Skip to main content

Analytical and Numerical Methods for Calculation of Induction and Conduction Heating Systems

  • Chapter
  • First Online:
Induction and Direct Resistance Heating

Abstract

This chapter is about the analytical and numerical methods that have been successfully applied for modeling induction and direct resistance heating processes. In Sect. 5.1, calculation of induction heating system is presented by applying the equivalent magnetic circuit method. Analytical methods are extensively described in the previous chapters and briefly summarized in the Sect. 5.2 of this chapter. The Sect. 5.3 presents a simple procedure to solve coupled EM and Thermal induction heating problem by means of the finite difference method in 1D axis-symmetric domain. The procedure is fully detailed and can be easily implemented in a code. Typical results produced by a commercial code based on 1D finite difference method are shown in Sect. 5.4. Volume integral methods have been also successfully used in coupled electromagnetic and thermal calculations: these numerical techniques are detailed in the Sect. 5.5. Calculation of parameters of direct resistance heating systems and the importance of the feeding circuit parameters are dealt with in Sect. 5.6 by applying analytical solutions while in Sect. 5.7 the calculation is carried out by resorting again to the 1D finite difference method. Finite element method is the numerical technique most applied in commercial software dedicated to electromagnetic design. Finite element models are nowadays extensively used in electro thermal applications and a short description focused on practical use of finite element is presented in the closing section of the book.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Sluhockiĭ A. E., & Ryskin S. E. (1974). Inductors for induction heating (p. 264). Leningrad: Energhia (in Russian).

    Google Scholar 

  2. Nemkov V. S., & Demidovich V. B. (1988). Theory and calculation of induction heating installations (p. 280). Leningrad: Energoatomizdat (in Russian).

    Google Scholar 

  3. Lavers, J. D. (2007). State of art of numerical modeling for induction processes. In: Proceedings of HES-07—heating by electromagnetic sources (pp. 13–24). Padua (Italy), June 19–22, n.A-1. ISBN 88-89884-07-X.

    Google Scholar 

  4. Lavers, J. D., & Biringer, P. P. (1974). An improved method of calculating the power generated in an inductively heated load. IEEE Transactions on Industry Applications, 10(2), 273–278.

    Google Scholar 

  5. Lupi, S. (2005). Elettrotermia (453 pp.). Padua: Libreria Progetto (Italy) (in Italian).

    Google Scholar 

  6. Bukanin, V., Kuchmasov, D., Nemkov, V., & Zenkov, A. (1997). Computer simulation—an effective creative tool for development of the induction heat treatment a process. In 1st international induction heat treating symposium. Indianapolis, Indiana, 785–792.

    Google Scholar 

  7. Kolbe, E., & Reiss W. (1963). Eine methode zur numerisce bestimmung der stromdichteverteilung in induktiv erwärmten körpern unterschliedlicher geometrischer Form. In Z. Wiss (Ed.), Hochschule Elektrotechnik (pp. 311–317). Ilmenau, J.9, H.3.

    Google Scholar 

  8. Nemkov, V., & Polevodov, B. (1980). Mathematical modeling on computer of devices for RF heating (48 pp.). Leningrad: Mashinstroenie.

    Google Scholar 

  9. Nemkov, V., Polevodov, B., & Gurevich, S. (1991). Mathematical modelling of high-frequency heating installations (60 pp.). Leningrad: Politecnika (in Russian).

    Google Scholar 

  10. Ceolini, F., & Lupi, S. (1978). The mutually-coupled circuits method for calculations regarding inductors for induction heating with special configurations. In Proceedings of IEEE-IAS annual meeting conference Rec (Vol. 41B, pp. 1151–1157). Toronto, Canada.

    Google Scholar 

  11. Weinstein, B. (1884). Zur Berechnung des Potentials von Rollen. Annalen der Physik, 257(2), 329–360.

    Article  Google Scholar 

  12. Grover, F. W. (1962). Inductance calculations working formulas and tables. New York: Dover Publ. Inc.

    MATH  Google Scholar 

  13. Garret, M.W. (1963). Calculations of fields, forces and mutual inductances of current systems by elliptic integrals. Journal of Applied Physics, 34(9), 2567–2573.

    Google Scholar 

  14. Thompson, M. (1999). Inductance calculation techniques—Part I: classical methods; Part II: approximations and handbook methods. Power Control and Intelligent Motion, 25(12), 40–50.

    Google Scholar 

  15. Hurley, W. G., & Duffy, M. C. (1995). Calculation of self and mutual impedances in planar magnetic structures. IEEE Transactions on Magnetics, 31(4), 2416−2422.

    Google Scholar 

  16. Hurley, W. G., & Duffy, M. C. (1997). Calculation of self and mutual impedances in planar sandwich inductors. IEEE Transactions on Magnetics, 33(3), 2282−2290.

