Skip to main content

Biochar: An Effective Amendment for Remediating Contaminated Soil

  • Chapter
  • First Online:
Reviews of Environmental Contamination and Toxicology Volume 228

Part of the book series: Reviews of Environmental Contamination and Toxicology ((RECT,volume 228))

Abstract

Soil is one of the most fundamental resources for agricultural production systems. Besides serving as the main medium for crop growth, soils sustain the productivity of plants and animals, maintain or enhance the quality of water and air, and support human health and habitation, within both natural and managed ecosystem boundaries (Sun et al. 2001; Zhou and Song 2004). However, soil quality is now seriously threatened by anthropogenic contamination, which may pose unacceptable ecological risks to biota and human beings. In China, more than 2 × 107 ha of farmland have been contaminated with heavy metals (Wei and Yang 2010), and this has led to a sharp decrease in crop production and food quality in recent decades (Gu et al. 2003; Zhong and Wu 2007). Therefore, remediating soils to reduce soil contamination and to minimize downstream damage is essential (Powlson et al. 2011). A range of remedial techniques have been developed to address soil contamination. These include soil washing, soil vapor extraction, land-farming, soil flushing, ion exchanges, phytoremediation, bioremediation, and ecological remediation (Zhou and Song 2004). However, such traditional methods, when applied in situ are usually expensive and may create new problems, such as fertility loss and soil erosion (Khan et al. 2004; Kumpiene et al. 2008). Therefore, new alternatives are being sought (Sun et al. 2001). One new technique worthy of attention is soil stabilization/solidification (Zhou and Song 2004). This method offers an approach that may be less environmentally disruptive and less expensive, and hence potentially attractive as a future option.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Ahangar AG, Smernik RJ, Kookana RS, Chittleborough DJ (2008) Separating the effects of organic matter–mineral interactions and organic matter chemistry on the sorption of diuron and phenanthrene. Chemosphere 72(6):886–890

    Article  CAS  Google Scholar 

  • Beesley L, Marmiroli M (2011) The immobilisation and retention of soluble arsenic, cadmium and zinc by biochar. Environ Pollut 159(2):474–480

    Article  CAS  Google Scholar 

  • Beesley L, Moreno-Jiménez E, Gomez-Eyles JL (2010) Effects of biochar and greenwaste compost amendments on mobility, bioavailability and toxicity of inorganic and organic contaminants in a multi-element polluted soil. Environ Pollut 158(6):2282–2287

    Article  CAS  Google Scholar 

  • Beesley L, Moreno-Jiménez E, Gomez-Eyles JL, Harris E, Robinson B, Sizmur T (2011) A review of biochars’ potential role in the remediation, revegetation and restoration of contaminated soils. Environ Pollut 159(12):3269–3282

    Article  CAS  Google Scholar 

  • Brändli RC, Hartnik T, Henriksen T, Cornelissen G (2008) Sorption of native polyaromatic hydrocarbons (PAH) to black carbon and amended activated carbon in soil. Chemosphere 73(11):1805–1810

    Article  Google Scholar 

  • Bushnaf KM, Puricelli S, Saponaro S, Werner D (2011) Effect of biochar on the fate of volatile petroleum hydrocarbons in an aerobic sandy soil. J Contam Hydrol 126(3–4):208–215

    Article  CAS  Google Scholar 

  • Cao X, Harris W (2010) Properties of dairy-manure-derived biochar pertinent to its potential use in remediation. Bioresour Technol 101(14):5222–5228

    Article  CAS  Google Scholar 

  • Cao X, Ma L, Gao B, Harris W (2009) Dairy-manure derived biochar effectively sorbs lead and atrazine. Environ Sci Technol 43(9):3285–3291

    Article  CAS  Google Scholar 

  • Cao X, Ma L, Liang Y, Gao B, Harris W (2011) Simultaneous immobilization of lead and atrazine in contaminated soils using dairy-manure biochar. Environ Sci Technol 45(11):4884–4889

    Article  CAS  Google Scholar 

  • Chen B, Chen Z (2009) Sorption of naphthalene and 1-naphthol by biochars of orange peels with different pyrolytic temperatures. Chemosphere 76(1):127–133

