath J 1:6–28

    Google Scholar 

  • Willis RJ (2007) The history of allelopathy. Springer Science and Business Media, Dordrecht

    Google Scholar 

  • Wilson RE, Rice EL (1968) Allelopathy as expressed by Helinathus annuus and its role in old-field succession. Bull Torrey Bot Club 95:432–448

    CAS  Google Scholar 

  • Wu H, Pratley JE, Lemerle D, Haig T, An M (2001) Screening methods for evaluation of crop allelopathic potential. Bot Rev 67:403–415

    Google Scholar 

  • Xu JM, Tang C, Chen ZL (2005) Chemical composition controls residue decomposition in soils differing in initial pH. Soil Biol Biochem 38:544–552

    Google Scholar 

  • Xuan TD, Tawata S, Khanh TD, Chung IM (2005) Decomposition of allelopathic plants in soil. J Agron Crop Sci 191:162–171

    Google Scholar 

  • Young GP, Bush JK (2009) Assessment of the allelopathic potential of Juniperus ashei on germination and growth of Bouteloua curtipendula. J Chem Ecol 35:74–80

    CAS  Google Scholar 

  • Zanardo DIL, Lima RB, Ferrarese MdeLL, Bubna GA, Ferrarese-Filho O (2009) Soybean root growth inhibition and lignification induced by p-coumaric acid. Environ Exp Bot 66:25–30

    CAS  Google Scholar 

  • Zhao D, Oosterhuis DM (1999) Dynamics of mineral nutrient element concentrations in developing cotton leaves, bracts, and floral buds in relation to position in the canopy. J Plant Nut 22:1107–1122

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Udo Blum .

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Blum, U. (2014). Background for Designing Laboratory Bioassays. In: Plant-Plant Allelopathic Interactions II. Springer, Cham. https://doi.org/10.1007/978-3-319-04732-4_1

Download citation

Publish with us

Policies and ethics