    Google Scholar 

  17. Akyel, C., & Babic, S. I. (2006). New analytic-numerical solutions for the mutual inductance of two coaxial circular coils with rectangular cross section in air. IEEE Transactions on Magnetics, 42(6), 1661–1669.

    Article  Google Scholar 

  18. Forzan, M., Lupi S., & Toffano, E. (2011). Compensation of induction heating load edge effect by space control. COMPEL, 30(5), 1558–1569.

    Google Scholar 

  19. Lupi, S. (1979). The numerical calculation of forces in induction heating systems. In IEEE-IAS annuals meeting conference proceedings (pp. 1226–1231). Cleveland (USA).

    Google Scholar 

  20. Strunskiĭ, B. M. (1962). Short circuit network of electrical furnaces (p. 335). Moscow: Metallurgizdat (in Russian).

    Google Scholar 

  21. Mukoseev, Y. P. (1959). AC current distribution in conductors. Moscow: Gosenergoizdat (in Russian).

    Google Scholar 

  22. Aliferov, A., & Lupi, S. (2007). Direct resistance heating of metals (p. 223). Novosibirsk: NGTU. ISBN 5-7782-0475-2 (in Russian).

    Google Scholar 

  23. Lupi, S., & Nunes, M. F. (1990). Riscaldamento dei metalli mediante conduzione diretta di corrente (p. 86). Padova: CLEUP (Italy). ISBN 88-7178-338-7.

    Google Scholar 

  24. Romanov, D. I. (1981). Direct resistance heating of metals (p. 280). Moskow: Mashinostrenie (in Russian).

    Google Scholar 

  25. Lupi, S., Forzan, M., & Aliferov, A. (2008). Characteristics of installations for direct resistance heating of ferromagnatic bars of square cross-section. In Proceedings of the international scientific colloquium MEP— « modelling for electromagnetic processing (pp. 43–49). Hannover (Germany). ISBN 978-3-00-026003-2.

    Google Scholar 

  26. Lupi, S., Forzan, M., & Aliferov, A. I. (2009). Integral parameters of installations for direct resistance heating of ferromagnetic steel bars of square cross-section. In Proceedings of international IEEE conference for the 150-anniversary of A.S. Popov (pp. 1581–1587), May 18–23, 2009. Saint Petersburg (Russia); IEEE Copyrights, IEEE Service Center, Piscataway (USA), Hoes Lane.

    Google Scholar 

  27. Kovrev, G. S. (1975). Electro-contact heating for processing non-ferrous metals (p. 312). Moskow: Metallurghia (in Russian).

    Google Scholar 

  28. Neimark, B. E. (1967). Physical properties of steels and alloys used in the energy field (240 pp.). Moscow: Energia (in Russian).

    Google Scholar 

  29. Kazanciev, E. A. (1975). Industrial furnaces: A Reference Manual for analysis and design (312 pp.). Moscow: Metallurgia (in Russian).

    Google Scholar 

  30. Neiman, L. R. (1949). Skin effect in ferromagnetic bodies (190 pp.). Leningrad: Gostehnizdat (in Russian).

    Google Scholar 

  31. Valeev, A. X., & Beljaeev, A. M. (1968). Calculation and selection of operating modes of electro-contact heating installations of steel products (pp. 2–13). Moskow: VNIIEM, Informelektro (in Russian).

    Google Scholar 

  32. Hegewaldt, F. (1961). Induktives Oberflächenhärten (pp. 434–456). Induktionsöfen: BBC-Nachrichten, July/August.

    Google Scholar 

  33. Svenčanskiĭ, A. D. (1975). Electrical industrial furnaces. Moscow: Energia Chapt.1 (in Russian).

    Google Scholar 

  34. Crepaz, G., & Lupi, S. (1982). Influence of the installations electrical parameters on the transient temperature distribution in the direct resistance heating of ferromagnetic billets. In: Proceedings of the Conference Electroheat for Metals “UIE-BNCE”. Cambridge, England, 21–23 September, Paper 3.4.

    Google Scholar 

  35. Rudnev, V., & Totten, G. E. (Eds.). (2014). ASM Handbook—Vol. 4c, induction heating and heat treatment. In ASM international materials park (820 pp.). Ohio, USA. ISBN-13 978-1-62708-012-5.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sergio Lupi .

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Lupi, S., Forzan, M., Aliferov, A. (2015). Analytical and Numerical Methods for Calculation of Induction and Conduction Heating Systems. In: Induction and Direct Resistance Heating. Springer, Cham. https://doi.org/10.1007/978-3-319-03479-9_5

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-03479-9_5

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-03478-2

  • Online ISBN: 978-3-319-03479-9

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics