Skip to main content

Drinking Water: Factors Affecting the Quality of Drinking Water

  • Chapter
  • First Online:
Drinking Water
  • 2381 Accesses

Abstract

The relative critical overview of indicators, which set norms to the drinking water and are used as background for regulatory instruments of the USA, the EU, the WHO, Ukraine and Russia, has been revealed. The analytical review of current problems in drinking water preparation technology at centralized drinking water treatment plants has been delivered. The role of natural organic compounds of natural origin in drinking water quality has been revealed. The application of different technological measures to prepare high quality drinking water has been analysed and explained. The influence of condition of water distribution system on the drinking water quality has been evaluated. It has been cited the examples of modern technological systems of drinking water treatment. A new concept of supply the population with a quality drinking water has been introduced. It is based on representation the need to consume adequate water by a person, which is genetically safe, comprises no man induced alloys, and is characterized by occurrence of such natural substances and microelements that are easiest to digest for a body from water.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. The Water Code of Ukraine (1995) N 213/95-VR. Off J Verkh Rad of Ukraine 24:190

    Google Scholar 

  2. The Law of Ukraine N 2918-III (2002) Drinking water and drinking water supply. Off J Verkh Rad of Ukraine 16:112

    Google Scholar 

  3. Principles of Ukraine’s and the European community’s nature conservation legislation: water resources (1997) Кiev, Ministry of Ecological Safety of Ukraine

    Google Scholar 

  4. Ukraine’s Ministry of Ecological Safety and the U.S. Center of Policy on Protection of the Atmosphere (1996) Various approaches to ecological management: short course on the practice of assessing risk, establishment of ecological standards and development of programs for reducing pollution of air and water. Кiev, Ministry of Ecological Safety of Ukraine

    Google Scholar 

  5. Romanenko VD, Zhukinskii VN, Оkiyuk OP (1999) Methodological background for establishment and application of the ecological normative of the quality of surface water. Hydrobiol J 35(3):3–14

    Google Scholar 

  6. Amended proposal for a council directive establishing a framework for community action in the field of water policy (1998) Addendum to Document 9265/98 END 258 PRO-COOP 91. EU, Brussels

    Google Scholar 

  7. Commission proposal for a Council Directive Establishing a Framework for a Community Water Policy (1996) Consultation draft.

    Google Scholar 

  8. Directive 2000/60/EC of the European Parliament and of the Council (2000) Establishing a framework for community action in the field of water policy, EU, Brussels

    Google Scholar 

  9. USA Environmental Protection Agency (1995) Final water quality guidance for the Great Lakes system (40 CFR Parts 9, 122, 123, 131 and 132 (FRL-5173-7) RIN 2040-ACO8). Jackson Blvd, Chicago

    Google Scholar 

  10. Georgia Department of Natural Resources Environmental Protection Division (1997) Rules and regulations for water quality control Ch. 391-3-6. Atlanta, Georgia

    Google Scholar 

  11. A series of publication on water problems No1 (1993) Protection of water resources and ecosystems (ECE/ENVNA/31) prepared by the European Economic Commission in Geneva under the UN aegi, New York

    Google Scholar 

  12. Resolution of Ukraine’s Cabinet of Ministers (1997) On measure for stage-by-stage introduction in Ukraine of the European Union’s guidelines, sanitary Ecological, veterinary, phytosanitary standards, international and European standards No 244, 19 March 1997

    Google Scholar 

  13. Zhukinskii VN, Оkiyuk OP, Оleinik GN (1981) Principles and experience of constructing the environmental classification of surface water quality. Hydrobiol J 17(2):38–49

    CAS  Google Scholar 

  14. Zhukinskii VN, Оkiyuk OP (1983) Methodological foundations of ecological quality classification of surface water. Hydrobiol J 19(4):59–67

    Google Scholar 

  15. Romanenko VD, Zhukinskii VN, Оkiyuk OP (1998) Metodyka ekolohichnoï otsinky yakosti poverkhnevykh vod za vidpovidnymy katehoriyamy (Мethods of ecological assessment of the quality of surface water according to relevant categories). Sumbol-Т, Kiev

    Google Scholar 

  16. Romanenko VD, Zhukinskii VN, Оkiyuk OP et al (2001) Mеthods of establishing and use of ecological standards for the quality of land surface water and estuaries of Ukraine. VIPOL, Кiev

    Google Scholar 

  17. Romanenko VD, Оkiyuk OP, Zhukinskii VN et al (1990) Ekologicheskaya otsenka vozdeystviya gidrotekhnicheskogo stroitel’stva na vodnyye obyekty (Ecological assesment of hydrotechnical construction impact on bodies). Nauk Dumka, Кiev

    Google Scholar 

  18. SaNPiN USSR 4630-88 (1988) Sanitary rules and standards for protection of surface water from pollution. Annex 1: hygienic requirements for water composition and properties of water bodies at points of economic-drinking and recreational and household use. Annex 2: sanitary standards of maximum permissible content of harmful substances in water of water bodies of economic-drinking and recreational and household use (MPC and ODU). Annex 3: hygienic classification of water bodies in term of pollution degree. Ministry of Public Health USSR, Moscow

    Google Scholar 

  19. State Standard 2874-82 (1982) Voda pit’yevaya. Gigiyenicheskiye trebovaniya i kontrol’ za kachestvom (Drinking Water. Hygienic requirements and quality control). State Standard of USSR, Мoscow

    Google Scholar 

  20. State Sanitary Rules and Standards-383 (1996) Voda pytna. Hihiyenichni vymohy do yakosti vody tsentralizovanoho hospodars’ko-pytnoho vodopostachannya (Drinking water. Hygienic requirements for water quality of centralized household and drinking water supply). Ministry of Health, Ukraine

    Google Scholar 

  21. SaNPiN 2.1.4.559-96 (1996) Sanitarnyye pravila i normy. Pit’yevaya voda i vodosnabzheniye naselennykh mest. Pit’yevaya voda. Gigiyenicheskiye trebovaniya k kachestvu vody tsentralizovannykh sistem pit’yevogo vodosnabzheniya. Kontrol’ kachestva (Sanitary Rules and Standards. Drinking water and water supply of residential areas. Drinking water. Hygienic requirements for water quality of centralized system of drinking water supply). State Comm for Sani and Epidem Surveill of the Russ Federation, Мoscow

    Google Scholar 

  22. Russian Federation Committee on Fishery (1995) Perechen’ predel’no-dopustimykh kontsentratsiy i oriyentirovochno bezopasnykh urovney vozdeystviya vrednykh veshchestv dlya vody rybokhozyaystvennykh vodoyemov (List of maximum permissible concentrations and roughly safe level of exposure to harmful substances in water of fishery ponds). Мedinor, Мoscow

    Google Scholar 

  23. National primary drinking water regulations (2012) http://water.epa.gov/drink/contaminants/index.cfm. Accessed 5 June 2012

  24. Directive of the EU 98/83/EU (2001) Drinking water. Regulatory documents. Reference book. Leonorm, L’viv

    Google Scholar 

  25. Fomin GS (2000) Voda. Kontrol’ khimicheskoy, bakteriologicheskoy i radiatsionnoy bezopasnosti po mezhdunarodnym standartam: Entsiklopedicheskiy spravochnik (Water. Control of chemical, bacterial and radiation safety by international standards: encecl refer book). Protector, Мoscow

    Google Scholar 

  26. Council Directive 75/440/EC (1988) Concerning the quality of surface water intended for the abstraction of drinking water in the member states. European community environmental legislation (1967–1987), vol 4. Water. Document N XI-987/87 Commission of European Communities Directorate-General for Environment, Consumer Protection and Nuclear Safety, Brussels

    Google Scholar 

  27. State Standard GOST 2761-84 (1984) Istochniki tsentralizovannogo khozyaystvenno-pit’yevogo vodosnabzheniya. Gigiyenicheskiye, tekhnicheskiye trebovaniya i pravila vybora (Sources of centralized household drinking water supply. Hygienic specification and rules of choice). State Standard USSR, Moscow

    Google Scholar 

  28. Unified methods of water quality research (1983) Unifitsirovannyye metody issledovaniya kachestva vod. Metody biologicheskogo analiza vod (Methods of biological analysis of water). SEV Publ, Мoscow

    Google Scholar 

  29. Оleksiv IТ (1992) Pokazateli kachestva prirodnykh vod s ekologicheskikh pozitsiy (Quality indices of natural water in terms of ecology). Svit, L’viv

    Google Scholar 

  30. DSTU 4808:2007 (2007) Dzherela tsentralizovanoho pytnoho vodopostachannya. Hihiyenichni ta ekolohichni vymohy shchodo yakosti vody i pravyla vybyrannya (Sources of centralized drinking water supply. Hygienic and ecological requirements to water quality and rules of selection). State Comm of Ukraine for Techn Regul and Consum Policy, Кiev

    Google Scholar 

  31. Ute S, Rainer B, Pudenz S (2004) Aspects of decision support in water management example Berlin and Potsdam (Germany) I-spatially differentiated evaluation. Water Res 38(2):1809–1816

    Google Scholar 

  32. Goncharuk VV, Klimenko NA, Savchina LA et al (2000) Minimizing the genetic risk through development of modern drinking water technologies. J Water Chem Technol 22(5):487–503

    CAS  Google Scholar 

  33. Goncharuk VV, Zhukinskii VN, Chernyavskaya AP et al (2003) Development of ecological and hygienic classification of Ukraine’s surface water quality—sources of centralized water supply. J Water Chem Technol 25(2):3–36

    Google Scholar 

  34. Goncharuk VV, Klimenko NA, Savchina LA et al (2008) Current issue in the technology of drinking water conditioning. J Water Chem Technol Spec Issue, Part I:2–98

    Google Scholar 

  35. Garnier G, Mouner S, Benaim JY (2004) Influence of dissolved organic carbon content on modeling natural organic matter acid-base properties. Water Res 38(3):3685–3692

    CAS  Google Scholar 

  36. Buffle J (1988) Analytical chemistry. Harwood, Chichester

    Google Scholar 

  37. Byrne RH (1996) Specific problems in the measurement and interpretation of complexation phenomena in seawater. Pure Appl Chem 68(8):1639–1656

    CAS  Google Scholar 

  38. Swietlik J, Dabrowska A, Raczyk-Stanislawik U et al (2004) Reactivity of natural organic matter fractions with chlorine dioxide and ozone. Water Res 38(1):547–558

    CAS  Google Scholar 

  39. Maurice PA, Pullin MJ, Cabanies SE еt al (2002) Comparison of surface water natural organic matter in raw water samples, XAD, and reverse osmosis isolates. Water Res 36(9):2355–2371

    Google Scholar 

  40. Leenheer JA (1981) Comprehensive approach to preparative isolation and fractionation of dissolved organic carbon from natural water and wastewater. Environ Sci Technol 15(5):578–587

    CAS  Google Scholar 

  41. Peurovuori J, Pihlaja K (1998) Multimethod characterization of lake aquatic humic matter isolated with two different sorbing solids. Anal Chem Acta 363(2):235–247

    Google Scholar 

  42. Peurovuori J, Ingman P, Pihlaja K et al (2001) Comparison of sorption of aquatic humic matter by DAX-8 and XAD-8 resins from solid-state 13C NMR spectroscopy’s point of view. Talanta 55:733–742

    Google Scholar 

  43. Perminova IV, Frimmel FH, Kudryavtsev AV еt al (2003) Molecular weight characteristics of humic substances from different environments as determined by size exclusion chromatography and their statistical evaluation. Environ Sci Technol 37(1):2477–2485

    CAS  Google Scholar 

  44. Aiken GR, McKnight DM, Thorn KA et al (1992) Isolation of hydrophilic organic acids from water using non-ionic macroporous resins. Org Geochem 18(4):567–573

    CAS  Google Scholar 

  45. Korshin GV, Li C-W, Benjamin MM (1997) Monitoring the properties of natural organic matter through UV spectroscopy: a consistent theory. Water Res 31(7):1787–1795

    CAS  Google Scholar 

  46. Erk M, Raspor B (2001) Anodic stripping voltammetry in the complexation study of the peptide lys-Cys-Thr-Cys-Cys-Ala MT I and cadmium: application in determination of complexing capacity and stability constant. J Electroanal Chem 502:174–179