    Article  CAS  Google Scholar 

  • Chen J, Zhu D, Sun C (2007) Effect of heavy metals on the sorption of hydrophobic organic compounds to wood charcoal. Environ Sci Technol 41(7):2536–2541

    Article  CAS  Google Scholar 

  • Chen B, Zhou D, Zhu L (2008) Transitional adsorption and partition of nonpolar and polar aromatic contaminants by biochars of pine needles with different pyrolytic temperatures. Environ Sci Technol 42(14):5137–5143

    Article  CAS  Google Scholar 

  • Cheng C-H, Lehmann J (2009) Ageing of black carbon along a temperature gradient. Chemosphere 75(8):1021–1027

    Article  CAS  Google Scholar 

  • Cheng C-H, Lehmann J, Thies JE, Burton SD, Engelhard MH (2006) Oxidation of black carbon by biotic and abiotic processes. Org Geochem 37(11):1477–1488

    Article  CAS  Google Scholar 

  • Cheng C-H, Lehmann J, Engelhard MH (2008) Natural oxidation of black carbon in soils: changes in molecular form and surface charge along a climosequence. Geochim Cosmochim Acta 72(6):1598–1610

    Article  CAS  Google Scholar 

  • Cho Y-M, Ghosh U, Kennedy AJ, Grossman A, Ray G, Tomaszewski JE, Smithenry DW, Bridges TS, Luthy RG (2009) Field application of activated carbon amendment for in-situ stabilization of polychlorinated biphenyls in marine sediment. Environ Sci Technol 43(10):3815–3823

    Article  CAS  Google Scholar 

  • Chun Y, Sheng G, Chiou CT, Xing B (2004) Compositions and sorptive properties of crop residue-derived chars. Environ Sci Technol 38(17):4649–4655

    Article  CAS  Google Scholar 

  • Flores C, Morgante V, González M, Navia R, Seeger M (2009) Adsorption studies of the herbicide simazine in agricultural soils of the Aconcagua valley, central Chile. Chemosphere 74(11):1544–1549

    Article  CAS  Google Scholar 

  • Gell K, van Groenigen J, Cayuela ML (2011) Residues of bioenergy production chains as soil amendments: Immediate and temporal phytotoxicity. J Hazard Mater 186(2–3):2017–2025

    Article  CAS  Google Scholar 

  • Glaser B (2007) Prehistorically modified soils of central amazonia: a model for sustainable agriculture in the twenty-first century. Philos Trans R Soc Lond B Biol Sci 362(1478):187–196

    Article  CAS  Google Scholar 

  • Glaser B, Parr M, Braun C, Kopolo G (2009) Biochar is carbon negative. Nat Geosci 2(1):2

    Article  CAS  Google Scholar 

  • Gu J, Zhou Q, Wang X (2003) Reused path of heavy metal pollution in soils and its research advance. J Basic Sci Eng 11(2):143–151

    Google Scholar 

  • Hale S, Hanley K, Lehmann J, Zimmerman A, Cornelissen G (2011) Effects of chemical, biological, and physical aging as well as soil addition on the sorption of pyrene to activated carbon and biochar. Environ Sci Technol 45(24):10445–10453

    Article  CAS  Google Scholar 

  • Hamer U, Marschner B, Brodowski S, Amelung W (2004) Interactive priming of black carbon and glucose mineralisation. Org Geochem 35(7):823–830

    Article  CAS  Google Scholar 

  • Hartley W, Dickinson NM, Riby P, Lepp NW (2009) Arsenic mobility in brownfield soils amended with green waste compost or biochar and planted with Miscanthus. Environ Pollut 157(10):2654–2662

    Article  CAS  Google Scholar 

  • Jones DL, Edwards-Jones G, Murphy DV (2011) Biochar mediated alterations in herbicide breakdown and leaching in soil. Soil Biol Biochem 43(4):804–813

    Article  CAS  Google Scholar 

  • Joseph SD, Camps-Arbestain M, Lin Y, Munroe P, Chia CH, Hook J, van Zwieten L, Kimber S, Cowie A, Singh BP, Lehmann J, Foidl N, Smernik RJ, Amonette JE (2010) An investigation into the reactions of biochar in soil. Soil Res 48(7):501–515

    Article  CAS  Google Scholar 

  • Kasozi GN, Zimmerman AR, Nkedi-Kizza P, Gao B (2010) Catechol and humic acid sorption onto a range of laboratory-produced black carbons (Biochars). Environ Sci Technol 44(16):6189–6195

    Article  CAS  Google Scholar 

  • Keiluweit M, Nico PS, Johnson MG, Kleber M (2010) Dynamic molecular structure of plant biomass-derived black carbon (Biochar). Environ Sci Technol 44(4):1247–1253

    Article  CAS  Google Scholar 

  • Keith A, Singh B, Singh BP (2011) Interactive priming of biochar and labile organic matter mineralization in a smectite-rich soil. Environ Sci Technol 45(22):9611–9618

    Article  CAS  Google Scholar 

  • Khan FI, Husain T, Hejazi R (2004) An overview and analysis of site remediation technologies. J Environ Manage 71(2):95–122

    Article  Google Scholar 

  • Khodadad CLM, Zimmerman AR, Green SJ, Uthandi S, Foster JS (2011) Taxa-specific changes in soil microbial community composition induced by pyrogenic carbon amendments. Soil Biol Biochem 43(2):385–392

    Article  CAS  Google Scholar 

  • Klasson KT, Wartelle LH, Rodgers Iii JE, Lima IM (2009) Copper(II) adsorption by activated carbons from pecan shells: effect of oxygen level during activation. Ind Crop Prod 30(1):72–77

    Article  CAS  Google Scholar 

  • Kleineidam S, Schüth C, Grathwohl P (2002) Solubility-normalized combined adsorption-partitioning sorption isotherms for organic pollutants. Environ Sci Technol 36(21):4689–4697

    Article  CAS  Google Scholar 

  • Kookana RS, Sarmah AK, Van Zwieten L, Krull E, Singh B (2011) Chapter three—biochar application to soil: agronomic and environmental benefits and unintended consequences. In: Donald LS (ed) Advances in agronomy, vol 112. Academic, New York, pp 103–143

    Google Scholar 

  • Kuhlbusch TAJ, Andreae MO, Cachier H, Goldammer JG, Lacaux JP, Shea R, Crutzen PJ (1996) Black carbon formation by savanna fires: measurements and implications for the global carbon cycle. J Geophys Res 101(D19):23651–23665

    Article  CAS  Google Scholar 

  • Kumpiene J, Lagerkvist A, Maurice C (2008) Stabilization of As, Cr, Cu, Pb and Zn in soil using amendments—a review. Waste Manag 28(1):215–225

    Article  CAS  Google Scholar 

  • Kwon S, Pignatello JJ (2005) Effect of natural organic substances on the surface and adsorptive properties of environmental black carbon (Char): pseudo pore blockage by model lipid components and its implications for N2-probed surface properties of natural sorbents. Environ Sci Technol 39(20):7932–7939

    Article  CAS  Google Scholar 

  • Laird DA (2008) The charcoal vision: a win win win scenario for simultaneously producing bioenergy, permanently sequestering carbon, while improving soil and water quality. Agron J 100(1):178–181

    Article  Google Scholar 

  • Laird D, Fleming P, Wang B, Horton R, Karlen D (2010) Biochar impact on nutrient leaching from a Midwestern agricultural soil. Geoderma 158(3–4):436–442

    Article  CAS  Google Scholar 

  • Lehmann J (2007) A handful of carbon. Nature 447(7141):143–144

    Article  CAS  Google Scholar 

  • Lehmann J, Rillig MC, Thies J, Masiello CA, Hockaday WC, Crowley D (2011) Biochar effects on soil biota—a review. Soil Biol Biochem 43(9):1812–1836

    Article  CAS  Google Scholar 

  • Liang B, Lehmann J, Solomon D, Kinyangi J, Grossman J, O'Neill B, Skjemstad JO, Thies J, Luizão FJ, Petersen J, Neves EG (2006) Black carbon increases cation exchange capacity in soils. Soil Sci Soc Am J 70(5):1719–1730

