Skip to main content

Calculating the Structural Preference of High Symmetry Clusters for \({\text {Pd}}_{N}\), \({\text {Au}}_{N}\), and \(({\text {PdAu}})_{N}\)

  • Chapter
  • First Online:
Computational Characterisation of Gold Nanocluster Structures

Part of the book series: Springer Theses ((Springer Theses))

  • 652 Accesses

Abstract

Computational modelling plays an important role in understanding the properties of nanoclusters, as it allows the prediction of structures for the lowest energy isomer (i.e. the global minimum, GM) [1], as well as providing information on preferential cluster geometries [2], or local minima, and further details such as metal segregation in bimetallic systems [3]. In this chapter the relative energetics will be discussed for different high-symmetry structures composed of Pd, Au, or a combination of the two. Clusters have been created using mathematical constructs, and then energetically minimised. Stability trends are identified for different compositions and geometries, in order to compare our results with experimental observations.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. R.L. Johnston, Atomic and Molecular Clusters (Taylor and Francis, London, 2002)

    Book  Google Scholar 

  2. F. Baletto, R. Ferrando, A. Fortunelli, F. Montalenti, C. Mottet, Crossover among structural motifs in transition and noble-metal clusters. J. Chem. Phys. 116(9), 3856–3863 (2002)

    Article  CAS  Google Scholar 

  3. R. Ferrando, J. Jellinek, R.L. Johnston, Nanoalloys: from theory to applications of alloy clusters and nanoparticles. Chem. Rev. 108(3), 845–910 (2008)

    Article  CAS  Google Scholar 

  4. F. Baletto, R. Ferrando, Structural properties of nanoclusters: energetic, thermodynamic, and kinetic effects. Rev. Mod. Phys. 77, 371–423 (2005)

    Article  CAS  Google Scholar 

  5. P. Nava, M. Sierka, R. Ahlrichs, Density functional study of palladium clusters. Phys. Chem. Chem. Phys. 5, 3372–3381 (2003)

    Article  CAS  Google Scholar 

  6. G. Valerio, H. Toulhoat, Atomic sulfur and chlorine interaction with \({\rm {Pd}}_{n}\) clusters (n = 1–6): a density functional study. J. Phys. Chem. A 101(10), 1969–1974 (1997)

    Article  CAS  Google Scholar 

  7. B. Kalita, R.C. Deka, Stability of small \({\rm {Pd}}_{n}\) (n = 1–7) clusters on the basis of structural and electronic properties: a density functional approach. J. Chem. Phys. 127(24), 244306–244316 (2007)

    Article  Google Scholar 

  8. D.R. Jennison, P.A. Schultz, M.P. Sears, Ab initio calculations of Ru, Pd, and Ag cluster structure with 55, 135, and 140 atoms. J. Chem. Phys. 106(5), 1856–1862 (1997)

    Article  CAS  Google Scholar 

  9. R. Guirado-López, M.C. Desjonquères, D. Spanjaard, Tight-binding study of relaxation in \({\rm {Rh}}_{N}\) and \({\rm {Pd}}_{N}\) clusters \((9 < N < 165)\). Phys. Rev. B 62(19), 13188–13195 (2000)

    Google Scholar 

  10. F. Aguilera-Granja, A. Vega, J. Rogan, G. Garcia, Metallic behavior of Pd atomic clusters. Nanotechnology 18(36), 365706–365711 (2007)

    Article  Google Scholar 

  11. N. Watari, S. Ohnishi, Atomic and electronic structures of \({\rm {Pd}}_{13}\) and \({\rm {Pt}}_{13}\) clusters. Phys. Rev. B 58(3), 1665–1677 (1998)

    Article  CAS  Google Scholar 

  12. F. Cleri, V. Rosato, Tight-binding potentials for transition metals and alloys. Phys. Rev. B 48(1), 22–33 (1993)

    Article  CAS  Google Scholar 

  13. V. Rosato, M. Guillope, B. Legrand, Thermodynamical and structural properties of FCC transition metals using a simple tight-binding model. Philos. Mag. A 59(2), 321–336 (1989)