    CAS  Google Scholar 

  47. Gonzalez-Davila M, Santana-Casiano IM, Laglera LM (2000) Cooper adsorption in diatom cultures. Marine Chem 70(1/3):161–170

    CAS  Google Scholar 

  48. Ramos MA, Fiol S, Loper R еt al (2002) Analysis of the effect of pH on Cu2+ fulvic acid complexation using a simple electrostatic model. Environ Sci Technol 36:3109–3113

    CAS  Google Scholar 

  49. Linnik PN (2003) Causes of water quality deterioration in the Kiev and Kaniv reservoirs. J Water Chem Technol 25(4):56–69

    Google Scholar 

  50. Linnik PN, Nabivanets YuB, Vasilchuk ТА et al (1995) Role of organic substances in iron migration in the Kiev reservoirs. Hydrobiol J 31(3):106–112

    CAS  Google Scholar 

  51. Chernysheva NN, Svintsova FD, Gindullina ТМ (1995) Humic substances of natural water—possible source of toxic substances under water treatment. J Water Chem Technol 17(6):601–608

    Google Scholar 

  52. Rook II (1974) Formation of haloforms during chlorination of natural water. J Water Treat Exam 23(2):234–243

    Google Scholar 

  53. Bieber TI, Trehy ML (1985) Dihaloacetonitriles in chlorinated natural water. In: Jolley RL (ed) Water chlorination: environmental impact and health effects, vol 4. Ann Arbor Science, Ann Arbor, p 85

    Google Scholar 

  54. Servais P (1992) Studies of BDOC and bacterial dynamics in the drinking water distribution system of the Northern Parisian Suburbs. Rev Sci Eau 5:68–69

    Google Scholar 

  55. Escobar IC, Randall AA (2001) Assimilable organic carbon and biodegradable dissolved organic carbon: complementary measurements. Water Res 35(18):4444–4454

    CAS  Google Scholar 

  56. Myllykangas T, Nissinen TK, Rantakokko P еt al (2002) Molecular size fractions of treated aquatic humus. Water Res 36:3045–3053

    CAS  Google Scholar 

  57. Garnier C, Piħeta I, Mounier S еt al (2004) Influence of the type of titration and of data treatment methods on metal complexing parameters determination of single and multiligand systems measured by stripping voltammetry. Anal Chim Acta 505:263–275

    CAS  Google Scholar 

  58. Peurovuori J, Pihlaja K, Valimaki N (1997) Isolation and characterization of natural organic matter from lake water: two different adsorption chromatographic methods. Environ Int 23(4):453–464

    Google Scholar 

  59. Marhaba TF, Van D, Lippincott RL (2000) Changes in NOM fractions through treatment: a comparison of ozonation and chlorination. Ozone Sci Eng 22:249–266

    CAS  Google Scholar 

  60. Barber LB, Leenheer JA, Noyes TI et al (2001) Nature and transformation of dissolved organic matter in treatment wetlands. Environ Sci Technol 35:4805–4816

    CAS  Google Scholar 

  61. Swietlik J, Sikorska E (2004) Application of fluorescence spectroscopy in the studies of natural organic matter fractions reactivity with chlorine dioxide and ozone. Water Res 38:3791–3799

    CAS  Google Scholar 

  62. Egeberg PK, Christy AA, Morten E (2002) The molecular size of natural organic matter (NOM) determined by diffusionmetry and seven other methods. Water Res 36(4):925–932

    CAS  Google Scholar 

  63. Joret I, Levi Y, Dupin T et al (1998) Rapid method for estimating bioeliminable organic carbon in water. Paper presented at the AWWA Annual Conference, Orlando, Florida, 21–25 June 1998

    Google Scholar 

  64. Cipparone LA, Diehl AC, Speitel GE (1997) Ozonation and BDOC removal: effect on water quality. J Am Water Works Assoc 89(2):84–97

    CAS  Google Scholar 

  65. Raczyk-Stanislawiak U, Swietlik J, Dabrowska A et al (2004) Biodegradability of organic by-products after natural organic matter oxidation with ClO2-case study. Water Res 38:1044–1054

    CAS  Google Scholar 

  66. Escobar IC, Randall AA (2001) Ozonation and distribution system biostability. J Am Water Works Assoc 93(10):77–89

    CAS  Google Scholar 

  67. Andrews SA, Huck PM (1996) Disinfection by-products in water treatment. The chemistry of their formation and control. Lewis Publ, New York

    Google Scholar 

  68. Volk CI, Le Chevallier M (2000) Assessing biodegradable organic matter. J Am Water Works Assoc 92(5):64–76

    CAS  Google Scholar 

  69. Weiss WJ, Bouwer EJ, Ball WP et al (2004) Riverbank filtration effect of ground passage on NOM character. J Water Suppl Res Technol 53(2):61–83

    Google Scholar 

  70. Richardson SD, Simmons IE, Rice G (2002) Disinfection by-products: the next generation. Environ Sci Technol 36:199A–205A

    Google Scholar 

  71. Weinberg H (1997) Disinfection by-products in drinking water: the analytical challenge. Anal Chem 71(10):801A–808A

    Google Scholar 

  72. Nawrocki J, Swictlik J, Raczyk-Stanislawiak U еt al (2003) Influence of the ozonation’s conditions on the aldehyde and carboxylic acid formation. Ozone Sci and Eng 25(1):53–62

    CAS  Google Scholar 

  73. Elrashidi MA, O’Connor GA (1982) Boron sorption and desorption in soils. Soil Sci Soc Am J 46:27–31

    CAS  Google Scholar 

  74. Gupta UC (1968) Relationship of total and hot water soluble boron, and fixation of added boron, to properties of podzol soils. Soil Sci Soc Am J 32:45–48

    CAS  Google Scholar 

  75. Chauveheid E, Denic M (2000) The boron-organic carbon correlation in water. Water Res 38:1663–1668

    Google Scholar 

  76. Brinkmann Th, Hörsch Ph, Sarforius D et al (2003) Photoformation of low-molecular weight organic acids from brown water dissolved organic matter. Environ Sci Technol 37(18):4190–4198

    CAS  Google Scholar 

  77. Southworth B, Voelker BM (2003) Hydroxyl radical production via the photo-Fenton reaction in the presence of fulvic acid. Environ Sci Technol 37(6):1130–1136

    CAS  Google Scholar 

  78. Tseeba YaYa, Maystrenko YuG (1972) Kiyevskoye vodokhranilishche: Gidrokhimiya, biologiya, produktivnost’ (Кiev reservoir: hydrochemistry, biology, productivity). Nauk Dumka, Кiev

    Google Scholar 

  79. Linnik PN, Nabivanets BI (1986) Formy migratsii metallov v presnykh poverkhnostnykh vodakh (Forms of migration of metals in fresh surface water). Gidrometeoizdat, Leningrad

    Google Scholar 

  80. Linnik PN (2001) Role of humic substances in complexation and detoxification processes (taking the Dnieper reservoirs as example). Hydrobiol J 37(5):98–112

    CAS  Google Scholar 

  81. World Health Organization (1994) Guidelines on drinking water quality control. Recommendation, vol 1. WHO, Geneva

    Google Scholar 

  82. Hjort JO, Ericsson PA (1998) Artificial groundwater recharge in Stocholm I. In: Peters JH (ed) The project and its general aim artificial recharge of groundwater. Balkema, Rotterdam, pp 383–385

    Google Scholar 

  83. Hozalski RM, Goel S, Bouwer E (1995) TOC removal in biological filters. J Am Water Works Assoc 87(12):40–45

    CAS  Google Scholar 

  84. Kozyatnik IP, Klimenko NA, Savchina LA (2010) The effect of water ozonation on the efficiency of extracting natural organic matter during filtration through biologically activated carbon. J Water Chem Technol 32(3):139–144

    Google Scholar 

  85. Tuiveringsstrategieen VH (1998) OEDI-concept: cen natuulijke keuze. Tijdschr Watervoorz En Waterbeheer 31(9):15–21

    Google Scholar 

  86. Graun GF, Hauchman FS, Robinson DE (2001) Microbial pathogens and disinfection by-products in drinking water: health effects and management of risks. International Life Science Institute, Washington

    Google Scholar 

  87. Rittmann BE, Snoeyink VL (1984) Achieving biologically stable drinking water. J Am Water Works Assoc 76(10):106–107

    CAS  Google Scholar 

  88. Van derKD, Visser A, Hijnen WAM (1982) Determing the concentration of easily assimilable organic carbon in drinking water. J Am Water Works Assoc 72(10):540–544

    Google Scholar 

  89. Storey MV, Ashbolt NJ (2002) A comparison of methods and models for the analysis of distribution of pipe biofilms. Water Sci Technol Water Supply 2(4):73–80

    Google Scholar 

  90. Graham NJD (1999) Removal of humic substances by oxidation/biofiltration processes—a review. Water Sci Technol 40(9):141–148

    CAS  Google Scholar 

  91. Huck PM (1999) Development of a framework for quantifying the removal of humic substances by biological filtration. Water Sci Technol 40:149–156

    CAS  Google Scholar 

  92. Goel S, Hozalski RM, Bouwer E (1995) Biodegradation of NOM: effect of NOM source and ozone doze. J Am Water Works Assoc 84(1):90–105

    Google Scholar 

  93. Hozalski RM, Bouwer EI, Goel S (1999) Removal of natural organic matter (NOM) from drinking water supplies by ozone-biofiltration. Water Sci Technol 40(9):157–163

    CAS  Google Scholar 

  94. Melin ES, Odegard H (1999) Biofiltration of ozonated humic water in expanded clay aggregate films. Water Sci Technol 40(9):165–172

    CAS  Google Scholar 

  95. Siddiqui MS, Amy GL, Murphy BD (1997) Ozone enhanced removal of natural organic matter from drinking water sources. Water Res 31(12):3098–3106

    CAS  Google Scholar 

  96. Huck PM, Fedorak PM, Anderson WB (1991) Formation and removal of assimiable organic carbon during biological treatment. J Am Water Works Assoc 83(12):69–80

    CAS  Google Scholar 

  97. Costerton JW, Lewandowski ZI, Caldwell DE et al (1995) Microbial biofilms (review). Annu Rev Microbiol 49:711–745

    CAS  Google Scholar 

  98. Stoodley P, Yang S, Lappin-Scott H et al (1997) Relationships between mass transfer coefficient and liquid flow velocity in heterogeneous biofilm using microelectrodes and confocal microscopy. Biotechnol Bioeng 56(6):681–688

    CAS  Google Scholar 

  99. Langmark JV, Storey MV, Ashbolt NI et al (2004) Artificial groundwater treatment: biofilm activity and organic carbon removal performance. Water Res 38:740–748

    CAS  Google Scholar 

  100. Brauch H, Sacher F, Denecker E et al (2000) The effectiveness of bank filtration for the removal of polar organic trace elements. Wasser Abwasser 141(4):226–234

    CAS  Google Scholar 

  101. Heberer T, Schmidt-Bumler K, Stan H-J (1998) Occurrence and distribution of organic contaminants in the aquatic system in Berlin. Acta Hydrochim et Hydrobiol 26(5):272–278

    CAS  Google Scholar 

  102. Emtiazi F, Schwartz T, Marten SM et al (2004) Investigation of natural biofilm formed during the production of drinking water from surface water embankment filtration. Water Res 38:1197–1206

    CAS  Google Scholar 

  103. Van der Hock GP, Graveland AR (1994) Water supply syst.: new technol. Paper present at the proc. NATO adv. study jnst. “New technol large water supply proj”, Varna, 24 October–4 November 1994

    Google Scholar 

  104. Helmisaari HS, Lindroos A-G (2000) Intkimustieto tekopohjaveden muodostamisesta. Kemia-Kemi 27(5):359–362

    Google Scholar 

  105. Wang LA, Chin YP, Traina SJ (1997) Adsorption of (poly)maleic acid and aquatic fulvic acid by goethite. Geochim et Cosmochim Acta 61:5313–5324

    CAS  Google Scholar 

  106. Kaiser K, Zech W (1997) Competitive sorption of dissolved organic matter fractions to soils and related mineral phases. Soil Sci Soc Am J 61:64–69

    CAS  Google Scholar 

  107. Meier M, Chin YP, Maurice P (2004) Variations in the composition and adsorption behavior of dissolved organic matter at a small, forested watershed. Biogeochemistry 67:39–56

    CAS  Google Scholar 

  108. McKnight DM, Smith RL, Harnish RA et al (1993) Seasonal relationships between planktonic microorganisms and dissolved organic material in an alpine stream. Biogeochemistry 21:39–53

    CAS  Google Scholar 

  109. Hornberger GM, Bencala KE, McKnight DM et al (1994) Hydrological controls on dissolved organic carbon during snowmelt in the Snake River near Montezuma, Colorado. Biogeochemistry 25:147–165

    CAS  Google Scholar 

  110. Murphy EM, Zachara JM, Smith SC et al (1994) Interaction of hydrophobic organic compounds with mineral-bound humic substances. Environ Sci Technol 28:1291–1299

    CAS  Google Scholar 

  111. Stott DE, Martin JP (1989) Organic matter decomposition and retention in arid soils. Arid Soil Res Rehabil 3:115–148

    Google Scholar 

  112. Almendros G, Dorado J (1999) Molecular characteristics related to the biodegradability of humic acid preparations. Eur J Soil Sci 50:227–236

    CAS  Google Scholar 

  113. Oades JM (1988) The retention of organic matter in soils. Biogeochemistry 5:35–70

    CAS  Google Scholar 

  114. Grunheid S, Amy G, Jekell M (2005) Removal of bulk dissolved organic carbon (DOC) and trace organic compounds by bank filtration and artificial recharge. Water Res 3(14):3219–3228

    Google Scholar 

  115. U.S. Environmental Protection Agency (1998) National primary drinking water regulations. Disinfectants and disinfection byproducts. Fed Regist 63(241):69389–69476

    Google Scholar 

  116. Chiristman RF (1983) Identity and yield of major halogenated products of aquatic fulvic acid chlorination. Environ Sci Technol 17(10):625–629

    Google Scholar 

  117. Reckhow DA, Singer PC (1984) Removal of organic halide precursors by preozonation and alum coagulation. J Am Water Works Assoc 76(4):151–158

    CAS  Google Scholar 

  118. Singer PC, Change SD (1989) Correlations between trihalomethanes and total organic halides formed during water treatment. J Am Water Works Assoc 81(8):61–69

    CAS  Google Scholar 

  119. Singer PC, Arlotta Ch, Snider-Sajdak N et al. Effectiveness of pre-and intermediate ozonation on the enhanced coagulation of disinfection by-product precursors in drinking water. J Am Water Works Assoc 95:453–471

    Google Scholar 

  120. White MC (1997) Evaluating criteria for enhanced coagulation compliance. J Am Water Works Assoc 89(5):64–70

    CAS  Google Scholar 

  121. Singer PC, Reckhow DA, Letterman RD (eds) (1999) Chemical oxidation. AWWA water quality and treatment: handbook of community water supplies. McGraw-Hill, New York

    Google Scholar 

  122. Chaiket T, Singer P, Miles A et al (2002) Effectiveness of coagulation, ozonation, and biofiltration in controlling DBPs. J Am Water Works Assoc 94(12):81–95

    CAS  Google Scholar 

  123. Goncharuk VV, Кlimenko NА, Vakulenko VF et al (1999) Investigation of the efficiency of process of ozonation and sorption on activated carbon in the treatment of the Dnieper water. J Water Chem Technol 21(4):23–31

    Google Scholar 

  124. Edwards MN, Benjamin MM (1992) Transformation of NOM by ozone and its effect on iron and aluminum solubility. J Am Water Works Assoc 84(6):56–61

    CAS  Google Scholar 

  125. Edwards MN, Benjamin MM (1992) Effect of preozonation on coagulant—NOM interactions. J Am Water Works Assoc 84(8):63–69

    CAS  Google Scholar 

  126. Paralkar AA, Edzwald JK (1996) Effect of ozone on NOM and coagulation. J Am Water Works Assoc 88(4):143–151

    CAS  Google Scholar 

  127. Yavich AA, Lee K-H Chen K-C et al (2004) Evaluation of biodegradability of NOM after ozonation. Water Res 38:2839–2846

    CAS  Google Scholar 

  128. Klevens CM, Collins MR, Negm RA et al (1996) Natural organic matter characterization and treatability by biological activated carbon filtration. In: Minnear RA, Amy GL (eds) Water disinfection and natural organic matter: characterization and control, ACS symposium series 649. American Chemical Society, Washington, pp 211–246

    Google Scholar 

  129. Klimenko NА, Nevinnaya LV, Sidorenko YuV et al (2007) The impact of preoxidation of SAS on biosorption efficiency on activated carbon. J Water Chem Technol 29(1):15–22

    Google Scholar 

  130. Klimenko N, Winter-Nielsen M, Smolin S et al (2002) Role of physical-chemical factors in the purification process of water from surface-active matter by biosorption. Water Res 36:5132–5140

    CAS  Google Scholar 

  131. Cleasby J, Logsdon G (1999) Granular bed and per coat filtration. Water quality and treatment, 5th edn. McGraw-Hill, New York

    Google Scholar 

  132. Dugan NR, Williams DJ (2004) Removal of cryptosporidium by in-line filtration-effects of coagulant type, filter loading rate and temperature. J Water Supply Res Technol 53(1):1–15

    CAS  Google Scholar 

  133. US EPA (2001a) Draft long term 2 enhanced surface water treatment rule preamble language

    Google Scholar 

  134. US EPA (2001b) Draft long term 2 enhanced surface water treatment rule regulatory language

    Google Scholar 

  135. Ongerth J, Pecoraro J (1995) Removing cryptosporidium using multi-media filters. J Am Water Works Assoc 87(12):83–89

    CAS  Google Scholar 

  136. Nieminski E, Ongerth J (1995) Removing Giardia and Cryptosporidium by conventional treatment and direct filtration. J Am Water Works Assoc 87(9):96–106

    CAS  Google Scholar 

  137. Edzwald J, Kelley M, Dunn H et al (1996) Control of Cryptosporidium by coagulation, flotation and filtration. Paper presented at the AWWA water quality technology Denver AWWA, Boston, 17–21 Nov1996

    Google Scholar 

  138. Edzwald J, Kelley M (1998) Control of Cryptosporidium: from reservoirs to clarifiers to filters. Water Sci Technol 37(2):1–8

    CAS  Google Scholar 

  139. Swaim P, Heath M, Patania N et al (1996) High-rate direct filtration for Giardia and Cryptosporidium removal. Paper presented at the AWWA Annual Conference, Toronto, Canada, 23–27June 1996

    Google Scholar 

  140. Goncharuk VV, Кlimenko NА, Solomentseva IМ et al (2002) Through treatment of high-color natural water. J Water Chem Technol 24(1):35–43

    Google Scholar 

  141. Jiu-Hiu Q, Hui-Juan L, Suo-Xiang L (2003) Reduction of fulvic acid in drinking water by ferrate. J Environ Eng 129(1):17–24

    Google Scholar 

  142. Schreyer JM, Ockerman LT (1951) Stability of the ferrate (VI). Anal Chem 23(3):1313–1318

    Google Scholar 

  143. De Luca SI, Chao AC, Smallwood IC (1983) Ames test of ferrate treated water. J Environ Eng 109(5):1159–1167

    CAS  Google Scholar 

  144. De Luca SI, Chao AC, Smallwood IC (1983) Removal of organic priority pollutants by oxidation-coagulation. J Environ Eng 109(1):36–46

    CAS  Google Scholar 

  145. De Luca SI, Idle CN, Chao AC (1996) Quality improvement of biosolids by ferrate(VI) oxidation of offensive odour compounds. Water Sci Technol 33(3):119–130

    CAS  Google Scholar 

  146. Waite TD, Gilbert M (1978) Oxidative destruction of phenol and other organic water residuals by iron (VI) ferrate. J Water Pollut Control Fed 50(3):543–551

    CAS  Google Scholar 

  147. Waite TD (1979) Feasibility of wastewater treatment with ferrate. J Environ Eng Div. Am Soc Civ Eng 105(6):1023–1034

    CAS  Google Scholar 

  148. Murman FK, Robinson PR (1974) Experiments utilizing FeO2− 4 for purifying water. Water Res 47(8): 543–547.

    Google Scholar 

  149. Tian BZ, Qu IH (1999) A study on the producing of potassium ferrate by chemical oxidation from a recycled solution. Environ Chem 18(2):173–177

    CAS  Google Scholar 

  150. Camel V, Bermond A (1998) The use of ozone and associated oxidation process in drinking water treatment. Water Res 32(1):3208–3222

    CAS  Google Scholar 

  151. Мilyukin MV, Goncharuk VV, Vakulenko VF (1999) Changes in concentrations of carbonyl compounds at technological stages of the water conditioning process. J Water Chem Technol 21(6):1–7

    Google Scholar 

  152. Goncharuk VV, Vakulenko VF, Sova АN et al (2004) Removal of organic impurities from natural water by ozonation combined with UV-radiation. J Water Chem Technol 26(1):14–26

    Google Scholar 

  153. Wataru N, Mukaidaini T, Mitsumasa O (2003) DOC removal by multi-stage ozonation-biological treatment. Water Res 37:150–154

    Google Scholar 

  154. Yavich AA, Masten SJ (2003) Use of ozonation and FBT to control THM precursors. J Am Water Works Assoc 95(4):159–171

    CAS  Google Scholar 

  155. Carlson K, Amy G (1987) The formation of filter-removable biodegradable organic matter during ozonation. Ozone Sci Eng 19(2):179–199

    Google Scholar 

  156. Urfer DA, Huck PM, Booth SD et al (1997) Biological filtration for BOM and particle removal: a critical review. J Am Water Works Assoc 89(12):83–98

    CAS  Google Scholar 

  157. Gul S, Abbt-Braun G, Frimmel F (2003) Use of gel permeation chromatography to characterize the changes in natural organic matter through oxidative treatments. Int J Environ Anal Chem 83(9):761–768

    Google Scholar 

  158. Frimmel FH, Jahnel JJ, Hesse SJ (1998) Characterization of biogenic organic matter (BOM). Water Sci Technol 37:97–103

    CAS  Google Scholar 

  159. Hesse SJ, Kleiser GJ, Frimmel FH (1999) Characterization of refractory organic substances (ROS) in water treatment. Water Sci Technol 9:1–7

    Google Scholar 

  160. Gul S, Abbt-Braun G, Frimmel F (1999) Fractionation and characterization of ozonated and post chlorinated aquatic fulvic acid using gel chromatography. Int J Environ Anal Chem 75:275–284

    CAS  Google Scholar 

  161. Werner P (1984) Investigation on the substrate character of organic substances in connection with drinking water treatment. Zbl Bakt Hyg 108(1):46–61

    Google Scholar 

  162. Hambsch B, Schmiedel U, Werner P et al (1993) Investigations on the biodegradability of chlorinated fulvic acids. Acta Hydrochim Hydrobiol 21:167–173

    CAS  Google Scholar 

  163. Anderson LJ, Johnson JD, Christman FG (1986) Extent of ozone’s reaction with isolated aquatic fulvic acid. Environ Sci Technol 20:739–742

    CAS  Google Scholar 

  164. Legube B, Croué JP, Dore MS et al (1989) Ozonation of an extracted aquatic fulvic acid: theoretical and practical aspects. Ozone Sci Eng 11:69–92

    CAS  Google Scholar 

  165. Coleman WE, Munch JW, Ringhand HP et al (1992) Ozonation/post-chlorination of humic acid: a model for predicting drinking water disinfection by-products. Ozone Sci Eng 14:51–69

    CAS  Google Scholar 

  166. Goncharuk VV, Vakulenko VF, Sova АN et al (2003) Effect of UV-radiation mode on the kinetics and degree of degradation of humic and fulvic acids by ozone. J Water Chem Technol 25(5):1–21

    Google Scholar 

  167. Chang EE, Chung-Huei L, Ya-Wen K (2002) Effect of ozone dosage for removal of model compounds by ozone. GAC treatment. Ozone Sci Eng 24:357–367

    CAS  Google Scholar 

  168. Dojlido Q, Zbiec E, Swietlik J (1999) Formation of the haloacetic acids during ozonation and chlorination of water in Warsaw waterworks. Water Res 33(14):3111–3118

    CAS  Google Scholar 

  169. Galapate RP, Bacs AU, Okada M (2001) Transformation of dissolved organic matter during ozonation: effects on trihalomethane formation potential. Water Res 35(9):2201–2206

