Skip to main content

From Polymers to Nanomedicines: New Materials for Future Vaccines

  • Chapter
  • First Online:

Abstract

Nanomedicine is the medical application of nanotechnology and therefore covers various kinds of nanoparticles. In this chapter, we would like to provide a brief introduction and overview of nanoparticles for the modulation of the immune system. In general, these nano-sized objects can be inorganic colloids, organic colloids (synthesized by emulsion polymerization or mini-/nanoemulsion techniques), polymeric aggregates (micelles or polymersomes), core cross-linked aggregates (nanohydrogels, crosslinked micelles, or polyplexes), multifunctional polymer coils, dendritic polymers or perfect dendrimers. A special focus is set on polymeric materials, because the chemical composition of the particle corona will shape particle properties by providing steric stabilization, avoiding protein adsorption and particle aggregation in vivo. Besides synthesis of new materials, particle characterization is equally important and might be the key to a more detailed understanding of the behavior of nano-sized systems. In addition, we would like to highlight approaches towards nanoparticle-based immunotherapies.

The authors Philipp Heller, David Huesmann, Martin Scherer, Matthias Barz have contributed equally.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Duffus, J.H., Nordberg, M., Templeton, D.M.: Glossary of terms used in toxicology, 2nd edition (IUPAC Recommendations 2007). Pure Appl. Chem. 79, 1153–1344 (2007)

    CAS  Google Scholar 

  2. Duncan, R., Gaspar, R.: Nanomedicine(s) under the microscope. Mol. Pharm. 8, 2101–2141 (2011)

    PubMed  CAS  Google Scholar 

  3. Johnston, A.P.R., Such, G.K., Ng, S.L., Caruso, F.: Challenges facing colloidal delivery systems: from synthesis to the clinic. Curr. Opin. Colloid In.. 16, 171–181 (2011)

    CAS  Google Scholar 

  4. Torchilin, V.P.: Micellar nanocarriers: pharmaceutical perspectives. Pharm. Res. 24, 1–16 (2007)

    PubMed  CAS  Google Scholar 

  5. Lasic, D.D., Martin, F.J.: Stealth Liposomes. CRC Press, Boca Raton (1995)

    Google Scholar 

  6. Hobbs, S.K., et al.: Regulation of transport pathways in tumor vessels: role of tumor type and microenvironment. Proc. Natl. Acad. Sci. U. S. A. 95, 4607–4612 (1998)

    PubMed  CAS  Google Scholar 

  7. Torchilin, V.P.: Targeted polymeric micelles for delivery of poorly soluble drugs. Cell. Mol. Life Sci. 61, 2549–2559 (2004)

    PubMed  CAS  Google Scholar 

  8. Nagasaki, Y., Yasugi, K., Yamamoto, Y., Harada, A., Kataoka, K.: Sugar-installed block copolymer micelles: their preparation and specific interaction with lectin molecules. Biomacromolecules 2, 1067–1070 (2001)

    PubMed  CAS  Google Scholar 

  9. Ogris, M., Brunner, S., Schuller, S., Kircheis, R., Wagner, E.: PEGylated DNA/transferrin-PEI complexes: reduced interaction with blood components, extended circulation in blood and potential for systemic gene delivery. Gene Ther. 6, 595–605 (1999)

    PubMed  CAS  Google Scholar 

  10. Leamon, C.P., Weigl, D., Hendren, R.W.: Folate copolymer-mediated transfection of cultured cells. Bioconjug. Chem. 10, 947–957 (1999)

    PubMed  CAS  Google Scholar 

  11. Hopewell, J.W., Duncan, R., Wilding, D., Chakrabarti, K.: Preclinical evaluation of the cardiotoxicity of PK2: a novel HPMA copolymer–doxorubicin–galactosamine conjugate antitumour agent. Hum. Exp. Toxicol. 20, 461–470 (2001)

    CAS  Google Scholar 

  12. Ahmed, F., et al.: Shrinkage of a rapidly growing tumor by drug-loaded polymersomes: pH-triggered release through copolymer degradation. Mol. Pharm. 3, 340–350 (2006)

    PubMed  CAS  Google Scholar 

  13. Saito, G., Swanson, J.A., Lee, K.-D.: Drug delivery strategy utilizing conjugation via reversible disulfide linkages: role and site of cellular reducing activities. Adv. Drug Deliv. Rev. 55, 199–215 (2003)

    PubMed  CAS  Google Scholar 

  14. Thornton, P.D., Mart, R.J., Webb, S.J., Ulijn, R.V.: Enzyme-responsive hydrogel particles for the controlled release of proteins: designing peptide actuators to match payload. Soft Matter 4, 821–827 (2008)

    CAS  Google Scholar 

  15. Ishida, O., Maruyama, K., Yanagie, H., Iwatsuru, M., Eriguchi, M.: Targeting chemotherapy to solid tumors with long circulating thermosensitive liposomes and local hyperthermia. Jpn. J. Cancer Res. 91, 118–126 (2000)

    PubMed  CAS  Google Scholar 

  16. Edelman, E.R., Kost, J., Bobeck, H., Langer, R.: Regulation of drug release from polymer matrices by oscillating magnetic fields. J. Biomed. Mater. Res. 19, 67–83 (1985)

    PubMed  CAS  Google Scholar 

  17. Langer, R.: New methods of drug delivery. Science 249, 1527–1533 (1990)

    PubMed  CAS  Google Scholar 

  18. Uhrich, K.E., Cannizzaro, S.M., Langer, R.S., Shakesheff, K.M.: Polymeric systems for controlled drug release. Chem. Rev. 99, 3181–3198 (1999)

    PubMed  CAS  Google Scholar 

  19. Little, S.R.: Reorienting our view of particle-based adjuvants for subunit vaccines. Proc. Natl. Acad. Sci. 109, 999–1000 (2012)

    PubMed  CAS  Google Scholar 

  20. Moon, J.J., et al.: Enhancing humoral responses to a malaria antigen with nanoparticle vaccines that expand Tfh cells and promote germinal center induction. Proc. Natl. Acad. Sci. U. S. A. 109, 1080–1085 (2012)

    PubMed  CAS  Google Scholar 

  21. Prokop, A., Davidson, J.M.: Nanovehicular intracellular delivery systems. J. Pharm. Sci. 97, 3518–3590 (2008)

    PubMed  CAS  Google Scholar 

  22. Gref, R., et al.: Biodegradable long-circulating polymeric nanospheres. Science 263, 1600–1603 (1994)

    PubMed  CAS  Google Scholar 

  23. Owens, D.E., Peppas, N.A.: Opsonization, biodistribution, and pharmacokinetics of polymeric nanoparticles. Int. J. Pharm. 307, 93–102 (2006)

    PubMed  CAS  Google Scholar 

  24. Frank, M., Fries, L.: The role of complement in inflammation and phagocytosis. Immunol. Today 12, 322–326 (1991)

    PubMed  CAS  Google Scholar 

  25. Johnson, R.J.: The complement system. In: Ratner, B.D., Hoffman, A.S., Schoen, F.J., Lemons, J.E. (eds.) Biomaterials Science: An Introduction to Materials in Medicine, pp. 318–328. Elsevier/Academic, Amsterdam (2004)

    Google Scholar 

  26. Ostuni, E., Chapman, R.G., Holmlin, R.E., Takayama, S., Whitesides, G.M.: A survey of structure–property relationships of surfaces that resist the adsorption of protein. Langmuir 17, 5605–5620 (2001)