    Article  Google Scholar 

  14. M. José-Yacamán, M. Marin-Almazo, J.A. Ascencio, High resolution TEM studies on palladium nanoparticles. J. Mol. Catal. A 173(1–2), 61–74 (2001)

    Google Scholar 

  15. M. José-Yacamán, J.A. Ascencio, H.B. Liu, J. Gardea-Torresdey, Structure shape and stability of nanometric sized particles. J. Vac. Sci. Technol. B 19(4), 1091–1103 (2001)

    Article  Google Scholar 

  16. S.M. Morton, D.W. Silverstein, L. Jensen, Theoretical studies of plasmonics using electronic structure methods. Chem. Rev. 111, 3962–3994 (2011)

    Article  CAS  Google Scholar 

  17. G. Bravo-Perez, I.L. Garzan, O. Novaro, Non-additive effects in small gold clusters. Chem. Phys. Lett. 313(3–4), 655–664 (1999)

    Article  CAS  Google Scholar 

  18. J. Wang, G. Wang, J. Zhao, Density-functional study of \({\rm {Au}}_{n}\)(\(n\)=2–20) clusters: lowest-energy structures and electronic properties. Phys. Rev. B 66(3), 35418–35424 (2002)

    Article  Google Scholar 

  19. V. Bonačić-Koutecký, J. Burda, R. Mitrić, M. Ge, G. Zampella, P. Fantucci, Density functional study of structural and electronic properties of bimetallic silver-gold clusters: comparison with pure gold and silver clusters. J. Chem. Phys. 117(7), 3120–3131 (2002)

    Article  Google Scholar 

  20. J. Li, X. Li, H.J. Zhai, L.S. Wang, \({\rm {Au}}_{20}\): a tetrahedral cluster. Science 299(5608), 864–867 (2003)

    Article  CAS  Google Scholar 

  21. J. Wang, G. Wang, J. Zhao, Structures and electronic properties of \({\rm {Cu}}_{20}\), \({\rm {Ag}}_{20}\), and \({\rm {Au}}_{20}\) clusters with density functional method. Chem. Phys. Lett. 380, 716–720 (2003)

    Article  CAS  Google Scholar 

  22. K. Michaelian, N. Rendón, I.L. Garzón, Structure and energetics of Ni, Ag, and Au nanoclusters. Phys. Rev. B 60, 2000–2010 (1999)

    Article  CAS  Google Scholar 

  23. C.L. Cleveland, U. Landman, M.N. Shafigullin, P.W. Stephens, R.L. Whetten, Structural evolution of larger gold clusters. Z. Phys. D 40, 503–508 (1997)

    Article  CAS  Google Scholar 

  24. N.T. Wilson, R.L. Johnston, Modelling gold clusters with an empirical many-body potential. Eur. Phys. J. D. 12(1), 161–169 (2000)

    Article  CAS  Google Scholar 

  25. M.M. Alvarez, J.T. Khoury, T.G. Schaaff, M.N. Shafigullin, I. Vezmar, R.L. Whetten, Optical absorption spectra of nanocrystal gold molecules. J. Phys. Chem. B 101(19), 3706–3712 (1997)

    Article  CAS  Google Scholar 

  26. H. Häkkinen, R.N. Barnett, U. Landman, Electronic structure of passivated \({\rm {Au}}_{38}({\rm {SCH3}})_{24}\) nanocrystal. Phys. Rev. Lett. 82(16), 3264–3267 (1999)

    Article  Google Scholar 

  27. H. Häkkinen, M. Walter, H. Grönbeck, Divide and protect: capping gold nanoclusters with molecular gold-thiolate rings. J. Phys. Chem. B 110(20), 9927–9931 (2006)

    Article  Google Scholar 

  28. J. Akola, M. Walter, R.L. Whetten, H. Häkkinen, H. Grönbeck, On the structure of thiolate-protected \({\rm {Au}}_{25}\). J. Am. Chem. Soc. 130(12), 3756–3757 (1999)