    CAS  Google Scholar 

  170. Nishijima W, Kim WH, Shoto E et al (1998) Performance of an ozonation-biological activated carbon process under long term operation. Water Sci Technol 38(6):163–169

    CAS  Google Scholar 

  171. Volk C, Renner P, Paillard H, Joret J (1993) Effect of ozone on the production of biodegradable dissolved organic carbon (BDOC) during water treatment. Ozone Sci Eng 15(5):389–404

    CAS  Google Scholar 

  172. Wrickle B, Petzoldt H, Heiser H et al (1996) NOM-removal by biofiltration after ozonation—results of a pilot plant test. In: Graham N, Collins R (eds) Advances in slow sand and alternative biological filtration. Wiley, New York

    Google Scholar 

  173. Shu S, Zhang J (2008) Ozonation-BAC process for the control of disinfection by-products and biostability in drinking water. J Biotechnol 136(1):S668–S669

    Google Scholar 

  174. Hongwei W, Wenjun L, Zhansheng W et al (2002) Determination of biodegradable organic matter in drinking water and study of its biostability in drinking water in Beijing city. Chin J Environ Sci 21(4):29–33

    Google Scholar 

  175. Gorenflo A, Guping L, Frimmel FH (2002) Ozonung am bespiel von ligninsulfonsäure und den Kläranlagenablant einer papierfabrik. Chem Ind Technol 74(4):512–517

    CAS  Google Scholar 

  176. Goncharuk VV, Vakulenko VF, Samsoni-Todorov AO et al (2010) Substatiation of technological modes for effective operation of oxidative-sorption units of water treatment. J Water Chem Technol 32(1):39–49

    Google Scholar 

  177. Krasner SW, Selimenti MJ, Coffey BM (1993) Testing biologically active filters for removing adehydes formed during ozonation. J Am Water Works Assoc 85(5):62–71

    CAS  Google Scholar 

  178. Herzberg MJ, Dosoretz CG, Sheldon JJ et al (2003) Patchy biofilm coverage can explain the potential advantage of BGAC reactors. Environ Sci Technol 37(18):4274–4280

    CAS  Google Scholar 

  179. Amy GL, Tan LK, Davic MK (1991) The effects of ozonation and activated carbon adsorption on trihalomethane speciation. Water Res 25(2):191–202

    CAS  Google Scholar 

  180. Owen DM, Amy GL, Chowdhury ZK et al (1995) NOM characterization and treatability. J Am Water Works Assoc 87(1):43–46

    Google Scholar 

  181. Gracia RJ, Aragues JL, Ovelleiro JL (1996) Study of the catalytic ozonation of humic substances in water and their ozonation byproducts. Ozone Sci Eng 18(3):195–208

    CAS  Google Scholar 

  182. Weinberg HS, Glaze WH (1997) Unified approach to the analysis of polar organic by-products of oxidation in aqueous matrices. Water Res 37(7):1555–1572

    Google Scholar 

  183. Yamada H, Somiya I (1989) The determination of carbonyl compounds in ozonated water by the PFBOA method. Ozone Sci Eng 17(1):53–69

    Google Scholar 

  184. Marhaba TF (2000) A new look at disinfection by-products in drinking water. Water Eng Manag 1:30–34

    Google Scholar 

  185. Ljubas D, Ruħinski N, Dobrovic S (1999) Utjecaj redoslijeda primjene koagulanta i adsorbenta na smanjenje udjela prirodnih organskih tvari u jezerskoj void. Stojarstoo 41(5/6):191–200

    CAS  Google Scholar 

  186. Klimenko NА, Koganovskii АМ, Smolin SК (1997) Adsorption purification of river and drinking water and role of biodegradation of adsorbed substances in this process. J Water Chem Technol 19(8):13–26

    Google Scholar 

  187. Masayuki S (1991) Purification of water using aactivated carbon. Ind Water 393:45–65

    Google Scholar 

  188. Takash K, Tatsuya H, Kohei U (1997) Changes of adsorption capacity and pore distribution of biological activated carbon on advanced water treatment. Water Sci Technol 35(7):155–162

    Google Scholar 

  189. Clements M, Haarhoff Q (2004) Practical experience with granular activated carbon (GAC) at the water treatment plant. Water SA 30(1):89–95

    CAS  Google Scholar 

  190. Shmidt QL, Pimenof AV, Lieberman AI (2001) Composite adsorbent element US patent 6299771. 9 Oct 2001

    Google Scholar 

  191. Shvets DI, Openko NM, Mametyeva YePetal (2001) Sorption-filtration material for water treatment Ukr patent 41513. 17 Sept 2001

    Google Scholar 

  192. Slavinskaya GV (2003) Purification of natural water from the humic acid by a combination anion exchange and active carbons. Sorp Chromat Proc 3(3):286–291

    Google Scholar 

  193. Slavinskaya GV, Кuznetsova NS (2003) Sorption purification of water from fulvic acids by a combination of various types anion exchanges. Sorp Chromat Proc 3(4):455–459

    Google Scholar 

  194. Kilduff JE, Karanfie TN, Weber IrWJ (1998) TCE adsorption by GAC preloaded with humic substances. J Am Water Works Assoc 90(5):76–89

    CAS  Google Scholar 

  195. Gillogly TET, Snoeyink VL, Elarde JR et al (1998) 14C-MIB adsorption on PAC in natural water. J Am Water Works Assoc 90(1):98–108

    CAS  Google Scholar 

  196. Bernazeau F, Mandra V, Charles P et al (1996) Pesticides removal of activated carbon: competitive adsorption with natural organic matter. Water Supply 14(2):43–48

    CAS  Google Scholar 

  197. Quinlivan PA, Lei L, Knappe DRU (2005) Effects of activated carbon characteristics on the simultaneous adsorption of aqueous organic micropollutants and natural organic matter. Water Res 39(1):1663–1673

    CAS  Google Scholar 

  198. Newcombe G, Morrison J, Hepplewhite C et al (2002) Simultaneous adsorption of MIB and NOM onto activated carbon. II. Competitive effects. Carbon 40:2147–2156

    CAS  Google Scholar 

  199. Li Q, Snoeyink VL, Marinas BJ et al (2003) Elucidating competitive adsorption mechanisms of atrazine and NOM using model compounds. Water Res 37:773–784

    CAS  Google Scholar 

  200. Li Q, Snoeyink VL, Marinas BJ et al (2003) Pore blockage effect of NOM on atrazine adsorption kinetics of PAC: the roles of PAC pore size distribution and NOM molecular weight. Water Res 37:4863–4872

    CAS  Google Scholar 

  201. Pelekani C, Snoeyink VL (1999) Competitive adsorption in natural water: role of activated carbon pore size. Water Res 33(5):1209–1219

    CAS  Google Scholar 

  202. Pelekani C, Snoeyink VL (2000) Competitive adsorption between atrazine and methylene blue on activated carbon: the importance of pore size distribution. Carbon 38:1423–1436

    CAS  Google Scholar 

  203. Pelekani C, Snoeyink VL (2001) A kinetic and equilibrium study of competitive adsorption between atrazine and Congo red dye on activated carbon: the importance of pore size distribution. Carbon 39:25–37

    CAS  Google Scholar 

  204. Ebie K, Li F, Azuma Y et al (2001) Pore distribution effect of activated carbon in adsorbing organic micropollutants from natural water. Water Res 35(1):167–179

    CAS  Google Scholar 

  205. Kilduff JE, Srivastava R, Karanfil T (2002) Preloading of GAC by natural organic matter: effect of surface chemistry or TCE uptake. Stud Surf Sci Catal 144:553–560

    CAS  Google Scholar 

  206. Roche P, De Traversay C (2002) Gestion de l’etape de filtration sur charbon act if en grains pour l’elimination de l’atrazine et ses sous-produits. Technol Sci Muth 3:69–79

    Google Scholar 

  207. Gia RB, Zhang XH, Zhang WH et al (2003) Fluctuation of microcystins in water plant. J Environ Sci Health A 38(12):2867–2875

    Google Scholar 

  208. Goncharuk VV, Vakulenko VF, Klymenko NA et al (2002) Oxidative pretreatment of solutions of synthetic surfactants prior to biosorption. J Water Chem Technol 24(3):1–11

    Google Scholar 

  209. Klymenko NA, Marutovsky RM, Pidlisnyuk VV et al (2002) Biosorption processes for natural and wastewater treatment. Part 1: literature review. Eng Life Sci 10(2):317–324

    Google Scholar 

  210. Qian Y, Yuahgming Z, Yuangming B et al (2003) Use of biofiltration method under drinking water treatment. Ind Water Treat 23(6):8–13

    Google Scholar 

  211. McGuire MJ, Suffet IH (eds) (1983) Treatment water granular activated carbon. American Chemical Society, Washington

    Google Scholar 

  212. Kunio E, Gal-Ho L (2001) Formation and transformation of haloacetic acids in drinking water in Beijing city. J Jpn Water Works Assoc 70(9):2–13

    Google Scholar 

  213. Polyakova TV, Klimenko NA, Savchina LA (2011) The impact of active carbon oxidation on adsorption of fulvic acids from aqueous solutions. J Water Chem Technol 33(1):20–25

    Google Scholar 

  214. Shuahg L, Xiaojian Z, Wenjun L et al (2001) Water treatment using ozone and activated carbon. J Environ Sci Health A 36(4):475–481

    Google Scholar 

  215. Masten SQ, Javich AA (2002) Method for treatment of organic matter contaminated drinking water. US patent 6365048, 2 April 2002

    Google Scholar 

  216. Le Chevaller MW, Becker WC, Schorr P et al (1992) Evaluating the performance of biologically active rapid filters. J Am Water Works Assoc 84(4):136–141

    Google Scholar 

  217. Miltner RJ, Rice EW, Summers RS (1992) Pilot-scale study of biological treatment process. In abstract of the AWWA annual conference, Vancouver, British Columbia, 19–22 June 1992

    Google Scholar 

  218. Yasui H, Miyaji Y (1992) Novels approach to removing refractory organic compounds in drinking water. Water Sci Technol 26(7–8):1503–1512

    CAS  Google Scholar 

  219. Dietrich AM, Orr MP, Gallagher DL et al (1992) Tastes and odors associated with chlorine dioxide. J Am Water Work Assoc 92(6):82–87

    Google Scholar 

  220. Knocke WR, Van Benschoten JE, Kearney MJ et al (1991) Kinetics of manganese and iron oxidation by potassium permanganate and chlorine dioxide. J Am Water Work Assoc 83(6):80–85

    CAS  Google Scholar 

  221. Long BW, Husley RA, Hochn RC (1990) Complementary use of chlorine dioxide and ozone for drinking water treatment. Ozone Sci Eng 21:465–471

    Google Scholar 

  222. Swietlik J, Dabrowska A, Raczyk-Stanislawiak U et al (2004) Reactivity of natural organic matter fractions with chlorine dioxide and ozone. Water Res 38(2):547–558

    CAS  Google Scholar 

  223. Swietlik J, Raczyk-Stanislawiak U, Bilozor S et al (2002) Effect of oxidation with chlorine dioxide on the adsorption of natural organic matter on granular activated carbon. Pol J Environ Stud 11(4):435–439

    CAS  Google Scholar 

  224. Karpel von Leitner N, DeLaat J, Dore M et al (1996) Disinfection by-products in water treatment. In: Minear RA, Amy GL (eds) The chemistry of their formation and control. chap 19. Lewis Publ., Boca Raton, p 393

    Google Scholar 

  225. Slunjski M, Nguyen H, Ballard M et al (2000) MIEX—good research commercialized. Water 29(2):42–47

    Google Scholar 

  226. Singer PC, Bilyk KJ (2001) Enhanced coagulation using a magnetic ion exchange resin. Water Res 36(16):4009–4022

    Google Scholar 

  227. Lee N, Sinha S, Amy G (2003) Removal of polar natural organic matter (NOM) with a magnetically impregnated ion exchange (MIEX) media. In: Abstract of the American water works association annual conference and exhibition, Anaheim, San Francisco, 13–15 June 2003

    Google Scholar 

  228. Johnson CJ, Singer PC (2003) Impact of a magnetic ion exchange on ozone demand and bromate formation during drinking water treatment. Water Res 38(17):3738–3750

    Google Scholar 

  229. Drikas M, Chow CWK, Cook D (2001) The impact of recalcitrant organic character on disinfection stability, trihalomethane formation and bacterial regrowth: an evaluation of MIEX and alum coagulation. J Water Supply Res Technol 52(7):475–481

    Google Scholar 

  230. Boyer TH, Singer PC (2005) Bench-scale testing of a magnetic ion exchange resin for removal of disinfection by-products precursors. Water Res 39:1265–1276

    CAS  Google Scholar 

  231. Jones KL, O’Melia CR (2000) Protein and humic acid adsorption onto hydrophilic membrane surfaces: effects of pH and ionic strength. J Membr Sci 165(1):31–46

    CAS  Google Scholar 

  232. Lin CF, Lin TY, Hao OJ (2000) Effects of humic substance characteristics on UF performance. Water Res 34(4):1097–1106

    CAS  Google Scholar 

  233. Speth TF, Gusses AM, Summers RS (2000) Evaluation of nanofiltration pretreatments for flux loss control. Desalination 130(1):31–44

    CAS  Google Scholar 

  234. Berube PK, Mavinic DS, Hall ER et al (2002) Evaluation of adsorption and coagulation as membrane pretreatment steps for the removal of organic material and disinfection-by-product precursors. J Environ Eng Sci 1:465–476

    CAS  Google Scholar 

  235. Adham SS, Jacangelo JG, Lain JM (1996) Characteristics and costs of MF and UF plants. J Am Water Works Assoc 88(5):22–31

    CAS  Google Scholar 

  236. Freeman SDN, Logsdon GS, Harris AT et al (1996) Evaluation of microfiltration performance with bacillus spore, particle count and particle index measurements. Paper presented at the American Water Works Association Annual Conference, AWWA, Toronto, 23–27 June 1996

    Google Scholar 

  237. Ponomarev МI, Dedechek VL, Ovcharov LF et al (1999) Ultra- and nanofiltration of water that contains microorganisms. J Water Chem Technol 21(11):30–35

    Google Scholar 

  238. Siddiqui M, Amy G, Joseph R et al (2000) Membranes for the control of natural organic material for surface water. Water Res 34(13):3355–3370

    CAS  Google Scholar 

  239. Maatens A, Swart P, Jacobs EP (1999) Feed-water pretreatment: methods to reduce membrane fouling by natural organic material. J Membr Sci 163(1):51–62

    Google Scholar 

  240. Amy GL, Cho JJ (1999) Interactions between natural organic material and membranes; rejection and fouling. Water Sci Technol 40(9):131–139

    CAS  Google Scholar 

  241. American Water Works Association Research Foundation (1996) Lyonnaise des Eaux, and water research commission of South Africa. Water treatment processes. McGraw Hill Publ. Co, New York

    Google Scholar 

  242. Lebeau T, Lelievre C, Buisson H et al (1998) Immersed membrane filtration for the production of drinking water: combination with PAC for NOM and SOCs removal. Desalination 117:219–231

    CAS  Google Scholar 

  243. Lin CF, Huang YJ, Hao OJ (1999) Ultrafiltration processes for removing humic substances; effect of molecular weight fraction on PAC treatment. Water Res 33(5):1252–1264

    CAS  Google Scholar 

  244. Schäfer AI, Fane AG, Waite TD (2001) Cost factors and chemical pre-treatment effects in the membrane filtration of water containing natural organic material. Water Res 35(6):1509–1517

    Google Scholar 

  245. Lee JD, Lee SH, Jo MH et al (2000) Effect of coagulation conditions on membrane filtration characteristics in coagulation-microfiltration process of water treatment. Environ Sci Technol 34(17):3780–3788

    CAS  Google Scholar 

  246. Eikebrokk B, Saltest T (2001) Removal of natural organic matter (NOM) using different coagulants and light weight expanded clay aggregates filters. Water Sci Technol 1(2):131–140

    CAS  Google Scholar 

  247. Snodgrass WJ, Clark MM, O’Melia CK (1984) Particle formation and growth in dilute Aluminium (III) solutions. Water Res 18(4):479–488

    CAS  Google Scholar 

  248. Lebeau T, Lelievre C, Wolbert D et al (1999) Effect of natural organic matter loading on the atrazine adsorption capacity of an aging powdered activated carbon slurry. Water Res 33(7):1695–1705

    CAS  Google Scholar 

  249. Best G, Mourato D, Singh M et al (2001) Application of immersed ultrafiltration membranes on high turbidity and high TOC surface water. Paper presented at the American Water Works Association Membrane Technology Conference, AWWA, San Antonio, 4–7 March 2001

    Google Scholar 

  250. Tsapyuk EА (1999) Colloid-chemical aspects of pre-treatment of solutions subjected to pressure-driven membrane separation. J Water Chem Technol 21(6):16–28

    Google Scholar 

  251. Pirbazari M, Badriyha B, Ravindran V (1992) MF-PAC for treating water contaminated with natural and synthetic organics. J Am Water Works Assoc 84(12):95–103

    CAS  Google Scholar 

  252. Crozes Q, Anselme C, Mallevialle J (1993) Effect of adsorption of organic matter on fouling of ultrafiltration membranes. J Membr Sci 84(2):61–77

    CAS  Google Scholar 

  253. Song W, Ravindran V, Koel BE, Pirbazari M (2004) Nanofiltration of natural organic matter with H2O2/UV pretreatment: fouling mitigation and membrane surface characterization. J Membr Sci 241:143–160

    CAS  Google Scholar 

  254. Zhu H, Nystrum M (1998) Cleaning results characterized by flux, streaming potential and FTIR measurements. Coll Surf A Physicochem Eng Aspects 138(2/3):309–321

    CAS  Google Scholar 

  255. Lee H, Amy JG, Cho JW et al (2001) Cleaning strategies for flux recovery of an ultrafiltration membrane fouled by natural organic matter. Water Res 35(14):3301–3308

    CAS  Google Scholar 

  256. Кoganovskii AМ, Кlimenko NА, Levchenko TМ et al (1990) Adsorbtsyya orhanycheskykh veshchestv iz vody (Аdsorption of organic substances from water). Khimiya, Leningrad.

    Google Scholar 

  257. Tu SC, Ravindran V, Den W et al (2001) Predictive membrane transport for nanofiltration process in water treatment. AIChE 47(6):1346–1362

    CAS  Google Scholar 

  258. Backlund O (1992) Degradation of aquatic humic material by ultraviolet light. Chemosphere 25(2):1869–1878

    CAS  Google Scholar 

  259. Schefer AI, Fane AG, Waite TD (1998) Nanofiltration of natural organic matter: removal, fouling and influence of multivalent ions. Desalination 118(13):109–122

    Google Scholar 

  260. Fan LH, Harris JL, Roddick FA (2001) Influence of the characteristics of natural organic matter on the fouling of microfiltration membranes. Water Res 35(18):4455–4463

    CAS  Google Scholar 

  261. Edwards M, Benjamin M (1992) Influence of the characteristics of natural organic matter on the fouling of microfiltration membranes. J Am Water Works Assoc 84(6):56–66

    CAS  Google Scholar 

  262. Tran-Ha MH, Wiley DE (1998) The relationship between membrane cleaning efficiency and water quality. J Membr Sci 145(1):99–110

    CAS  Google Scholar 

  263. Braghetta AH, DiGiano FA, Ball WP (1998) NOM accumulation at NF membrane surface: impact of chemistry and shear. J Environ Eng 124(1):1087–1098

    CAS  Google Scholar 

  264. Hong S, Elimelech M (1997) Chemical and physical aspects of natural organic matter (NOM) fouling of nanofiltration membranes. J Membr Sci 132(2):159–181

    CAS  Google Scholar 

  265. Flemming HC (1997) Reverse osmosis membrane biofouling. Exp Therm Fluid Sci 14:382–391

    CAS  Google Scholar 

  266. Basu OD, Huck PM (2004) Integrated biofilter-immersed membrane system for the treatment of humic water. Water Res 38:655–662

    CAS  Google Scholar 

  267. Fukada S, Tsuji T, Minegishi T et al (2000) Fouling performance in the filtration of water containing humic acids and/or kaolin with microporous membrane. Water Sci Technol 41(10/11):317–325

    CAS  Google Scholar 

  268. Gensen KE, Knudsen QH (2000) Removal of humic substances from water using nanofiltration system. In: Abstract of the international conference EUROMEMBRANE-2000, Jerusalem, Israel, 24–27 September 2000

    Google Scholar 

  269. Beros M, Ventresque C, Bablon G (2000) Angewandte nanofiltration in einen wasserkwork in Frankreich. Wasser Boden 52(2):25–32

    Google Scholar 

  270. Neparidze GТ, Neparidze RSh (2000) Water supply of settlements and fish factories in coastal areas of Kamchatka. In: Abstract of the 4th international congress “water: ecology and technology” EKVATEK-2000, Moscow, 30 May–2 June 2000

    Google Scholar 

  271. Bodzek NL, Bodzek DL, Luks-Betleg KJ et al (2000) Pressure-driven membrane techniques for the removal of organic micropollutants from water. In: Abstract of the international conference EUROMEMBRANE-2000, Jerusalem, Israel, 24–27 September 2000

    Google Scholar 

  272. Schellekens R (2003) Kristallklares resin wasser. WWT: Wasserwirt Wassertechn 6:42–43

    Google Scholar 

  273. Agua E, Voutchkov N, Sedlak DL (2009) Disinfection by products and their potential impacts on the quality of water produced by desalination systems: a literature review. Desalination 237(1/3):214–237

    Google Scholar 

  274. Meyer M (1996) How common is methemoglobinemia from nitrate contaminated well. Water Cond Purif 1:78–81

    Google Scholar 

  275. Weyer PJ, Cerhan JP, Kross BC et al (2001) Municipal drinking water nitrate level and cancer risk in older women: the Iowa Women’s Health Study. J Epidemiol 11(3):327–338

    Google Scholar 

  276. Khan JA, Spalding RF (2004) Enhanced is situ denitrification for a municipal well. Water Res 38:3382–3388

    CAS  Google Scholar 

  277. Shrimali MJ, Singh KP (2001) New methods of nitrate removal from water. Environ Pollut 112(3):351–359

    CAS  Google Scholar 

  278. Ivleva GА, Rodina IS, Кozina AК et al (2000) Purification of underground water from nitrate and boron compounds for drinking water supply. In: Abstract of the 4th international congress “Water: ecology and technology” EKVATEK-2000, Moscow, 30 May–2 June 2000

    Google Scholar 

  279. Matuju V, Cizinska S, Krejci J et al (1992) Biological water denitrification—a review. Enzyme Microbial Technol 14(3):170–183

    Google Scholar 

  280. Ivanov VN, Ulanov MN, Stabnikova YeV (2001) Denitrification of drinking water by cells of Paracoccus denitrificans in natural and artificially formed biofilms. J Water Chem Technol 23(2):64–70

    Google Scholar 

  281. Ergas SJ, Reuss AF (2001) Hydrogenotrophic denitrification of drinking water using a hollow fiber membrane bioreactor. J Water Supply Res Technol Aqua 50(3):161–171

    CAS  Google Scholar 

  282. Schipper L, Vojvodic-Vokovic M (1998) Nitrate removal from ground water using a denitrification wall amended with sawdust: field trial. J Environ Qual 27:664–668

    CAS  Google Scholar 

  283. Interstate technology and regulatory cooperation work group (2000) Technology overview-emerging technologies for enhanced in situ biodenitrification (EISBD) of nitrate-contaminated ground water. IIRC, Washington.

    Google Scholar 

  284. Khan IA, Spalding RF (2003) Development of a procedure for sustainable in situ aquifer denitrification: remediation. J Environ Clean Technol 13(2):53–69

    Google Scholar 

  285. Peyton BM (1996) Improved biomass distribution using pulsed injection of electron donor and acceptor. Water Res 30(3):756–758

    CAS  Google Scholar 

  286. Constantin H, Fick M (1997) Influence of C-source on the denitrification rate of high-nitrate concentrated industrial wastewater. Water Res 31(3):583–589

    CAS  Google Scholar 

  287. Ergas SJ, Rheinheimer DE (2003) Drinking water denitrification using a membrane bioreactor. Water Res 38:3225–3232

    Google Scholar 

  288. Cho J, Amy G, Pellegrino J (2000) Membrane filtration of natural organic matter: factors and mechanisms affecting and flux decline with charged ultrafiltration (UF) membrane. J Membr Sci 164(1/2):89–110

    CAS  Google Scholar 

  289. McCleaf PR, Schroeder ED (1995) Denitrification using a membrane-immobilized biofilm. J Am Water Works Assoc 87(3):77–86

    CAS  Google Scholar 

  290. Fuchs W, Schatzmayr G, Braun R (1997) Nitrate removal from drinking water using a membrane-fixed biofilm reactor. Appl Microbiol Biotechnol 48(2):267–274

    CAS  Google Scholar 

  291. Mansell BO, Schroeder ED (1998) Biological denitrification in a continuous flow membrane reactor. Water Sci Technol 38(1):9–14

    CAS  Google Scholar 

  292. Mansell BO, Schroeder ED (1999) Biological denitrification in a continuous flow membrane reactor. Water Res 33(8):1845–1850

    CAS  Google Scholar 

  293. Kim J-HM, Kishida N et al (2004) Integrated real-time control strategy for nitrogen removal in swine wastewater treatment using sequencing batch reactors. Water Res 38(14/15):3340–3348

    CAS  Google Scholar 

  294. Fanning JC (2000) The chemical reduction of nitrate in aqueous solution. Coord Chem 199:159–179

    CAS  Google Scholar 

  295. Ottley CJ, Davison WP, Edmunds WM (1997) Chemical catalysis of nitrate reduction by iron (II). Geochim et Cosmochim Acta 61(9):1819–1828

    CAS  Google Scholar 

  296. Daum JM, Vorlop KD (1999) Kinetic investigation of the catalytic nitrate reduction: construction of the test reactor system. Chem Eng Technol 55:159–179

    Google Scholar 

  297. Siantar DP, Schreier CG, Reinhard MN (1996) Treatment of 1,2-dibromo-3-chlorpropane and nitrate-contaminated water with zero-valent iron or hydrogen/palladium catalysts. Water Res 30(10):2315–2322

    CAS  Google Scholar 

  298. Hu HY, Goto N, Fujie K et al (2001) Reductive treatment characteristics of nitrate by metallic iron in aquatic solution. J Chem Eng Jpn 34(9):1097–1102

    CAS  Google Scholar 

  299. Chi J, Shu-Ting Z, Lu Y et al (2004) Chemical reduction of nitrate by metallic iron. J Water Supply Resear Technol 53(1):37–41

    CAS  Google Scholar 

  300. World Health Organization (1996) Guidelines for drinking water-quality, 2nd edn, recommendations, vol 1. WHO, Geneva

    Google Scholar 

  301. Lipunov IN, Sanakoyev VN (1999) Preparation of underground water for drinking water supply. In: Abstract of the international scientific conference “Socioecon and ecolog problems of the forest complex”, Ural State Forest Academy, Yekaterinburg, 1 Feb 1999

    Google Scholar 

  302. Sleptsov GV, Orlov VО (2001) Opportunities to increase productivity of deferrization station. Water Supply San Technol 2:26–28

    Google Scholar 

  303. Kröning H (2003) News wasserwerk für Hamburg. Abwassertechnik 9:10–16

    Google Scholar 

  304. Vandenabeele J, De Beer D, Germonpru R et al (1992) Manganese oxidation by microbial consortia from sand filters. Microbiol Ecol 24:91–108

    CAS  Google Scholar 

  305. Dmitrenko GN, Shum OA (2002) Dissimilative reduction of Mn(IV) by collection strainsoft aerobic bacteria. J Water Chem Techn 24(1):56–60

    Google Scholar 

  306. Bourgine FP, Gennery MK, Chapman JJ et al (1994) Biological process at Saints Hill Water treatment plant, Kent. J Inst Water Environ Manag 8:379–392

    CAS  Google Scholar 

  307. Seppánen HT (1992) Experiences of biological iron and manganese removal in Finland. J Inst Water Environ Manag 6:333–341

    Google Scholar 

  308. Mouchet P (1992) From conventional to biological removal of iron and manganese in France. J Am Water Works Assoc 8(4):158–167

    Google Scholar 

  309. Hope CK, Bott TR (2004) Modeling of manganese biofiltration using biofilms of Leptothrix discophora. Water Res 38:1853–1861

    CAS  Google Scholar 

  310. Vandenabeele J, De Beer D, Germonpre R et al (1995) Influence of nitrate on manganese consortia from sand filters. Water Res 29:579–587

    CAS  Google Scholar 

  311. Zhang J, Lion LW, Nelson YM et al (2002) Kinetics of Mn(II) oxidation by Leptothrix discophora SSI. Geochim et Cosmochim Acta 65(5):773–781

    Google Scholar 

  312. Pontius FW, Brown KG, Chen CJ (1994) Health implications of arsenic in drinking water. J Am Water Works Assoc 86(9):52–63

    CAS  Google Scholar 

  313. Huges MF (2002) Arsenic toxicity and potential mechanisms of action. Toxicol Lett 133(1):1–16

    Google Scholar 

  314. Katsoyiannis IA (2004) Application of biological process for the removal of arsenic from groundwater’s. Water Res 38(1):17–26

    CAS  Google Scholar 

  315. World Health Organization (1996) Guidelines for drinking water quality, 2nd edn. Health criteria and other supporting information, WHO, Geneva

    Google Scholar 

  316. Tallman DE, Shaikh AU (1980) Red ox stability of inorganic arsenic(III) and arsenic(V) in aqueous solution. Anal Chem 52: 199–201.

    Google Scholar 

  317. Cullen WR, Reimer KJ (1989) Arsenic speciation in the environment. Chem Rev 89:713–764

    CAS  Google Scholar 

  318. Zouboulis AI, Katsoyiannis IA (2002) Removal of arsenates from contaminated water by coagulation-direct filtration. Sep Sci Technol 37(12):2859–2873

    CAS  Google Scholar 

  319. Kartinen EO, Martin CJ (1995) An overview of arsenic removal processes. Desalination 103:79–88

    CAS  Google Scholar 

  320. Driehaus W, Seith R, Jekel M (1995) Oxidation of As(III) with manganese oxides in water treatment. Water Res 29(1):297–305

    CAS  Google Scholar 

  321. Kim MJ, Nriangu JA (2000) Oxidation of arsenite in groundwater using ozone and oxygen. Sci Total Environ 247:71–79

    CAS  Google Scholar 

  322. Vinokurov SV, Кantor LI, Tsypysheva АG (1999) Problems, ways and facilities to protect the environment from pollution by oil and petroleum products. In: Abstract of the 3rd science and technology conference, VIMI, Moscow, 6–9 April 1999

    Google Scholar 

  323. Cristal-Campos C, Baudin J (2002) L’elimination des pesticides par le procéde. Technol Sci Méth 3:49–53

    Google Scholar 

  324. Piet C, Peltier S, Gauber J-Y et al (2002) Elimination par le CAP de l’atrazine et de la DEA. Technol Sci Méth 3:43–48

    Google Scholar 

  325. Sutherland J, Adams C, Kekobad J (2004) Treatment of MTBE by air stripping, carbon adsorption and advanced oxidation: technical and economic comparison for five groundwater. Water Res 38(1):193–205

    CAS  Google Scholar 

  326. Squillace P, Pankow J, Kortes N et al (1997) Review of the environmental behavior and fate of methyl-tert-butylether. Environ Toxicol Chem 16:1836–1844

    CAS  Google Scholar 

  327. Cater SR, Stefan MI, Bolton JR et al (2000) UV/H2O2 treatment of methyl tert-butyl ether in contaminated water. Environ Sci Technol 34(4):659–662

    CAS  Google Scholar 

  328. Shon HK, Vigneswaran S, Ngo HH (2005) Chemical coupling of photocatalysis with flocculation and adsorption in the removal of organic matter. Water Res 39(12):2549–2558

    CAS  Google Scholar 

  329. Sanchez-Polo M, VonGunten U, Rivera-Utrila J (2005) Efficiency of activated carbon to transform ozone into OH· radicals: influence of operational parameters. Water Res 39(14):3189–3198

    CAS  Google Scholar 

  330. Kimiaki I, Youichi S, Nobuo J et al (2001) Investigation process of water treatment using biofilters. J Jpn Water Works Assoc 70(8):2–12

    Google Scholar 

  331. Nicolella C, Zolezzi M, Rabino M et al (2005) Development of particle-based biofilms for degradation of xenobiotic organic compounds. Water Res 39(12):2459–2780

    Google Scholar 

  332. Dallas L, Meyer CL, Ja-Chin SB et al (2002) Method and apparatus for biodegradation of alkyl ethers and tertiary butyl alcohol US Patent 6458276, 28 Oct 2002

    Google Scholar 

  333. Tuxen N, Tüchsen PL, Rügge K et al (2000) Fate of seven pesticides in an aerobic aquifer studied in column experiments. Chemosphere 41(9):1485–1494

    CAS  Google Scholar 

  334. Council directive 98/83 EC (1998) On the quality of water intended for human consumption. Off J Eur Commun 330:32–54

    Google Scholar 

  335. Block JC (1992) Biofilm in drinking water distribution systems. In: Melo LF et al (eds) Biofilms scince and technology. Klüwer Acad Publ, Netherlands, pp 469–485

    Google Scholar 

  336. Niquette P, Servais P, Savoir R (2000) Impact of pipe materials on densities of fixed bacteria biomass in drinking water distribution system. Water Res 34(6):1952–1956

    CAS  Google Scholar 

  337. Zacheus OM, Jivanainen EK, Nissinen TK et al (2000) Bacterial biofilm formation on polyvinyl chloride, polyethylene and stainless steel exposed to ozonated water. Water Res 34(1):63–70

    CAS  Google Scholar 

  338. LeChevallier MW (1990) Coliform regrowth in distribution water: a review. J Am Water Works Assoc 82(1):74–86

    CAS  Google Scholar 

  339. Schmitt J-P (1974) La qualete de l’eau dans le rèseau de distribution. le programme de recherches “Biofilm”. Courants 26:29–33

    Google Scholar 

  340. Haas CN (1999) Benefits of using disinfectant residual. J Am Water Works Assoc 91(1):65–69

    CAS  Google Scholar 

  341. Zacheus OM, Lehtola MI, Korhonen LK (2001) Soft deposits, the key site for microbial growth in drinking water distribution networks. Water Res 35(7):1757–1765

    CAS  Google Scholar 

  342. Szewzyk U, Szewzyk R, Manz W (2000) Microbiological safety of drinking water. Annu Rev Microbiol 54:81–127

    CAS  Google Scholar 

  343. Rogers J, Dowsett A, Dennis P et al (1994) Influence of plumbing materials on biofilm formation and growth of Legionella pneumophila in potable water systems. Appl Environ Microbiol 60(6):1842–1851

    CAS  Google Scholar 

  344. Schwartz T, Hoffman S, Obst U (1992) Formation and bacterial composition of young, natural biofilms obtained from public bank-filtered drinking water systems. Water Res 32(9):2787–2797

    Google Scholar 

  345. Schwartz T, Kalmbach S, Hoffman S et al (1998) PCR-based detection of mycobacteria in biofilms from a dinking water distribution systems. J Microbiol Method 34:113–123

    CAS  Google Scholar 

  346. Camper A, McFeters G, Characklis W et al (1991) Growth kinetics of coliform bacteria under conditions relevant to drinking water distribution systems. Appl Environ Microbiol 57(8):2233–2239

    CAS  Google Scholar 

  347. Mackay W, Grobbon L, Barer M (1999) Biofilms in drinking water systems: a possible reservoir for Helicobacter pylori. J Appl Microbiol 85(Suppl 1):52S–59S

    Google Scholar 

  348. van Loosdrecht MCM, Eikelboom D, Gjaltema A et al (1995) Biofilm structures. Water Sci Technol 32(8):35–43

    Google Scholar 

  349. Picioreanu C, van Loosdrecht MCM, Heijenen JJ (1998) Mathematical modeling of biofilm structure with hybrid differential discrete cellular automaton approach. Biotechnol Bioeng 58(1):101–116

    CAS  Google Scholar 

  350. Picioreanu C, van Loosdrecht MCM, Heijenen JJ (2001) Two-dimensional model of biofilm detachment caused by internal stress from liquid flow. Biotechnol Bioeng 72(2):205–218

    CAS  Google Scholar 

  351. Davies DG, Parsek MR, Pearson JP et al (1998) The involvement of cell-to-cell signals in the development of bacterial biofilm. Science AAAS Weekly Pap Edit 280:295–297

    Google Scholar 

  352. Kjelleberg S, Molin S (2002) Is there a role for quorum sensing signals in bacterial biofilms. Curr Opin Microbiol 5(3):254–258

    CAS  Google Scholar 

  353. Sauer KA, Camper AK, Ehrlich GD et al (2002) Pseudomonas aеruginosa displays multiple phenotypes during development as a biofilm. J Bacteriol 184(4):1140–1154

    CAS  Google Scholar 

  354. Telgmann U, Horn H, Morgenroth E (2004) Influence of growth history on sloughing and erosion from biofilms. Water Res 38:3671–3684

    CAS  Google Scholar 

  355. Horn H, Reiff H, Morgenroth E (2003) Simulation of growth and detachment in biofilm systems under defined hydrodynamic conditions. Biotechnol Bioeng 81(5):607–617

    CAS  Google Scholar 

  356. Lehtoba MJ, Nissinen TK, Miettinen IT et al (2004) Removal of soft deposits from the distribution system improves the drinking water quality. Water Res 38:601–610

    Google Scholar 

  357. Sarin P, Snoeyink VL, Bebce J et al (2001) Physico-chemical characteristics of corrosion scales in old iron pipes. Water Res 35:2961–2969

    CAS  Google Scholar 

  358. Sarin P, Snoeyink VL, Bebce J et al (2004) Iron release from corroded iron pipes in drinking water distribution systems: effect of dissolved oxygen. Water Res 38(5):1259–1269

    CAS  Google Scholar 

  359. Benjamin MM, Sontheimer H, Leroy P (1996) Corrosion of iron and steel: internal corrosion of water distribution systems. AWWA Research Foundation, Denver, pp 29–70

    Google Scholar 

  360. Pontius FW (1992) A current look at the federal drinking water regulations. J Am Water Works Assoc 3:36–50

    Google Scholar 

  361. Frateur I, Deslouis C, Kiene L et al (1999) Free chlorine consumption induced by cast iron corrosion in drinking water distribution systems. Water Res 33(8):1781–1790

    CAS  Google Scholar 

  362. Miettinen IT, Vartiainen T, Martikainen PI (1997) Phosphorus and bacterial growth in drinking water. Appl Environ Microbiol 63(8):3242–3245

    CAS  Google Scholar 

  363. Sathasivan A, Ohgaki S, Yamamoto K (1997) Role of inorganic phosphorus in controlling regrowth in water distribution system. Water Sci Technol 35(8):37–44

    CAS  Google Scholar 

  364. Kanakoudis VK (2004) A Troubleshooting manual for handling operational problems in water pipe networks. J Water Supply Res Technol 53(2):109–124

    Google Scholar 

  365. Kanakoudis VK, Tolikas DI (2001) The role of leaks and breaks in water networks-technical and economical methodic solutions. J Water Supply Res Technol 50(5):301–311

    Google Scholar 

  366. Van den Boomen M, van Mazijk A, Beuken RHS (2004) First evaluation of new design concepts for self-cleaning distribution networks. J Water Supply Res Technol 53(1):43–50

    CAS  Google Scholar 

  367. Camper A, Buis I, Goodrum L (2001) Effects of UV-disinfection on humic substance and biofilms. In: Abstract of the annual AWWA water quality technology conference, Nashville, 11–14 November 2001

    Google Scholar 

  368. Pozos N, Scow K, Wuertz S et al (2004) UV disinfection in a model distribution system: biofilm growth and microbial community. Water Res 38(10):3083–3091

    CAS  Google Scholar 

  369. Momba M, Cloete T, Venter S et al (1998) Evaluation of the impact of disinfection processes on the formation of biofilms in potable surface water distribution systems. Water Sci Technol 38(8/9):283–289

    CAS  Google Scholar 

  370. Lund V, Ormerod K (1995) The influence of disinfection processes on biofilm formation in water distribution systems. Water Res 29(4):1013–1021

    CAS  Google Scholar 

  371. Goeres DM, Palys T, Sandel BB et al (2004) Evaluation of disinfectant efficacy against biofilm and suspended bacteria in a laboratory swimming pool model. Water Res 38:3103–3109

    CAS  Google Scholar 

  372. Critchley MM, Fallowfield HI (2001) The effect of distribution system bacterial biofilms on copper concentrations in drinking water. Water Sci Technol Water Supply 1(4):247–252

    CAS  Google Scholar 

  373. Lehtola MJ, Miettinen IT, Keinánen MM et al (2004) Microbiology, chemistry and biofilm development in a pilot drinking water distribution system with copper and plastic pipes. Water Res 38:3769–3779

    CAS  Google Scholar 

  374. Rossman LA, Clark RM, Grayman WM (1994) Modeling chlorine residuals in drinking water distribution systems. J Environ Eng (ASCE) 120(4):803–820

    CAS  Google Scholar 

  375. Shah M, Sinai G (1988) Steady state model for dilution in water networks. J Hydraul Eng (ASCE) 114(2):192–206

    Google Scholar 

  376. Wood DJ, Ormsbee LE (1989) Supply identification for water distribution systems. J Am Water Works Assoc 81(7):74–80

    Google Scholar 

  377. Boulos PF, Altman T, Sadhal K (1992) Computer modeling of water quality in large networks. J Appl Math Modeling 16(8):439–445

    Google Scholar 

  378. Boulos PF, Altman T, Jarrige PA (1995) Discrete simulation spproach for network water quality models. J Water Resour Plan Manag (ASCE) 121(1):49–60

    Google Scholar 

  379. Rossman LA, Boulos PF, Altman T (1993) Discrete volume element method for network water-quality models. J Water Resour Plan Manag (ASCE) 119(5):505–517

    Google Scholar 

  380. Boulos PF, Altman T, Jarrige PA (1994) An event-driven method for modeling contaminant propagation in water networks. J Appl Math Model 18(2):84–92

    Google Scholar 

  381. Islam MR, Chaudhary MH (1998) Modeling of constituent transport in unsteady flows in pipe networks. J Hydraul Eng (ASCE) 124(11):1115–1124

    Google Scholar 

  382. Rossman LA, Boulos PF (1996) Numerical methods for water quality in distribution systems: a comparison. J Water Resour Plan Manag (ASCE) 122(2):137–146

    Google Scholar 

  383. Munavalli GR, Mohan Kumar MS (2004) Dynamic simulation of multicomponent reaction transport in water distribution systems. Water Res 38:1971–1988

    CAS  Google Scholar 

  384. Munavalli GR, Mohan Kumar MS (2004) Modified Langrangian method for modeling water quality in distribution systems. Water Res 38:2973–2988

    CAS  Google Scholar 

  385. Graham NJ, Collins RD (1996) Advances in slow sand alternative biological filtrations. Wiley, Chichester

    Google Scholar 

  386. Weber-Shirk ML, Dick RI (1997) Biological mechanisms in slow sand filters. J Am Water Works Assoc 89:73–83

    Google Scholar 

  387. Weber-Shirk ML, Dick RI (1997) Physical-chemical mechanisms in slow sand filters. J Am Water Works Assoc 89:87–100

    CAS  Google Scholar 

  388. Mauclaire L, Schůrmann A, Thullner M et al (2004) Sand filtration in water treatment plant: biological parameters responsible for clogging. J Water Supply Res Technol 53(2):93–108

    CAS  Google Scholar 

  389. Hynes JP (2000) Water treatment apparatus. Brit patent 2350357, 29 Nov 2000

    Google Scholar 

  390. Goreangab project (2003) Windhoek, namibia: a unique technology—municipal wastewater is turned into drinking water. In: Abstract of the 27 international exhibition-congress on chemical engineering, environmental protection and biotechnology, ACHEMA, Frankfurt a. M., 19–24 May 2003

    Google Scholar 

  391. Sheng-JL, Guin-J L, Guin Je L et al (2001) Water treating apparatus. British patent 2354515, 28 March 2001

    Google Scholar 

  392. Ripperger S (2000) Wasseranfbereitung in Namibia. Filtr Sep 14(3):155–156

    Google Scholar 

  393. Montiel A, Welte B, Maucolin P et al (1997) Etude du relargage des nitrites des filter a carbon actif en grains. Technol Sci Meth 7/8:11–15

    Google Scholar 

  394. Korabelshchikov V (2003) The complex methods of water treatment. Industry 2:36–37

    Google Scholar 

  395. Modern waterwork“Vozdvizhenye” (1999) New technoloies and equipment in water supply and water management 2:185–186

    Google Scholar 

  396. Ceronio AD, Basson ND, Kruger M et al (2002) The in-depth evaluation of three filtration facilities. Water SA Spec. Iss:6–9

    Google Scholar 

  397. Lukas A (2000) Rohwasser aus der warnow. Wasserwirt—Wassertechn 1:17–22

    Google Scholar 

  398. Jguel N (2001) L’apport des nouvelles technologies pour la gestion du cycle de l’eau. Eau, ind, nuisances 245:53–54

    Google Scholar 

  399. Hays G, Haaland J (2002) Australian patent 747194, 9 May 2002

    Google Scholar 

  400. Urban F, Buchsteiner D (2000) Flockungzanlage zur aufbereitung von talsperrenwasser. Teil 1. Planung und bau. BBR: Brunnenbau, Ban Wasserwork, Rohrleitunggfau 51(9):16–22

    Google Scholar 

  401. Tomoyoshi M (2004) Water supply in Tokyo. Water 21(6):25–26

    Google Scholar 

  402. Monarca S, Zani C, Richardson SD et al (2004) A new approach to evaluating the toxicity and genotoxicity of disinfected drinking water. Water Res 38:3809–3819

    CAS  Google Scholar 

  403. Hwang BF, Jaakkola JJ (2003) Water chlorination and birth defects: a systematic review and meta-analysis. Arch Environ Health 58:83–91

    CAS  Google Scholar 

  404. Monarca S, Zanardini A, Feretti D et al (1998) Mutagenicity of lake drinking water treated with different disinfectants in bacterial and plant tests. Water Res 32:2689–2695

    CAS  Google Scholar 

  405. Goncharuk VV, Potapchenko NG, Savuk OS et al (2004) Combined antimicrobial effect of ozone and ultraviolet radiation generated by various sources. J Water Chem Technol 26(2):60–67

    Google Scholar 

  406. Goncharuk VV, Potapchenko NG, Savuk OS et al (2001) Disinfection of water by ozone: effect of inorganic impurities on kinetics of water disinfection. J Water Chem Technol 23(2):55–63

    Google Scholar 

  407. Goncharuk VV, Potapchenko NG, Savuk OS et al (2001) The effect of humic compounds on the kinetic of dying off of Echerichia coli in disinfection of water by ozone. J Water Chem Technol 23(3):54–61

    Google Scholar 

  408. Richardson SD, Thruston AD, Caughran TV et al (2000) Identification of new drinking water disinfection by-products from ozone, chlorine dioxide, chloramines and chlorine. Water Air Soil Pollut 123(1/4):95–102

    CAS  Google Scholar 

  409. Milov VR, Boldyrev VV, Baranov SV (2001) Experience in water disinfection by membrane electrolysis at the city waterworks Monchegorsk. Water Ecol Probl Decis 3:17–20

    Google Scholar 

  410. Khramenkov SV, Malyshev BV (2000) Test results of Moscow river water disinfection by chlorine dioxide. Water Supply San Technol 10:2–4

    Google Scholar 

  411. Niquette P, Pre’vost M, Merlet N et al (1999) Influence de facteurs contrólant l’enlevemnt de la demande en chlore et de precurseurs de sous-produits de chloration dans des filters biologiques. Water Res 33(10):2329–2344

    CAS  Google Scholar 

  412. Goncharuk VV, Potapchenko NG, Savuk OS et al (2003) A study of the various procedures of water disinfection by O3/UV. J Water Chem Technol 25(5):65–72

    Google Scholar 

  413. Stockholm setzt tukünftig auf UV-desinfektionstechnik (2001) BBR: Brunnenbau, Ban Wasserwerk, Rohzleitungsbau 52(1):41–44

    Google Scholar 

  414. Anlagen V (2001) Stockholm erteilt WEDECO zweiten grobauftrag. Galvanotechnik 92(12):3408–3410

    Google Scholar 

  415. Hoger O (2000) Desinfektion mit UV-anlagen nach DVGW-arbeitsblatt W 294. BBR: Brunnenbau, Ban Wasserwerk, Rohzleitungsbau 51(10):76–83