    CAS  Google Scholar 

  27. Scheibe, P., Barz, M., Hemmelmann, M., Zentel, R.: Langmuir-Blodgett films of biocompatible poly (HPMA)-block-poly(lauryl methacrylate) and poly(HPMA)-random-poly(lauryl methacrylate): influence of polymer structure on membrane formation and stability. Langmuir 26, 5661–5669 (2010)

    PubMed  CAS  Google Scholar 

  28. Kelsch, A., et al.: HPMA copolymers as surfactants in the preparation of biocompatible nanoparticles for biomedical application. Biomacromolecules 13, 4179–4187 (2012)

    PubMed  CAS  Google Scholar 

  29. Riess, G.: Micellization of block copolymers. Prog. Polym. Sci. 28, 1107–1170 (2003)

    CAS  Google Scholar 

  30. O’Reilly, R.K., Hawker, C.J., Wooley, K.L.: Cross-linked block copolymer micelles: functional nanostructures of great potential and versatility. Chem. Soc. Rev. 35, 1068–1083 (2006)

    PubMed  Google Scholar 

  31. Kabanov, A.V., Vinogradov, S.V.: Nanogels as pharmaceutical carriers: finite networks of infinite capabilities. Angew. Chem. Int. Ed. Engl. 48, 5418–5429 (2009)

    PubMed  CAS  Google Scholar 

  32. Christie, R.J., Nishiyama, N., Kataoka, K.: Delivering the code: polyplex carriers for deoxyribonucleic acid and ribonucleic acid interference therapies. Endocrinology 151, 466–473 (2010)

    PubMed  CAS  Google Scholar 

  33. Miyata, K., Nishiyama, N., Kataoka, K.: Rational design of smart supramolecular assemblies for gene delivery: chemical challenges in the creation of artificial viruses. Chem. Soc. Rev. 41, 2562–2574 (2012)

    PubMed  CAS  Google Scholar 

  34. Kataoka, K., Harada, A., Nagasaki, Y.: Block copolymer micelles for drug delivery: design, characterization and biological significance. Adv. Drug Deliv. Rev. 47, 113–131 (2001)

    PubMed  CAS  Google Scholar 

  35. Torchilin, V.P.: Structure and design of polymeric surfactant-based drug delivery systems. J. Control. Release 73, 137–172 (2001)

    PubMed  CAS  Google Scholar 

  36. Gaucher, G., et al.: Block copolymer micelles: preparation, characterization and application in drug delivery. J. Control. Release 109, 169–188 (2005)

    PubMed  CAS  Google Scholar 

  37. Nuhn, L., et al.: Cationic nanohydrogel particles as potential siRNA carriers for cellular delivery. ACS Nano 6, 2198–2214 (2012)

    PubMed  CAS  Google Scholar 

  38. Fleige, E., Quadir, M.A., Haag, R.: Stimuli-responsive polymeric nanocarriers for the controlled transport of active compounds: concepts and applications. Adv. Drug Deliv. Rev. 64, 866–884 (2012)

    PubMed  CAS  Google Scholar 

  39. Jesorka, A., Orwar, O.: Liposomes: technologies and analytical applications. Annu. Rev. Anal. Chem. 1, 801–832 (2008)

    CAS  Google Scholar 

  40. Torchilin, V.P.: Recent advances with liposomes as pharmaceutical carriers. Nat. Rev. Drug Discov. 4, 145–160 (2005)

    PubMed  CAS  Google Scholar 

  41. Szoka, F.C.: Comparative properties and methods of preparation of lipid vesicles (liposomes). Ann. Rev. Biophys. Bioeng. 9, 467–508 (1980)

    CAS  Google Scholar 

  42. Lasic, D.D.: Sterically stabilized vesicles. Angew. Chem. Int. Ed. Engl. 33, 1685–1698 (1994)

    Google Scholar 

  43. Allen, T.M., Cullis, P.R.: Drug delivery systems: entering the mainstream. Science 303, 1818–1822 (2004)

    PubMed  CAS  Google Scholar 

  44. White, K.L., Rades, T., Furneaux, R.H., Tyler, P.C., Hook, S.: Mannosylated liposomes as antigen delivery vehicles for targeting to dendritic cells. J. Pharm. Pharmacol. 58, 729–737 (2006)

    PubMed  CAS  Google Scholar 

  45. Drummond, D.C., Meyer, O., Hong, K., Kirpotin, D.B., Papahadjopoulos, D.: Optimizing liposomes for delivery of chemotherapeutic agents to solid tumors. Pharmacol. Rev. 51, 691–744 (1999)

    PubMed  CAS  Google Scholar 

  46. Krishnamachari, Y., Geary, S.M., Lemke, C.D., Salem, A.K.: Nanoparticle delivery systems in cancer vaccines. Pharm. Res. 28, 215–236 (2011)

    PubMed  CAS  Google Scholar 

  47. Gluck, R.: Immunopotentiating reconstituted influenza virosomes (IRIVs) and other adjuvants for improved presentation of small antigens. Vaccine 10, 915–919 (1992)

    PubMed  CAS  Google Scholar 

  48. Moser, C., et al.: Influenza virosomes as a combined vaccine carrier and adjuvant system for prophylactic and therapeutic immunizations. Expert Rev. Vaccines 6, 711–721 (2007)

    PubMed  CAS  Google Scholar 

  49. Kayser, O., Olbrich, C., Croft, S.L., Kiderlein, A.F.: Formulation and biopharmaceutical issues in the development of drug delivery systems for antiparasitic drugs. Parasitol. Res. 90, S63–S70 (2003)

    PubMed  Google Scholar 

  50. Discher, D.E., Ahmed, F.: Polymersomes. Annu. Rev. Biomed. Eng. 8, 323–341 (2006)

    PubMed  CAS  Google Scholar 

  51. Levine, D.H., et al.: Polymersomes: a new multi-functional tool for cancer diagnosis and therapy. Methods 46, 25–32 (2008)

    PubMed  CAS  Google Scholar 

  52. Osterhaus, A., Rimmelzwaan, G.F.: Induction of virus-specific immunity by ISCOMs. Dev. Biol. Stand. 92, 49–58 (1998)

    PubMed  CAS  Google Scholar 

  53. Saupe, A., McBurney, W., Rades, T., Hook, S.: Immunostimulatory colloidal delivery systems for cancer vaccines. Expert Opin. Drug Deliv. 3, 345–354 (2006)

    PubMed  CAS  Google Scholar 

  54. Westesen, K., Siekmann, B.: Biodegradable colloidal drug carrier systems based on solid lipids. In: Benita, S. (ed.) Microencapsulation, pp. 213–258. Marcel Dekker, New York (1996)

    Google Scholar 

  55. Bunjes, H.: Lipid nanoparticles for the delivery of poorly water-soluble drugs. J. Pharm. Pharmacol. 62, 1637–1645 (2010)

    PubMed  CAS  Google Scholar 

  56. Petersen, S., Steiniger, F., Fischer, D., Fahr, A., Bunjes, H.: The physical state of lipid nanoparticles affects their in vitro cell viability. Eur. J. Pharm. Biopharm. 79, 150–161 (2011)

    PubMed  CAS  Google Scholar 

  57. Shi, R., et al.: Enhanced immune response to gastric cancer specific antigen peptide by coencapsulation with CpG oligodeoxynucleotides in nanoemulsion. Cancer Biol. Ther. 4, 218–242 (2005)