    Article  Google Scholar 

  29. M. Walter, J. Akola, O. Lopez-Acevedo, P.D. Jadzinsky, G. Calero, C.J. Ackerson, R.L. Whetten, H. Grönbeck, H. Häkkinen, A unified view of ligand-protected gold clusters as superatom complexes. Proc. Natl. Acad. Sci. 105, 9157–9162 (2008)

    Article  CAS  Google Scholar 

  30. O. Lopez-Acevedo, J. Akola, R.L. Whetten, H. Grönbeck, H. Häkkinen, Structure and bonding in the ubiquitous icosahedral metallic gold cluster \({\rm {Au}}_{144}({\rm {SR}})_{60}\). J. Phys. Chem. C 113, 5035–5038 (2009)

    Article  CAS  Google Scholar 

  31. O. Lopez-Acevedo, H. Tsunoyama, T. Tsukuda, H. Häkkinen, C.M. Aikens, Chirality and electronic structure of the thiolate-protected \({\rm {Au}}_{38}\) nanocluster. J. Am. Chem. Soc. 132(23), 8210–8218 (2010)

    Article  CAS  Google Scholar 

  32. Z. Wang, O. Toikkanen, B.M. Quinn, R.E. Palmer, Real-space observation of prolate monolayer-protected \({\rm {Au}}_{38}\) clusters using aberration-corrected scanning transmission electron microscopy. Small 7(11), 1542–1545 (2011)

    Article  CAS  Google Scholar 

  33. Z.Y. Li, N.P. Young, M. Di Vece, S. Palomba, R.E. Palmer, A.L. Bleloch, B.C. Curley, R.L. Johnston, J. Jiang, J. Yuan, Three-dimensional atomic-scale structure of size-selected gold nanoclusters. Nature 451(7174), 46–48 (2008)

    Article  CAS  Google Scholar 

  34. B.C. Curley, R.L. Johnston, N.P. Young, Z.Y. Li, M. Di Vece, R.E. Palmer, A.L. Bleloch, Combining theory and experiment to characterize the atomic structures of surface-deposited \({\rm {Au}}_{309}\) clusters. J. Phys. Chem. C 111(48), 17846–17851 (2007)

    Article  CAS  Google Scholar 

  35. N.J. Cookson, Preparation and Characterisation of Bimetallic Core-Shell Nanoparticles, School of Chemistry, University of Birmingham, Edgbaston, Birmingham, Master’s thesis, 2009

    Google Scholar 

  36. M.J. Cabrera-Trujillo, J.M. Montejano-Carrizales, J.L. Rodriguez-Lopez, W. Zhang, J.J. Velazquez-Salazar, M. José-Yacamán, Nucleation and growth of stellated gold clusters: experimental synthesis and theoretical study. J. Phys. Chem. C 114(49), 21051–21060 (2010)

    Article  CAS  Google Scholar 

  37. R.L. Johnston, Evolving better nanoparticles: genetic algorithms for optimising cluster geometries. Dalton Trans. 22, 4193 (2003)

    Article  Google Scholar 

  38. F. Pittaway, L.O. Paz-Borbón, R.L. Johnston, H. Arslan, R. Ferrando, C. Mottet, G. Barcaro, A. Fortunelli, Theoretical studies of palladium-gold nanoclusters: Pd-Au clusters with up to 50 atoms. J. Phys. Chem. C 113, 9141–9152 (2009)

    Article  CAS  Google Scholar 

  39. R. Ismail, R.L. Johnston, Investigation of the structures and chemical ordering of small pd-au clusters as a function of composition and potential parameterisation. Phys. Chem. Chem. Phys. 12(30), 8607–8619 (2010)

    Article  CAS  Google Scholar 

  40. B. Shan, L. Wang, S. Yang, J. Hyun, N. Kapur, Y. Zhao, J.B. Nicholas, K. Cho, First-principles-based embedded atom method for PdAu nanoparticles. Phys. Rev. B 80, 035404 (2009)