    Google Scholar 

  416. Auckenthaler A (2003) Pathogene mikroorganismen im grund- und trinkwasser: transport, nachweismethoden, wassermanagement, basel etc. Birkhduser 1:95–130

    Google Scholar 

  417. An experience of practical application of drinking wastewater disinfection by ultraviolet radiation (2001) New technologies and equipment in water supply and water management 3:127–129

    Google Scholar 

  418. A Drinking Water Production (2011) http://www.cryobzkm.ru/water. Accessed 01 Jan 2011

  419. Zohra B, Driss O, Godfrey W (2004) EVAPRO: economic and financial evaluation of water supply projects. J Hydroinform 6(2):109–121

    Google Scholar 

  420. Goncharuk VV (ed) (2003) Byuvety Kyyeva. Yakist’ artezians’koï vody (Kiev’s artesian wells. Quality of artesian water). Geoprint, Kiev

    Google Scholar 

  421. Goncharuk VV (2008) The concept of choosing a list of indices and their regulatory values for determination of hygienic requirements and control over the drinking water quality in Ukraine. J Water Chem Technol Spec Iss(Part II):52–111

    Google Scholar 

  422. Wadha SG, Khaled GH, Edberg SC (2002) Comparative microbial character of consumed food and drinking water. Crit Rev Microbiol 28(3):249–279

    Google Scholar 

  423. Cotran RS, Kumar VI, Robbins SL (eds) (1994) Pathological basis of disease, 5th edn. Saunders, Philadelphia

    Google Scholar 

  424. Mandell GL, Douglas JE, Benett RI (eds) (2000) Principles and practice of infectious diseases, 5th edn. Churchill Livingston, Philadelphia

    Google Scholar 

  425. Ducan HE, Edberg SC (1995) Host-microbe interaction in the gastrointestinal tract. Crit Rev Microbiol 21(2):85–100

    Google Scholar 

  426. Edberg SC, Gallo PI, Kontnick CI (1996) Analysis of the virulence characteristics of bacteria isolated from bottled, water cooler, and tap water. Micro Ecol Health Dis 9:67–72

    Google Scholar 

  427. Edberg SC, Kops S, Kontnick C (1997) Analysis of cytotoxicity and invasiveness of heterotrophic plate count bacteria (HPC) isolated from drinking water on blood media. J Appl Microbiol 82:455–481

    CAS  Google Scholar 

  428. Reasoner DJ (1990) Drinking water microbiology. Springer-Verlag, New York

    Google Scholar 

  429. World Health Organization (2004) Guidelines for drinking water quality. Recommendations, vol 1. WHO, Geneva

    Google Scholar 

  430. Water FG. (2003) Joint strategy of introduction. Working group 2A. Ecological state (ECOSTAT) in general approach to classification of ecological potential, Rome.

    Google Scholar 

  431. Sinclair M, Schlosser O (2007) Water softening: epidemiological evidence on calcium and magnesium in drinking water and cardiovascular disease. Water 21(2):18–19

    Google Scholar 

  432. Rosenlund M, Berglind N (2005) Daily intake of magnesium and calcium from drinking water in relation to myocardial infarction. Epidemiology 16(4):570–576

    Google Scholar 

  433. Mons M, VanDuk H, Gatel D et al (2007) Softening, conditioning and the optimal composition of drinking water. Water 21(2):19–20

    Google Scholar 

  434. International Agency for Research on Cancer (1993) Beryllium, cadmium, mercury, and exposures in the glass manufacturing industry: IARC monographs on the evaluation of carcinogenic risks to humans. IARC, Lyon

    Google Scholar 

  435. Vaessent Hubert AMG, Szteke B (2000) Beryllium in food and drinking water—a summary of available knowledge. Food Addit Contam 17(2):149–159

    Google Scholar 

  436. Anderson A (2004) Clean water report. http://www.pmmag.com/Articles/Feature_Article/7652f6d1030d7010VgnVCM100000f932a8c0. Accessed 1 June 2004

  437. Fewtrell L, Kay D (2001) A review of the science behind drinking water standards for copper. Int J Environ Health Res 11:161–167

    CAS  Google Scholar 

  438. American Public Health Association (2001) Drinking water quality and public health (Position paper). J Publ Health 91(3):499–500

    Google Scholar 

  439. Goncharuk VV, Rudenko AV, Koval EZ et al (2004) The problem of water infection with pathogens of mycoses and prospects of resolving this problem. J Water Chem Technol 26(2):1–18

    Google Scholar 

  440. Gang D, Clevenger TE, Banerji SK (2003) Relationship of chlorine decay and THMs formation to NOM size. J Hazard Mater 96(1):1–12

    CAS  Google Scholar 

  441. The guidelines of the European Union Council 98/83/EС (1998) Water quality intended for consumption by man. Off J Eur Commun 1:2–5

    Google Scholar 

  442. Environmental Institute (1997) Standards and strategies in the European Union to control trihalomethanes (THMs) in drinking water, vol. 2, ECSC-EC-EAEC, Brussels, Luxembourg

    Google Scholar 

  443. Environmental Institute (1997) Exposure of the European population to trihalomethanes (THMs) in drinking water, vol. 2, ECSC-EC-EAEC, Brussels, Luxembourg

    Google Scholar 

  444. Meeting strict DBP standards—the view of the European water industry (2006) Dr. R.A. Breach, head of quality and environmental services, severn trent water, chairman. EUREAY Commission 1:140–145

    Google Scholar 

  445. Charrois JWA, Graham D, Hrudey SE (2004) Disinfection by-products in small Alberta community drinking water supplies. J Toxicol Environ Health A 67:1797–1803

    CAS  Google Scholar 

  446. Swietlik J, Raczyk-Stanislawik U, Bilozor S et al (2002) Adsorption of natural organic matter oxidized with ClO2 on granular activated carbon. Water Res 36(9):2328–2336

    CAS  Google Scholar 

  447. Swietlik J, Raczyk-Stanislawik U, Bilozor S et al (2003) Reduction of ClO2 demand by ClO2 oxidation and subsequent GAC filtration. Water Res 37(19):4693–4702

    CAS  Google Scholar 

  448. Collivignarelli C, Sorlini S, Belluati M (2002) Rimozione del clorito con carbone attivo granulare e effetti della riattivazione chimica. Ing Ambient 21(5):265–271

    Google Scholar 

  449. Roccaro P, Mancini G, Vagliasindi FGA (2005) Water intended for human consumption. Part 1: compliance with European water quality standards. Desalination 176:1–11

    CAS  Google Scholar 

  450. Linden KG, Shin GA, Faubert G et al (2002) UV-disinfection of Giardia lamblia cysts in water. Environ Sci Technol 36(11):2519–2522

    CAS  Google Scholar 

  451. Shin G, Linden K, Arrowood M et al (2001) Low-pressure UV-inactivation and DNA repair potential of Cryptosporidium parvum oocysts. Appl Environ Microbiol 67(7):3029–3032

    CAS  Google Scholar 

  452. Legrini O, Oliveros E, Braun A (1993) Photochemical processes for water treatment. Chem Rev 93(2):671–698

    CAS  Google Scholar 

  453. Brass HJ (2000) Status of the drinking water standards program in the United States. Water Air Soil Pollut 123(1/4):1–9

    CAS  Google Scholar 

  454. Caro J, Serrano A, Gallego M (2007) Direct screening and confirmation of priority volatile organic pollutants in drinking water. J Chromatogr A 11(38):244–250

    Google Scholar 

  455. Fielding M, Farrimond M (1999) Disinfection by-products in drinking water: current issues. Royal Society of Chemistry, UK

    Google Scholar 

  456. Dojlido Q, Zbiec E, Swietlik J (1999) Formation of the haloacetic acids during ozonation and chlorination of water in Warsaw waterworks (Poland). Water Res 33:3111–3118

    CAS  Google Scholar 

  457. Shannon MA, Bohn PW, Elimelech M et al (2008) Science and technology for water purification in the coming decades. Nature 452:301–310

    CAS  Google Scholar 

  458. Russian F (2004) The federal law “On special technical regulation for requirements for sanitary-epidemiological safety to water intended for human consumption and drinking water supply” (draft). Res Inform Collect 19(1):27

    Google Scholar 

  459. El-Dib MA, Ali RKA (1995) THMs formation during chlorination of raw Nile river water. Water Res 29(9):375–378

    CAS  Google Scholar 

  460. Lin T-F, Hoang SW (2000) Inhalation exposure to THMs from drinking water in South Taiwan. Sci Total Environ 246:41–49

    CAS  Google Scholar 

  461. Boccellia DL, Trybyb ME, Uberg JG et al (2003) A reactive species model for chlorine decay and THM formation under rechlorination conditions. Water Res 37(11):2654–2666

    Google Scholar 

  462. Gang D, Clevenger TE, Banerji SK (2003) Relationship of chlorine decay and THMs formation to NOM size. J Hazard Mater A96: 1–12.

    Google Scholar 

  463. Abdulahha MP, Yewa CH, Ramlib MS (2003) Formation, modeling and validation of trihalomethanes (THM) in Malaysian drinking water: a case study in the districts of Tampin, Negeri Sembilan and Sabak Bernam, Selangor, Malaysia. Water Res 37(19):4637–4644

    Google Scholar 

  464. Abd El-Shafy M, Grunwald A (2000) THM formation in water supply in South Bohemia, Czech Republic. Water Res 43(13):3453–3459

    Google Scholar 

  465. Cortvriend J, Hulsmann A (2006) Europe paves the way for the revision of the drinking water directive. Water 21(1):17–19

    Google Scholar 

  466. Sauvant M-P, Pepin D (2002) Drinking water and cardiovascular disease. Food Chem Toxicol 40:1311–1325

    CAS  Google Scholar 

  467. Yang CY (1998) Calcium and magnesium in drinking water and risk of death from cerebrovascular disease. Stroke 29:411–414

    CAS  Google Scholar 

  468. Water global news digests (2007) http://www.iwapublishing.com/ Accessed 23 Jan 2007

  469. Water global news digests (2007) http://www.iwapublishing.com. Accessed 6 Feb 2007

  470. Guerrant RL (1997) Cryptosporidiosis an emerging, highly infectious treat. Emerg Infect Dis 3(1):51–57

    CAS  Google Scholar 

  471. Goncharuk VV (ed) (2005) Ekologicheskiye aspekty sovremennykh tekhnologiy okhrany vodnoy sred (Ecological aspects of modern technologies of water medium protection). Nauk Dumka, Кiev

    Google Scholar 

  472. Balls M (2004) Progressing toward the reduction, refinement and replacement of laboratory animal procedures: thoughts on some encounters with Dr. Iain Purchase. Toxicol In vitro 18:165–170

    CAS  Google Scholar 

  473. Pleteneva TV, Solomatin EМ, Syroezhkin AV et al (2005) Toksikologicheskaya khimiya (Тоxiocological chemistry). GEOTAR-Меdia, Moscow

    Google Scholar 

  474. Sundstrom L, Morrison B, Bradley M et al (2005) Organotypic cultures as tools for functional screening in the CNS. Drug Discov Today 10(14):993–1000

    CAS  Google Scholar 

  475. Ferro M, Doyle A (2001) Standardization for In Vitro testing. Cell Biol Toxicol 17:205–212

    CAS  Google Scholar 

  476. Ilyin S, Belkowski S, Plata-Salaman C (2004) Biomarker discovery and validation: technologies and integrative approaches. Trends Biotechnol 22(8):411–416

    CAS  Google Scholar 

  477. Arkhipchuk VV, Goncharuk VV (2004) Assessment of the quality of bottled drinking water by biotesting methods. J Water Chem Technol 26(5):38–60

    Google Scholar 

  478. Freshney I (2001) Application of cell cultures to toxicology. Cell Biol Toxicol 17:213–230

    CAS  Google Scholar 

  479. Gulden M, Dierickx P, Seibert H (2006) Validation of a prediction model for estimating serum concentrations of chemicals which are equivalent to toxic concentrations In Vitro. Toxicol In Vitro 20(7):1114–1124

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vladyslav V. Goncharuk .

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Goncharuk, V. (2014). Drinking Water: Factors Affecting the Quality of Drinking Water. In: Drinking Water. Springer, Cham. https://doi.org/10.1007/978-3-319-04334-0_4

Download citation

Publish with us

Policies and ethics