    PubMed  CAS  Google Scholar 

  58. Gupta, S., Moulik, S.P.: Biocompatible microemulsions and their prospective uses in drug delivery. J. Pharm. Sci. 97, 22–45 (2008)

    PubMed  CAS  Google Scholar 

  59. Fanun, M.: Microemulsions as delivery systems. Curr. Opin. Colloid In. 17, 306–313 (2012)

    CAS  Google Scholar 

  60. Sailaja, A.K., Amareshwar, P., Chakravarty, P.: Chitosan nanoparticles as a drug delivery system. Res. J. Pharm. Biol. Chem. Sci. 1, 474–484 (2010)

    Google Scholar 

  61. Lohse, S.E., Murphy, C.J.: Applications of colloidal inorganic nanoparticles: from medicine to energy. J. Am. Chem. Soc. 134, 15607–15620 (2012)

    PubMed  CAS  Google Scholar 

  62. Landfester, K.: Synthesis of colloidal particles in miniemulsions. Annu. Rev. Mater. Res. 36, 231–279 (2006)

    CAS  Google Scholar 

  63. Klinger, D., Landfester, K.: Stimuli-responsive microgels for the loading and release of functional compounds: Fundamental concepts and applications. Polymer 53, 5209–5231 (2012)

    CAS  Google Scholar 

  64. Ugelstad, J., Mork, P.C., Kaggerud, K.H., Ellingsen, T., Berge, A.: Swelling of oligomer-polymer particles: new method of preparation of emulsions and polymer dispersions. Adv. Colloid Interface Sci. 13, 101–140 (1980)

    CAS  Google Scholar 

  65. Chern, C.S., Chen, T.J., Liou, Y.C.: Miniemulsion polymerization of styrene in the presence of a water-insoluble blue dye. Polymer 37, 3767–3777 (1998)

    Google Scholar 

  66. Reimers, J.L., Schork, F.J.: Lauroyl peroxide as a cosurfactant in miniemulsion polymerization. Ind. Eng. Chem. Res. 36, 1085–1087 (1997)

    CAS  Google Scholar 

  67. Landfester, K.: Recent developments in miniemulsions – formation and stability mechanisms. Macromol. Symp. 150, 171–178 (2000)

    CAS  Google Scholar 

  68. Tamber, H., Johansen, P., Merkle, H.P., Gander, B.: Formulation aspects of biodegradable polymeric microspheres for antigen delivery. Adv. Drug Deliv. Rev. 57, 357–376 (2005)

    PubMed  CAS  Google Scholar 

  69. Mok, H., Park, T.G.: Direct plasmid DNA encapsulation within PLGA nanospheres by single oil-in-water emulsion method. Eur. J. Pharm. Biopharm. 68, 105–111 (2008)

    PubMed  CAS  Google Scholar 

  70. Meyer, J.D., Manning, M.C.: Hydrophobic ion pairing: altering the solubility properties of biomolecules. Pharm. Res. 15, 188–193 (1998)

    PubMed  CAS  Google Scholar 

  71. Kazzaz, J., Neidleman, J., Singh, M., Ott, G., O’Hagan, D.T.: Novel anionic microparticles are a potent adjuvant for the induction of cytotoxic T lymphocytes against recombinant p55 gag from HIV-1. J. Control. Release 67, 347–356 (2000)

    PubMed  CAS  Google Scholar 

  72. Schwendeman, S.P.: Recent advances in the stabilization of proteins encapsulated in injectable PLGA delivery systems. Crit. Rev. Ther. Drug Carr. Syst. 19, 73–98 (2002)

    CAS  Google Scholar 

  73. Barz, M., et al.: Synthesis, characterization and preliminary biological evaluation of P(HPMA)-b-P(LLA) copolymers: a new type of functional biocompatible block copolymer. Macromol. Rapid Comm. 31, 1492–1500 (2010)

    CAS  Google Scholar 

  74. Barz, M., et al.: P(HPMA)-block-P(LA) copolymers in paclitaxel formulations: polylactide stereochemistry controls micellization, cellular uptake kinetics, intracellular localization and drug efficiency. J. Control. Release 163, 63–74 (2012)

    PubMed  CAS  Google Scholar 

  75. Aspinall, G.O.: The Polysaccharides 35. Academic, New York (1982)

    Google Scholar 

  76. Leonard, M., et al.: Preparation of polysaccharide-covered polymeric nanoparticles by several processes involving amphiphilic polysaccharides. ACS Symp. Ser. 996, 322–340 (2008)

    Google Scholar 

  77. Artursson, P., Lindmark, T., Davis, S., Illum, L.: Effect of chitosan on the permeability of monolayers of intestinal epithelial-cells (Caco-2). Pharm. Res. 11, 1358–1361 (1994)

    PubMed  CAS  Google Scholar 

  78. Domard, A., Gey, C., Rinaudo, M., Terrassin, C., et al.: C-13 and H-1-NMR spectroscopy of chitosan and Ntrimethyl chloride derivates. Int. J. Biol. Macromol. 9, 233–237 (1987)

    CAS  Google Scholar 

  79. Sundar, S., Kundu, J., Kundu, S.C.: Biopolymeric nanoparticles. Sci. Technol. Adv. Mater. (11) (2010)

    Google Scholar 

  80. Schultze, V., et al.: Safety of MF59(TM) adjuvant. Vaccine 26, 3209–3222 (2008)

    PubMed  CAS  Google Scholar 

  81. Makidon, P.E., et al.: Pre-clinical evaluation of a novel nanoemulsion-based hepatitis B mucosal vaccine. PLoS One 3, e2954 (2008)

    PubMed  Google Scholar 

  82. Bielinska, A.U., et al.: Nasal immunization with a recombinant HIV gp120 and nanoemulsion adjuvant produces Th1 polarized responses and neutralizing antibodies to primary HIV type 1 isolates. AIDS Res. Hum. Retrov. 24, 271–281 (2008)

    CAS  Google Scholar 

  83. Ge, W., et al.: The antitumor immune responses induced by nanoemulsion encapsulated MAGE1-HSP70/SEA complex protein vaccine following different administration routes. Oncol. Rep. 22, 915–920 (2009)

    PubMed  CAS  Google Scholar 

  84. Rolland, J.P., et al.: Direct fabrication and harvesting of monodisperse. Shape-specific nanobiomaterials. J. Am. Chem. Soc. 127, 10096–10100 (2005)

    PubMed  CAS  Google Scholar 

  85. Gratton, S.E., et al.: Nanofabricated particles for engineered drug therapies: a preliminary biodistribution study of PRINT nanoparticles. J. Control. Release 121, 10–18 (2007)

    PubMed  CAS  Google Scholar 

  86. Dunn, S.S., et al.: Reductively responsive siRNA-conjugated hydrogel nanoparticles for gene silencing. J. Am. Chem. Soc. 134, 7423–7430 (2012)

    PubMed  CAS  Google Scholar 

  87. Laurent, S., et al.: Magnetic iron oxide nanoparticles: synthesis, stabilization, vectorization, physicochemical characterizations, and biological applications. Chem. Rev. 108, 2064–2110 (2008)

    PubMed  CAS  Google Scholar 

  88. Dahl, J.A., Maddux, B.L.S., Hutchison, J.E.: Toward greener nanosynthesis. Chem. Rev. 107, 2228–2269 (2007)

    PubMed  CAS  Google Scholar 

  89. Caragheorgheopol, A., Chechik, V.: Mechanistic aspects of ligand exchange in Au nanoparticles. Phys. Chem. Chem. Phys. 10, 5029–5041 (2008)

    PubMed  CAS  Google Scholar 

  90. Bernardi, R.J., Lowery, A.R., Thompson, P.A., Blaney, S.M., West, J.L.: Immunonanoshells for targeted photothermal ablation in medulloblastoma and glioma: an in vitro evaluation using human cell lines. J. Neurooncol 86, 165–172 (2008)

    PubMed  Google Scholar 

  91. Cruz, L.J., et al.: Targeting nanosystems to human DCs via Fc receptor as an effective strategy to deliver antigen for immunotherapy. Mol. Pharm. 8, 104–116 (2011)

    PubMed  CAS  Google Scholar 

  92. Ito, A., Honda, H., Kobayashi, T.: Cancer immunotherapy based on intracellular hyperthermia using magnetite nanoparticles: a novel concept of “heat-controlled necrosis” with heat shock protein expression. Cancer Immunol. Immunother. 55, 320–328 (2006)

    PubMed  CAS  Google Scholar 

  93. Masoudi, A., Madaah Hosseini, H.R., Shokrgozar, M.A., Ahmadi, R., Oghabian, M.A.: The effect of poly(ethylene glycol) coating on colloidal stability of superparamagnetic iron oxide nanoparticles as potential MRI contrast agent. Int. J. Pharm. 433, 129–141 (2012)

    PubMed  CAS  Google Scholar 

  94. Webster, R. et al.: PEG and PEG conjugates toxicity: towards an understanding of the toxicity of PEG and its relevance to PEGylated biologicals. In: PEGylated Protein Drugs: Basic Science and Clinical Applications. Birkhäuser Verlag, Basel (2009) pp. 127–146

    Google Scholar 

  95. Bendele, A., Seely, J., Richey, C., Sennello, G., Shopp, G.: Short communication: renal tubular vacuolation in animals treated with polyethylene-glycol-conjugated proteins. Toxicol. Sci. 42, 152–157 (1998)

    PubMed  CAS  Google Scholar 

  96. Young, M.A., Malavalli, A., Winslow, N., Vandegriff, K.D., Winslow, R.M.: Toxicity and hemodynamic effects after single dose administration of MalPEG-hemoglobin (MP4) in rhesus monkeys. Transl. Res. 149, 333–342 (2007)

    PubMed  CAS  Google Scholar 

  97. Chapman, R.G., et al.: Surveying for surfaces that resist the adsorption of proteins. J. Am. Chem. Soc. 122, 8303–8304 (2000)

    CAS  Google Scholar 

  98. Zhou, M., et al.: High throughput discovery of new fouling-resistant surfaces. J. Mater. Chem. 21, 693 (2011)

    CAS  Google Scholar 

  99. Fasting, C., et al.: Multivalency as a chemical organization and action principle. Angew. Chem. Int. Ed. Engl. 51, 10472–10498 (2012)

    PubMed  CAS  Google Scholar 

  100. Niederhafner, P., Reinis, M., Sebestík, J., Jezek, J.: Glycopeptide dendrimers, part III: a review. Use of glycopeptide dendrimers in immunotherapy and diagnosis of cancer and viral diseases. J. Pept. Sci. 14, 556–587 (2008)

    PubMed  CAS  Google Scholar 

  101. Günay, K.A., Theato, P., Klok, H.A.: Standing on the shoulders of Hermann Staudinger: post-polymerization modification from past to present. J. Polym. Sci. A1 51, 1–28 (2013)

    Google Scholar 

  102. Grandjean, C., Boutonnier, A., Guerreiro, C., Fournier, J.-M., Mulard, L.A.: On the preparation of carbohydrate-protein conjugates using the traceless Staudinger ligation. J. Org. Chem. 70, 7123–7132 (2005)

    PubMed  CAS  Google Scholar 

  103. Xu, P., et al.: Simple, direct conjugation of bacterial O-SP-core antigens to proteins: development of cholera conjugate vaccines. Bioconjugate Chem. 22, 2179–2185 (2011)

    CAS  Google Scholar 

  104. Scaramuzza, S., et al.: A new site-specific monoPEGylated filgrastim derivative prepared by enzymatic conjugation: production and physicochemical characterization. J. Control. Release 164, 355–363 (2012)

    PubMed  CAS  Google Scholar 

  105. Jung, B., Theato, P.: Chemical strategies for the synthesis of protein – polymer conjugates. Bio-synth. Polym. Conjugates 253, 37–70 (2013)

    CAS  Google Scholar 

  106. Moad, G., Rizzardo, E., Thang, S.H.: Living radical polymerization by the RAFT process. Aust. J. Chem. 58, 379 (2005)

    CAS  Google Scholar 

  107. Moad, G., Rizzardo, E., Thang, S.H.: Radical addition–fragmentation chemistry in polymer synthesis. Polymer 49, 1079–1131 (2008)

    CAS  Google Scholar 

  108. Braunecker, W.A., Matyjaszewski, K.: Controlled/living radical polymerization: features, developments, and perspectives. Prog. Polym. Sci. 32, 93–146 (2007)

    CAS  Google Scholar 

  109. Matyjaszewski, K., Xia, J.: Atom transfer radical polymerization. Chem. Rev. 101, 2921–2990 (2001)

    PubMed  CAS  Google Scholar 

  110. York, A.W., Kirkland, S.E., McCormick, C.L.: Advances in the synthesis of amphiphilic block copolymers via RAFT polymerization: stimuli-responsive drug and gene delivery. Adv. Drug Deliv. Rev. 60, 1018–1036 (2008)

    PubMed  CAS  Google Scholar 

  111. Gao, H., Matyjaszewski, K.: Synthesis of functional polymers with controlled architecture by CRP of monomers in the presence of cross-linkers: from stars to gels. Prog. Polym. Sci. 34, 317–350 (2009)

    CAS  Google Scholar 

  112. Marsden, H.R., Kros, A.: Polymer-peptide block copolymers – an overview and assessment of synthesis methods. Macromol. Biosci. 9, 939–951 (2009)

    Google Scholar 

  113. Tizzotti, M., Charlot, A., Fleury, E., Stenzel, M., Bernard, J.: Modification of polysaccharides through controlled/living radical polymerization grafting-towards the generation of high performance hybrids. Macromol. Rapid Comm. 31, 1751–1772 (2010)

    CAS  Google Scholar 

  114. Lutz, J.F.: Polymerization of oligo(ethylene glycol) (meth)acrylates: toward new generations of smart biocompatible materials. J. Polym. Sci. A1 46, 3459–3470 (2008)

    CAS  Google Scholar 

  115. Lutz, J.-F., Akdemir, O., Hoth, A.: Point by point comparison of two thermosensitive polymers exhibiting a similar LCST: is the age of poly(NIPAM) over? J. Am. Chem. Soc. 128, 13046–13047 (2006)

    PubMed  CAS  Google Scholar 

  116. Tao, L., Mantovani, G., Lecolley, F., Haddleton, D.M.: Alpha-aldehyde terminally functional methacrylic polymers from living radical polymerization: application in protein conjugation “pegylation”. J. Am. Chem. Soc. 126, 13220–13221 (2004)

    PubMed  CAS  Google Scholar 

  117. Lutz, J.-F., Hoth, A.: Preparation of Ideal PEG analogues with a tunable thermosensitivity by controlled radical copolymerization of 2-(2-Methoxyethoxy)ethyl methacrylate and oligo(ethylene glycol) methacrylate. Macromolecules 39, 893–896 (2006)

    CAS  Google Scholar 

  118. Ryan, S.M., et al.: Conjugation of salmon calcitonin to a combed-shaped end functionalized poly(poly(ethylene glycol) methyl ether methacrylate) yields a bioactive stable conjugate. J. Control. Release 135, 51–59 (2009)

    PubMed  CAS  Google Scholar 

  119. Lutz, J.-F., Andrieu, J., Üzgün, S., Rudolph, C., Agarwal, S.: Biocompatible, thermoresponsive, and biodegradable: simple preparation of “all-in-one” biorelevant polymers. Macromolecules 40, 8540–8543 (2007)

    CAS  Google Scholar 

  120. Ishihara, K., Ziats, N.P., Tierney, B.P., Nakabayashi, N., Anderson, J.M.: Protein adsorption from human plasma is reduced on phospholipid polymers. J. Biomed. Mater. Res. A 25, 1397–1407 (1991)

    CAS  Google Scholar 

  121. Salvage, J.P., et al.: Novel biocompatible phosphorylcholine-based self-assembled nanoparticles for drug delivery. J. Control. Release 104, 259–270 (2005)

    PubMed  CAS  Google Scholar 

  122. Murdoch, C., et al.: Internalization and biodistribution of polymersomes into oral squamous cell carcinoma cells in vitro and in vivo. Nanomedicine 5, 1025–1036 (2010)

    PubMed  CAS  Google Scholar 

  123. Lomas, H., et al.: Non-cytotoxic polymer vesicles for rapid and efficient intracellular delivery. Faraday Discuss. 139, 143–159 (2008)

    PubMed  CAS  Google Scholar 

  124. Lewis, A., Tang, Y., Brocchini, S., Choi, J.-W., Godwin, A.: Poly(2-methacryloyloxyethyl phosphorylcholine) for protein conjugation. Bioconjugate Chem. 19, 2144–2155 (2008)

    CAS  Google Scholar 

  125. Kopecek, J., Kopecková, P.: HPMA copolymers: origins, early developments, present, and future. Adv. Drug Deliv. Rev. 62, 122–149 (2010)

    PubMed  CAS  Google Scholar 

  126. Barz, M., et al.: From defined reactive diblock copolymers to functional HPMA-based self-assembled nanoaggregates. Biomacromolecules 9, 3114–3118 (2008)

    PubMed  CAS  Google Scholar 

  127. Barz, M., Canal, F., Koynov, K., Zentel, R., Vicent, M.J.: Synthesis and in vitro evaluation of defined HPMA folate conjugates: influence of aggregation on folate receptor (FR) mediated cellular uptake. Biomacromolecules 11, 2274–2282 (2010)

    PubMed  CAS  Google Scholar 

  128. Leuchs, H.: Über die Glycin-carbonsäure. Ber. Dtsch. Chem. Ges. 39, 857–861 (1906)

    CAS  Google Scholar 

  129. Kricheldorf, H.R.: α-Amino acid-N-Carboxy-Anhydrides and Related Heterocycles: Syntheses, Properties, Peptide Synthesis, Polymerization. Springer, Berlin/Heidelberg/New York (1987)

    Google Scholar 

  130. Kricheldorf, H.R.: Polypeptides and 100 years of chemistry of alpha-amino acid N-carboxyanhydrides. Angew. Chem. Int. Ed. Engl. 45, 5752–5784 (2006)

    PubMed  CAS  Google Scholar 

  131. Hadjichristidis, N., Iatrou, H., Pitsikalis, M., Sakellariou, G.: Synthesis of well-defined polypeptide-based materials via the ring-opening polymerization of alpha-amino acid N-carboxyanhydrides. Chem. Rev. 109, 5528–5578 (2009)

    PubMed  CAS  Google Scholar 

  132. Bogdanov, A.A., et al.: A new macromolecule as a contrast agent for MR angiography: preparation, properties, and animal studies. Radiology 187, 701–706 (1993)

    PubMed  CAS  Google Scholar 

  133. Singer, J.W., et al.: Paclitaxel poliglumex (XYOTAX; CT-2103): an intracellularly targeted taxane. Anti-cancer Drug. 16, 243–254 (2005)

    CAS  Google Scholar 

  134. Harada, A., Kataoka, K.: Formation of polyion complex micelles in an aqueous milieu from a pair of oppositely-charged block copolymers with poly(ethylene glycol) segments. Macromolecules 28, 5294–5299 (1995)

    CAS  Google Scholar 

  135. Carlsen, A., Lecommandoux, S.: Self-assembly of polypeptide-based block copolymer amphiphiles. Curr. Opin. Colloid In. 14, 329–339 (2009)

    CAS  Google Scholar 

  136. Deng, J., et al.: Self-assembled cationic micelles based on PEG-PLL-PLLeu hybrid polypeptides as highly effective gene vectors. Biomacromolecules 13, 3795–3804 (2012)

    PubMed  CAS  Google Scholar 

  137. Bellomo, E.G., Wyrsta, M.D., Pakstis, L., Pochan, D.J., Deming, T.J.: Stimuli-responsive polypeptide vesicles by conformation-specific assembly. Nat. Mater. 3, 244–248 (2004)

    PubMed  CAS  Google Scholar 

  138. Holowka, E.P., Sun, V.Z., Kamei, D.T., Deming, T.J.: Polyarginine segments in block copolypeptides drive both vesicular assembly and intracellular delivery. Nat. Mater. 6, 52–57 (2007)

    PubMed  CAS  Google Scholar 

  139. Kanzaki, T., Horikawa, Y., Makino, A., Sugiyama, J., Kimura, S.: Nanotube and three-way nanotube formation with nonionic amphiphilic block peptides. Macromol. Biosci. 8, 1026–1033 (2008)

    PubMed  CAS  Google Scholar 

  140. Nowak, A.P., et al.: Rapidly recovering hydrogel scaffolds from self-assembling diblock copolypeptide amphiphiles. Nature 417, 424–428 (2002)

    PubMed  CAS  Google Scholar 

  141. Takae, S., et al.: PEG-detachable polyplex micelles based on disulfide-linked block catiomers as bioresponsive nonviral gene vectors. J. Am. Chem. Soc. 130, 6001–6009 (2008)

    PubMed  CAS  Google Scholar 

  142. Uchida, H., et al.: Odd-even effect of repeating aminoethylene units in the side chain of N-substituted polyaspartamides on gene transfection profiles. J. Am. Chem. Soc. 133, 15524–15532 (2011)

    PubMed  CAS  Google Scholar 

  143. Sanjoh, M., et al.: Dual environment-responsive polyplex carriers for enhanced intracellular delivery of plasmid DNA. Biomacromolecules 13, 3641–3649 (2012)

    PubMed  CAS  Google Scholar 

  144. Naito, M., et al.: A phenylboronate-functionalized polyion complex micelle for ATP-triggered release of siRNA. Angew. Chem. Int. Ed. Engl. 124, 10909–10913 (2012)

    Google Scholar 

  145. Hamaguchi, T., et al.: NK105, a paclitaxel-incorporating micellar nanoparticle formulation, can extend in vivo antitumour activity and reduce the neurotoxicity of paclitaxel. Brit. J. Cancer 92, 1240–1246 (2005)

    PubMed  CAS  Google Scholar 

  146. Weissleder, R., Tung, C.H., Mahmood, U., Bogdanov, A.: In vivo imaging of tumors with protease-activated near-infrared fluorescent probes. Nat. Biotechnol. 17, 375–378 (1999)

    PubMed  CAS  Google Scholar 

  147. Arnon, R.: The development of Cop 1 (Copaxone), an innovative drug for the treatment of multiple sclerosis: personal reflections. Immunol. Lett. 50, 1–15 (1996)

    PubMed  CAS  Google Scholar 

  148. Shaffer, S.A., et al.: In vitro and in vivo metabolism of paclitaxel poliglumex: identification of metabolites and active proteases. Cancer Chemother. Pharmacol. 59, 537–548 (2007)

    PubMed  CAS  Google Scholar 

  149. Hanson, J.A., et al.: Nanoscale double emulsions stabilized by single-component block copolypeptides. Nature 455, 85–88 (2008)

    PubMed  CAS  Google Scholar 

  150. Matsumura, Y.: Poly (amino acid) micelle nanocarriers in preclinical and clinical studies. Adv. Drug Deliv. Rev. 60, 899–914 (2008)

    PubMed  CAS  Google Scholar 

  151. http://www.clinicaltrials.gov.

  152. Li, C., Wallace, S.: Polymer-drug conjugates: recent development in clinical oncology. Adv. Drug Deliv. Rev. 60, 886–898 (2008)

    PubMed  CAS  Google Scholar 

  153. Wilms, D., Stiriba, S.-E., Frey, H.: Hyperbranched polyglycerols: from the controlled synthesis of biocompatible polyether polyols to multipurpose applications. Acc. Chem. Res. 43, 129–141 (2010)

    PubMed  CAS  Google Scholar 

  154. Quadir, M.A., Haag, R.: Biofunctional nanosystems based on dendritic polymers. J. Control. Release 161, 484–495 (2012)

    PubMed  CAS  Google Scholar 

  155. Khandare, J., Calderón, M., Dagia, N.M., Haag, R.: Multifunctional dendritic polymers in nanomedicine: opportunities and challenges. Chem. Soc. Rev. 41, 2824–2848 (2012)

    PubMed  CAS  Google Scholar 

  156. Mourey, T.H., et al.: Unique behavior of dendritic macromolecules: intrinsic viscosity of polyether dendrimers. Macromolecules 25, 2401–2406 (1992)

    CAS  Google Scholar 

  157. Wyszogrodzka, M., Haag, R.: Study of single protein adsorption onto monoamino oligoglycerol derivatives: a structure-activity relationship. Langmuir 25, 5703–5712 (2009)

    PubMed  CAS  Google Scholar 

  158. Wyszogrodzka, M., et al.: New approaches towards monoamino polyglycerol dendrons and dendritic triblock amphiphiles. Eur. J. Org. Chem. 2008, 53–63 (2008)

    Google Scholar 

  159. Haag, R., Sunder, A., Stumbé, J.-F.: An approach to glycerol dendrimers and pseudo-dendritic polyglycerols. J. Am. Chem. Soc. 122, 2954–2955 (2000)

    CAS  Google Scholar 

  160. Sunder, A., Krämer, M., Hanselmann, R., Mülhaupt, R., Frey, H.: Molecular nanocapsules based on amphiphilic hyperbranched polyglycerols. Angew. Chem. Int. Ed. Engl. 38, 3552–3555 (1999)

    PubMed  CAS  Google Scholar 

  161. Wilms, D., et al.: Hyperbranched polyglycerols with elevated molecular weights: a facile two-step synthesis protocol based on polyglycerol macroinitiators. Macromolecules 42, 3230–3236 (2009)

    CAS  Google Scholar 

  162. Barriau, E., et al.: Systematic investigation of functional core variation within hyperbranched polyglycerols. J. Polym. Sci. A1 46, 2049–2061 (2008)

    CAS  Google Scholar 

  163. Roller, S., Zhou, H., Haag, R.: High-loading polyglycerol supported reagents for Mitsunobu- and acylation-reactions and other useful polyglycerol derivatives. Mol. Divers. 9, 305–316 (2005)

    PubMed  CAS  Google Scholar 

  164. Kainthan, R.K., Janzen, J., Levin, E., Devine, D.V., Brooks, D.E.: Biocompatibility testing of branched and linear polyglycidol. Biomacromolecules 7, 703–709 (2006)

    PubMed  CAS  Google Scholar 

  165. Kainthan, R.K., Hester, S.R., Levin, E., Devine, D.V., Brooks, D.E.: In vitro biological evaluation of high molecular weight hyperbranched polyglycerols. Biomaterials 28, 4581–4590 (2007)

    PubMed  CAS  Google Scholar 

  166. Kainthan, R.K., Brooks, D.E.: In vivo biological evaluation of high molecular weight hyperbranched polyglycerols. Biomaterials 28, 4779–4787 (2007)

    PubMed  CAS  Google Scholar 

  167. Calderón, M., Quadir, M.A., Sharma, S.K., Haag, R.: Dendritic polyglycerols for biomedical applications. Adv. Mater. 22, 190–218 (2010)

    PubMed  Google Scholar 

  168. Calderón, M., Graeser, R., Kratz, F., Haag, R.: Development of enzymatically cleavable prodrugs derived from dendritic polyglycerol. Bioorg. Med. Chem. Lett. 19, 3725–3728 (2009)

    PubMed  Google Scholar 

  169. Calderón, M., et al.: Development of efficient acid cleavable multifunctional prodrugs derived from dendritic polyglycerol with a poly(ethylene glycol) shell. J. Control. Release 151, 295–301 (2011)

    PubMed  Google Scholar 

  170. Papp, I., Dernedde, J., Enders, S., Haag, R.: Modular synthesis of multivalent glycoarchitectures and their unique selectin binding behavior. Chem. Commun. 4, 5851–5853 (2008)

    Google Scholar 

  171. Türk, H., Haag, R., Alban, S.: Dendritic polyglycerol sulfates as new heparin analogues and potent inhibitors of the complement system. Bioconjug. Chem. 15, 162–167 (2003)

    Google Scholar 

  172. Dernedde, J., et al.: Dendritic polyglycerol sulfates as multivalent inhibitors of inflammation. Proc. Natl. Acad. Sci. U. S. A. 44, 19679–19684 (2010)

    Google Scholar 

  173. Steinhilber, D., et al.: Synthesis, reductive cleavage, and cellular interaction studies of biodegradable polyglycerol nanogels. Adv. Funct. Mater. 20, 4133–4138 (2010)

    CAS  Google Scholar 

  174. Sisson, A.L., et al.: Biocompatible functionalized polyglycerol microgels with cell penetrating properties. Angew. Chem. Int. Ed. Engl. 48, 7540–7545 (2009)

    PubMed  CAS  Google Scholar 

  175. Sisson, A.L., Papp, I., Landfester, K., Haag, R.: Functional nanoparticles from dendritic precursors: hierarchical assembly in miniemulsion. Macromolecules 42, 556–559 (2009)

    CAS  Google Scholar 

  176. Luxenhofer, R., et al.: Poly(2-oxazoline)s as polymer therapeutics. Macromol. Rapid Comm. 33, 1613–1631 (2012)

    CAS  Google Scholar 

  177. Viegas, T.X., et al.: Polyoxazoline: chemistry, properties, and applications in drug delivery. Bioconjugate Chem. 22, 976–986 (2011)

    CAS  Google Scholar 

  178. Knop, K., Hoogenboom, R., Fischer, D., Schubert, U.S.: Poly(ethylene glycol) in drug delivery: pros and cons as well as potential alternatives. Angew. Chem. Int. Ed. Engl. 49, 6288–6308 (2010)

    PubMed  CAS  Google Scholar 

  179. Kempe, K., et al.: Multifunctional poly(2-oxazoline) nanoparticles for biological applications. Macromol. Rapid Comm. 31, 1869–1873 (2010)

    CAS  Google Scholar 

  180. Luxenhofer, R., et al.: Structure-property relationship in cytotoxicity and cell uptake of poly(2-oxazoline) amphiphiles. J. Control. Release 153, 73–82 (2011)

    PubMed  CAS  Google Scholar 

  181. Donev, R., Koseva, N., Petrov, P., Kowalczuk, A., Thome, J.: Characterisation of different nanoparticles with a potential use for drug delivery in neuropsychiatric disorders. World J. Biol. Psychiatry 12, 44–51 (2011)

    PubMed  Google Scholar 

  182. Tong, J., et al.: Neuronal uptake and intracellular superoxide scavenging of a fullerene (C60)-poly(2-oxazoline)s nanoformulation. Biomaterials 32, 3654–3665 (2011)

    PubMed  CAS  Google Scholar 

  183. Viegas, T.X., et al.: Polyoxazoline: chemistry, properties, and applications in drug delivery. Bioconjug. Chem. 22, 976–986 (2011)

    PubMed  CAS  Google Scholar 

  184. Wang, X., et al.: Synthesis, characterization and biocompatibility of poly(2-ethyl-2-oxazoline)-poly(D, L-lactide)-poly(2-ethyl-2-oxazoline) hydrogels. Acta Biomater. 7, 4149–4159 (2011)

    PubMed  CAS  Google Scholar 

  185. Wang, C.-H., et al.: Extended release of bevacizumab by thermosensitive biodegradable and biocompatible hydrogel. Biomacromolecules 13, 40–48 (2012)

    PubMed  CAS  Google Scholar 

  186. Cheon Lee, S., Kim, C., Chan Kwon, I., Chung, H., Young Jeong, S.: Polymeric micelles of poly(2- ethyl-2-oxazoline)-block-poly(epsilon-caprolactone) copolymer as a carrier for paclitaxel. J. Control. Release 89, 437–446 (2003)

    PubMed  Google Scholar 

  187. Konradi, R., Pidhatika, B., Mühlebach, A., Textor, M.: Poly-2-methyl-2-oxazoline: a peptide-like polymer for protein-repellent surfaces. Langmuir 24, 613–616 (2008)

    PubMed  CAS  Google Scholar 

  188. Pidhatika, B., et al.: The role of the interplay between polymer architecture and bacterial surface properties on the microbial adhesion to polyoxazoline-based ultrathin films. Biomaterials 31, 9462–9472 (2010)

    PubMed  CAS  Google Scholar 

  189. Zhang, N., et al.: Tailored poly(2-oxazoline) polymer brushes to control protein adsorption and cell adhesion. Macromol. Biosci. 12, 926–936 (2012)

    PubMed  CAS  Google Scholar 

  190. Wang, H., Li, L., Tong, Q., Yan, M.: Evaluation of photochemically immobilized poly(2-ethyl-2-oxazoline) thin films as protein-resistant surfaces. ACS Appl. Mater. Interfaces 3, 3463–3471 (2011)

    PubMed  CAS  Google Scholar 

  191. Woodle, M.C., Engbers, C.M., Zalipsky, S.: New amphipathic polymer-lipid conjugates forming long-circulating reticuloendothelial system-evading liposomes. Bioconjug. Chem. 5, 493–496 (1994)

    PubMed  CAS  Google Scholar 

  192. Zalipsky, S., Hansen, C.B., Oaks, J.M., Allen, T.M.: Evaluation of blood clearance rates and biodistribution of poly(2-oxazoline)-grafted liposomes. J. Pharm. Sci. 85, 133–137 (1996)

    PubMed  CAS  Google Scholar 

  193. Gaertner, F.C., Luxenhofer, R., Blechert, B., Jordan, R., Essler, M.: Synthesis, biodistribution and excretion of radiolabeled poly(2-alkyl-2-oxazoline)s. J. Control. Release 119, 291–300 (2007)

    PubMed  CAS  Google Scholar 

  194. Goddard, P., Hutchinson, L.: Soluble polymeric carriers for drug delivery. Part 2. Preparation and in vivo behaviour of N-acylethylenimine copolymers. J. Control. Release 10, 5–16 (1989)

    CAS  Google Scholar 

  195. Luxenhofer, R., et al.: Doubly amphiphilic poly(2-oxazoline)s as high-capacity delivery systems for hydrophobic drugs. Biomaterials 31, 4972–4979 (2010)

    PubMed  CAS  Google Scholar 

  196. Delgado, A.V., González-Caballero, F., Hunter, R.J., Koopal, L.K., Lyklema, J.: Measurement and interpretation of electrokinetic phenomena. J. Colloid Interface Sci. 309, 194–224 (2007)

    PubMed  CAS  Google Scholar 

  197. Rausch, K., Reuter, A., Fischer, K., Schmidt, M.: Evaluation of nanoparticle aggregation in human blood serum. Biomacromolecules 11, 2836–2839 (2010)

    CAS  Google Scholar 

  198. Olsen, S.N.: Applications of isothermal titration calorimetry to measure enzyme kinetics and activity in complex solutions. Thermochim. Acta 448, 12–18 (2006)

    CAS  Google Scholar 

  199. Gourishankar, A., Shukla, S., Ganesh, K.N., Sastry, M.: Isothermal titration calorimetry studies on the binding of DNA bases and PNA base monomers to gold nanoparticles. J. Am. Chem. Soc. 126, 13186–13187 (2004)

    PubMed  CAS  Google Scholar 

  200. Cedervall, T., et al.: Understanding the nanoparticle-protein corona using methods to quantify exchange rates and affinities of proteins for nanoparticles. Proc. Natl. Acad. Sci. U. S. A. 104, 2050–2055 (2007)

    PubMed  CAS  Google Scholar 

  201. Tenzer, S., et al.: Nanoparticle size is a critical physicochemical determinant of the human blood plasma corona: a comprehensive quantitative proteomic analysis. ACS Nano 5, 7155–7167 (2011)

    PubMed  CAS  Google Scholar 

  202. Ghoroghchian, P.P., Therien, M.J., Hammer, D.A.: In vivo fluorescence imaging: a personal perspective. Wiley Interdiscip. Rev. Nanomed. Nanobiotechnol. 1, 156–167 (2009)

    PubMed  CAS  Google Scholar 

  203. Herzog, H., Rösch, F.: PET- und SPECT-Technik: Chemie und Physik der Bildgebung. Pharm. Unserer Zeit 34, 468–473 (2005)

    PubMed  CAS  Google Scholar 

  204. Herth, M.M., et al.: Radioactive labeling of defined HPMA-based polymeric structures using [18F]FETos for in vivo imaging by positron emission tomography. Biomacromolecules 10(4), 1697–1703 (2009)