    Article  CAS  Google Scholar 

  • Liang B, Lehmann J, Solomon D, Sohi S, Thies JE, Skjemstad JO, Luizão FJ, Engelhard MH, Neves EG, Wirick S (2008) Stability of biomass-derived black carbon in soils. Geochim Cosmochim Acta 72(24):6069–6078

    Article  CAS  Google Scholar 

  • Liu Z, Zhang F-S (2009) Removal of lead from water using biochars prepared from hydrothermal liquefaction of biomass. J Hazard Mater 167(1–3):933–939

    Article  CAS  Google Scholar 

  • Marris E (2006) Black is the new green. Nature 442(7103):624–626

    Article  CAS  Google Scholar 

  • Masiello CA (2004) New directions in black carbon organic geochemistry. Mar Chem 92(1–4):201–213

    Article  CAS  Google Scholar 

  • Mason Y, Ammann AA, Ulrich A, Sigg L (1999) Behavior of heavy metals, nutrients, and major components during roof runoff infiltration. Environ Sci Technol 33(10):1588–1597

    Article  CAS  Google Scholar 

  • Mo Z, Wang C, Chen Q, Wang Z (2002) Form distribution and transformation of heavy metals of Cu, Pb, Zn, Cr and Cd in soils. Agro-Environment Protect 21(1):9–12

    Google Scholar 

  • Namgay T, Singh B, Singh BP (2010) Influence of biochar application to soil on the availability of As, Cd, Cu, Pb, and Zn to maize (Zea mays L.). Soil Res 48(7):638–647

    Article  CAS  Google Scholar 

  • Nguyen BT, Lehmann J (2009) Black carbon decomposition under varying water regimes. Org Geochem 40(8):846–853

    Article  CAS  Google Scholar 

  • Nguyen TH, Cho H-H, Poster DL, Ball WP (2007) Evidence for a Pore-Filling mechanism in the adsorption of aromatic hydrocarbons to a natural wood char. Environ Sci Technol 41(4):1212–1217

    Article  CAS  Google Scholar 

  • Nguyen B, Lehmann J, Kinyangi J, Smernik R, Riha S, Engelhard M (2008) Long-term black carbon dynamics in cultivated soil. Biogeochemistry 89(3):295–308

    Article  CAS  Google Scholar 

  • Ogawa M, Okimori Y (2010) Pioneering works in biochar research, Japan. Soil Res 48(7):489–500

    Article  CAS  Google Scholar 

  • Pignatello JJ, Xing B (1995) Mechanisms of slow sorption of organic chemicals to natural particles. Environ Sci Technol 30(1):1–11

    Article  Google Scholar 

  • Powlson DS, Gregory PJ, Whalley WR, Quinton JN, Hopkins DW, Whitmore AP, Hirsch PR, Goulding KWT (2011) Soil management in relation to sustainable agriculture and ecosystem services. Food Policy 36(Suppl 1):S72–S87

    Article  Google Scholar 

  • Roberts KG, Gloy BA, Joseph S, Scott NR, Lehmann J (2010) Life cycle assessment of biochar systems: estimating the energetic, economic, and climate change potential. Environ Sci Technol 44(2):827–833

    Article  CAS  Google Scholar 

  • Ruttens A, Adriaensen K, Meers E, De Vocht A, Geebelen W, Carleer R, Mench M, Vangronsveld J (2010) Long-term sustainability of metal immobilization by soil amendments: cyclonic ashes versus lime addition. Environ Pollut 158(5):1428–1434

    Article  CAS  Google Scholar 

  • Sander M, Pignatello JJ (2005) Characterization of charcoal adsorption sites for aromatic compounds: insights drawn from single-solute and bi-solute competitive experiments. Environ Sci Technol 39(6):1606–1615

    Article  CAS  Google Scholar 

  • Scott CD, Strandberg GW, Lewis SN (1986) Microbial solubilization of coal. Biotechnol Progr 2(3):131–139

    Article  CAS  Google Scholar 

  • Sheng G, Yang Y, Huang M, Yang K (2005) Influence of pH on pesticide sorption by soil containing wheat residue-derived char. Environ Pollut 134(3):457–463

    Article  CAS  Google Scholar 

  • Shinogi Y, Yoshida H, Koizumi T, Yamaoka M, Saito T (2003) Basic characteristics of low-temperature carbon products from waste sludge. Adv Environ Res 7(3):661–665

    Article  CAS  Google Scholar 

  • Shneour EA (1966) Oxidation of graphitic carbon in certain soils. Science 151(3713):991–992

    Article  CAS  Google Scholar 

  • Singh N, Kookana R (2009) Organo-mineral interactions mask the true sorption potential of biochars in soils. J Environ Sci Health B 44(3):214–219

    Article  CAS  Google Scholar 

  • Singh B, Singh BP, Cowie AL (2010) Characterisation and evaluation of biochars for their application as a soil amendment. Soil Res 48(7):516–525

    Article  CAS  Google Scholar 

  • Song Y, Wang F, Bian Y, Kengara FO, Jia M, Xie Z, Jiang X (2012) Bioavailability assessment of hexachlorobenzene in soil as affected by wheat straw biochar. J Hazard Mater 217–218:391–397

    Article  Google Scholar 

  • Spokas KA (2010) Review of the stability of biochar in soils: predictability of O:C molar ratios. Carbon Manag 1(2):289–303

    Article  CAS  Google Scholar 

  • Sun H, Zhou Z (2008) Impacts of charcoal characteristics on sorption of polycyclic aromatic hydrocarbons. Chemosphere 71(11):2113–2120

    Article  CAS  Google Scholar 

  • Sun T, Zhou Q, Li P (2001) Pollution ecology. Science Press, Beijing

    Google Scholar 

  • Sun Y, Zhou Q, Diao C (2008) Effects of cadmium and arsenic on growth and metal accumulation of Cd-hyperaccumulator Solanum nigrum L. Bioresour Technol 99(5):1103–1110

    Article  CAS  Google Scholar 

  • Sun K, Gao B, Zhang Z, Zhang G, Zhao Y, Xing B (2010) Sorption of atrazine and phenanthrene by organic matter fractions in soil and sediment. Environ Pollut 158(12):3520–3526

    Article  CAS  Google Scholar 

  • Uchimiya M, Lima IM, Klasson KT, Wartelle LH (2010a) Contaminant immobilization and nutrient release by biochar soil amendment: roles of natural organic matter. Chemosphere 80(8):935–940

    Article  CAS  Google Scholar 

  • Uchimiya M, Lima IM, Thomas Klasson K, Chang S, Wartelle LH, Rodgers JE (2010b) Immobilization of heavy metal ions (CuII, CdII, NiII, and PbII) by broiler litter-derived biochars in water and soil. J Agric Food Chem 58(9):5538–5544

    Article  CAS  Google Scholar 

  • Uchimiya M, Chang S, Klasson KT (2011a) Screening biochars for heavy metal retention in soil: role of oxygen functional groups. J Hazard Mater 190(1–3):432–441

    Article  CAS  Google Scholar 

  • Uchimiya M, Klasson KT, Wartelle LH, Lima IM (2011b) Influence of soil properties on heavy metal sequestration by biochar amendment: 1. Copper sorption isotherms and the release of cations. Chemosphere 82(10):1431–1437

    Article  CAS  Google Scholar 

  • Uchimiya M, Wartelle LH, Klasson KT, Fortier CA, Lima IM (2011c) Influence of pyrolysis temperature on biochar property and function as a heavy metal sorbent in soil. J Agric Food Chem 59(6):2501–2510

    Article  CAS  Google Scholar 

  • Wang X (2010) Black carbon in urban topsoils of Xuzhou (China): environmental implication and magnetic proxy. Environ Monit Assess 163(1):41–47

    Article  CAS  Google Scholar 

  • Wang Y-S, Shan X-Q, Feng M-H, Chen G-C, Pei Z-G, Wen B, Liu T, Xie Y-N, Owens G (2009) Effects of copper, lead, and cadmium on the sorption of 2,4,6-trichlorophenol onto and desorption from wheat ash and two commercial humic acids. Environ Sci Technol 43(15):5726–5731