    Article  Google Scholar 

  41. H.B. Liu, U. Pal, A. Medina, C. Maldonado, J.A. Ascencio, Structural incoherency and structure reversal in bimetallic Au–Pd nanoclusters. Phys. Rev. B 71, 075403 (2005)

    Article  Google Scholar 

  42. A.R. Miedema, Surface energy of solid metals. Z. Metal. 69(5), 287–292 (1978)

    CAS  Google Scholar 

  43. D. Ferrer, A. Torres-Castro, X. Gao, S. Sepúlveda-Guzmán, U. Ortiz-Méndez, M. José-Yacamán, Three-layer core/shell structure in Au-Pd bimetallic nanoparticles. Nano Lett. 7, 1701–1705 (2007)

    Article  CAS  Google Scholar 

  44. T.P. Martin, Shells of atoms. Phys. Rep. 273, 199–241 (1996)

    Article  CAS  Google Scholar 

  45. X. Xing, B. Yoon, U. Landman, J.H. Parks, Structural evolution of Au nanoclusters: From planar to cage to tubular motifs. Phys. Rev. B 74(16), 165423 (2006)

    Article  Google Scholar 

  46. A.J. Logsdail, R.L. Johnston, Interdependence of structure and chemical order in high symmetry \(({\rm {pdau}})_{N}\) nanoclusters. RSC Adv. 2, 5863–5869 (2012)

    Article  CAS  Google Scholar 

  47. J.N. Murrell, R.E. Mottram, Potential energy functions for atomic solids. Mol. Phys. 69, 571–585 (1990)

    Article  CAS  Google Scholar 

  48. A.P. Sutton, J. Chen, Long-range Finnis-Sinclair potentials. Philos. Mag. Lett. 61(3), 139–146 (1990)

    Article  Google Scholar 

  49. M.S. Daw, M.I. Baskes, Embedded-atom method: derivation and application to impurities, surfaces, and other defects in metals. Phys. Rev. B 29(12), 6443–6453 (1984)

    Article  CAS  Google Scholar 

  50. R.P. Gupta, Lattice relaxation at a metal surface. Phys. Rev. B 23(12), 6265–6270 (1981)

    Article  CAS  Google Scholar 

  51. R. Ferrando. Personal communication, 2009.

    Google Scholar 

  52. C. Kittel, Introduction To Solid State Physics, 6th edn. (Wiley, New York, 1986)

    Google Scholar 

  53. C.L. Cleveland, U. Landman, The energetics and structure of nickel clusters: size dependence. J. Chem. Phys. 94(11), 7376–7396 (1991)

    Article  CAS  Google Scholar 

  54. J. Uppenbrink, D.J. Wales, Structure and energetics of model metal clusters. J. Chem. Phys. 96(11), 8520–8534 (1992)

    Article  CAS  Google Scholar 

  55. A.J. Logsdail, Z.Y. Li, R.L. Johnston, Faceting preferences for \({\rm {au}}_{N}\) and \({\rm {pd}}_{N}\) nanoclusters with high-symmetry motifs. Phys. Chem. Chem. Phys. 15, 3473 (2013)

    Article  Google Scholar 

  56. J. Uppenbrink, R.L. Johnston, J.N. Murrell, Modelling transition metal surfaces with empirical potentials. Surf. Sci. 304(1–2), 223–236 (1994)

    Article  CAS  Google Scholar 

  57. Nanoalloys: From theory to applications. Faraday Discussions No.138, vol. 138, 2008.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Andrew James Logsdail .

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Logsdail, A.J. (2013). Calculating the Structural Preference of High Symmetry Clusters for \({\text {Pd}}_{N}\), \({\text {Au}}_{N}\), and \(({\text {PdAu}})_{N}\) . In: Computational Characterisation of Gold Nanocluster Structures. Springer Theses. Springer, Cham. https://doi.org/10.1007/978-3-319-01493-7_2

Download citation

Publish with us

Policies and ethics