    Article  CAS  Google Scholar 

  • Wang Y, Wang L, Fang G, Herath HMSK, Wang Y, Cang L, Xie Z, Zhou D (2013a) Enhanced PCBs sorption on biochars as affected by environmental factors: humic acid and metal cations. Environ Pollut 172:86–93

    Article  CAS  Google Scholar 

  • Wang Y, Wang Y-J, Wang L, Fang G-D, Cang L, Herath HMSK, Zhou D-M (2013b) Reducing the bioavailability of PCBs in soil to plant by biochars assessed with triolein-embedded cellulose acetate membrane technique. Environ Pollut 174:250–256

    Article  CAS  Google Scholar 

  • Wei B, Yang L (2010) A review of heavy metal contaminations in urban soils, urban road dusts and agricultural soils from China. Microchem J 94(2):99–107

    Article  CAS  Google Scholar 

  • Xia G, Ball WP (1998) Adsorption-partitioning uptake of nine low-polarity organic chemicals on a natural sorbent. Environ Sci Technol 33(2):262–269

    Article  Google Scholar 

  • Yamane VK, Green RE (1972) Adsorption of ametryne and atrazine on an oxisol, montmorillonite, and charcoal in relation to pH and solubility effects. Soil Sci Soc Am J 36(1):58–64

    Article  Google Scholar 

  • Yang Y, Sheng G (2003a) Enhanced pesticide sorption by soils containing particulate matter from crop residue burns. Environ Sci Technol 37(16):3635–3639

    Article  CAS  Google Scholar 

  • Yang Y, Sheng G (2003b) Pesticide adsorptivity of aged particulate matter arising from crop residue burns. J Agric Food Chem 51(17):5047–5051

    Article  CAS  Google Scholar 

  • Yang Y, Chun Y, Sheng G, Huang M (2004) pH-dependence of pesticide adsorption by wheat-residue-derived black carbon. Langmuir 20(16):6736–6741

    Article  CAS  Google Scholar 

  • Yang Y, Sheng G, Huang M (2006) Bioavailability of diuron in soil containing wheat-straw-derived char. Sci Total Environ 354(2–3):170–178

    Article  CAS  Google Scholar 

  • Yu X-Y, Ying G-G, Kookana RS (2009) Reduced plant uptake of pesticides with biochar additions to soil. Chemosphere 76(5):665–671

    Article  CAS  Google Scholar 

  • Yuan J-H, Xu R-K, Zhang H (2011) The forms of alkalis in the biochar produced from crop residues at different temperatures. Bioresour Technol 102(3):3488–3497

    Article  CAS  Google Scholar 

  • Zhang G, Zhang Q, Sun K, Liu X, Zheng W, Zhao Y (2011) Sorption of simazine to corn straw biochars prepared at different pyrolytic temperatures. Environ Pollut 159(10):2594–2601

    Article  CAS  Google Scholar 

  • Zheng W, Guo M, Chow T, Bennett DN, Rajagopalan N (2010) Sorption properties of greenwaste biochar for two triazine pesticides. J Hazard Mater 181(1–3):121–126

    Article  CAS  Google Scholar 

  • Zhong X, Wu X (2007) Present status, existing problems and counter measures of farmland pollution and quality and safety of agricultural products in China. China J Agricult Res Reg Plan 28(5):27–32

    Google Scholar 

  • Zhou Q, Song Y (2004) Contaminated soil remediation: principles and methods. Science Press, Beijing

    Google Scholar 

  • Zimmerman AR (2010) Abiotic and microbial oxidation of laboratory-produced black carbon (Biochar). Environ Sci Technol 44(4):1295–1301

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work is financially supported by the National Natural Science Foundation of China as a key project (grant No. U1133006) jointed with the Guangdong Provincial Government, and as a general project (grant No. 31170473), and by Nankai University as a major cultivation project (grant No. 65030051).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Qi-Xing Zhou .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Kong, LL., Liu, WT., Zhou, QX. (2014). Biochar: An Effective Amendment for Remediating Contaminated Soil. In: Whitacre, D. (eds) Reviews of Environmental Contamination and Toxicology Volume 228. Reviews of Environmental Contamination and Toxicology, vol 228. Springer, Cham. https://doi.org/10.1007/978-3-319-01619-1_4

Download citation

Publish with us

Policies and ethics