    PubMed  CAS  Google Scholar 

  205. Devaraj, N.K., Keliher, E.J., Thurber, G.M., Nahrendorf, M., Weissleder, R.: 18F labeled nanoparticles for in vivo PET-CT imaging. Bioconjugate Chem. 20, 397–401 (2009)

    CAS  Google Scholar 

  206. Herth, M.M., Barz, M., Jahn, M., Zentel, R., Rösch, F.: 72/74As-labeling of HPMA based polymers for long-term in vivo PET imaging. Bioorg. Med. Chem. Lett. 20, 5454–5458 (2010)

    PubMed  CAS  Google Scholar 

  207. Fujita, Y., Taguchi, H.: Current status of multiple antigen-presenting peptide vaccine systems: application of organic and inorganic nanoparticles. Chem. Cent. J. 5, 1–8 (2011)

    Google Scholar 

  208. Vogel, F.R.: Immunologic adjuvants for modern vaccine formulations. Ann. N. Y. Acad. Sci. 754, 153–160 (1995)

    PubMed  CAS  Google Scholar 

  209. Petrovsky, N., Aguilar, J.: Vaccine adjuvants: current state and future trends. Immunol. Cell Biol. 82, 488–496 (2004)

    PubMed  CAS  Google Scholar 

  210. Panyam, J., Labhasetwar, V.: Biodegradable nanoparticles for drug and gene delivery to cells and tissue. Adv. Drug Deliv. Rev. 55, 329–347 (2003)

    PubMed  CAS  Google Scholar 

  211. Lee, Y.-R., Lee, Y.-H., et al.: Biodegradable nanoparticles containing TLR3 or TLR9 agonists together with antigen enhance MHC-restricted presentation of the antigen. Arch. Pharm. Res. 33, 1859–1866 (2010)

    PubMed  CAS  Google Scholar 

  212. Stone, G.W., et al.: Nanoparticle-delivered multimeric soluble CD40L DNA combined with Toll-like receptor agonists as a treatment for melanoma. PLoS One 4, e7334 (2009)

    PubMed  Google Scholar 

  213. Kasturi, S.P., et al.: Programming the magnitude and persistence of antibody responses with innate immunity. Nature 470, 543–547 (2011)

    PubMed  CAS  Google Scholar 

  214. Malyala, P., O’Hagan, D.T., Singh, M.: Enhancing the therapeutic efficacy of CpG oligonucleotides using biodegradable microparticles. Adv. Drug Deliv. Rev. 61, 218–225 (2009)

    PubMed  CAS  Google Scholar 

  215. O’Hagan, D.T., Singh, M., Ulmer, J.B.: Microparticle-based technologies for vaccines. Methods 40, 10–19 (2006)

    PubMed  Google Scholar 

  216. Sherman, M. R. et al.: Conjugation of high-molecular weight poly(ethylene glycol) to cytokines: granulocyte-macrophage colony-stimulating factors as model substrates. ACS Symposium Series, Vol. 680, pp. 155–169. (1997)

    Google Scholar 

  217. Alexis, F., Pridgen, E., Molnar, L.K., Farokhzad, O.C.: Factors affecting the clearance and biodistribution of polymeric nanoparticles. Mol. Pharm. 5, 505–515 (2008)

    PubMed  CAS  Google Scholar 

  218. Yang, Y., Huang, C.-T., Huang, X., Pardoll, D.M.: Persistent Toll-like receptor signals are required for reversal of regulatory T cell-mediated CD8 tolerance. Nat. Immunol. 5, 508–515 (2004)

    PubMed  CAS  Google Scholar 

  219. Galloway, A.L., et al.: Development of a nanoparticle-based influenza vaccine using the PRINT® technology. Nanomedicine 9(4), 523–531 (2013)

    PubMed  CAS  Google Scholar 

  220. Demento, S.L., et al.: TLR9-targeted biodegradable nanoparticles as immunization vectors protect against West Nile encephalitis. J. Immunol. 185, 2989–2997 (2010)

    PubMed  CAS  Google Scholar 

  221. Tyagi, R.K., Garg, N.K., Sahu, T.: Vaccination strategies against malaria: novel carrier(s) more than a tour de force. J. Control. Release 162, 242–254 (2012)

    PubMed  CAS  Google Scholar 

  222. Brandt, E.R., et al.: New multi-determinant strategy for a group A streptococcal vaccine designed for the Australian Aboriginal population. Nat. Med. 6, 455–459 (2000)

    PubMed  CAS  Google Scholar 

  223. Shi, L., et al.: Pharmaceutical and immunological evaluation of a single-shot hepatitis B vaccine formulated with PLGA microspheres. J. Pharm. Sci. 91, 1019–1035 (2002)

    PubMed  CAS  Google Scholar 

  224. Pejawar-Gaddy, S., et al.: Generation of a tumor vaccine candidate based on conjugation of a MUC1 peptide to polyionic papillomavirus virus-like particles. Cancer Immunol. Immunother. 59, 1685–1696 (2010)

    PubMed  CAS  Google Scholar 

  225. Sundgren, A., Barchi, J.: Varied presentation of the Thomsen–Friedenreich disaccharide tumor-associated carbohydrate antigen on gold nanoparticles. Carbohydr. Res. 343, 1594–1604 (2008)

    PubMed  CAS  Google Scholar 

  226. Monzavi-Karbassi, B., Pashov, A., Jousheghany, F., Artaud, C., Kieber-Emmons, T.: Evaluating strategies to enhance the anti-tumor immune response to a carbohydrate mimetic peptide vaccine. Int. J. Mol. Med. 17, 1045–1052 (2006)

    PubMed  CAS  Google Scholar 

  227. Reddy, S., Swartz, M., Hubbell, J.: Targeting dendritic cells with biomaterials: developing the next generation of vaccines. Trends Immunol. 27, 573–579 (2006)

    PubMed  CAS  Google Scholar 

  228. Demento, S.L., et al.: Inflammasome-activating nanoparticles as modular systems for optimizing vaccine efficacy. Vaccine 27, 3013–3021 (2009)

    PubMed  CAS  Google Scholar 

  229. Hamdy, S., et al.: Co-delivery of cancer-associated antigen and Toll-like receptor 4 ligand in PLGA nanoparticles induces potent CD8+ T cell-mediated anti-tumor immunity. Vaccine 26, 5046–5057 (2008)

    PubMed  CAS  Google Scholar 

  230. Barton, G.M., Medzhitov, R.: Control of adaptive immune responses by Toll-like receptors. Curr. Opin. Immunol. 14, 380–383 (2002)

    PubMed  CAS  Google Scholar 

  231. Akagi, T., Baba, M., Akashi, M.: Biodegradable nanoparticles as vaccine adjuvants and delivery systems: regulation of immune responses by nanoparticle-based vaccine. Adv. Polym. Sci. 247, 31–64 (2011)

    Google Scholar 

  232. Lee, T.Y., et al.: Oral administration of poly-gamma-glutamate induces TLR4- and dendritic cell-dependent antitumor effect. Cancer Immunol Imm. 58, 1781–1794 (2009)

    CAS  Google Scholar 

  233. Yoshida, M., Babensee, J.E.: Poly(lactic-co-glycolic acid) enhances maturation of human monocyte-derived dendritic cells. J. Biomed. Mater. Res. A 71, 45–54 (2004)

    PubMed  Google Scholar 

  234. Tamayo, I., et al.: Poly(anhydride) nanoparticles act as active Th1 adjuvants through Toll-like receptor exploitation. Clin. Vaccine Immunol. 17, 1356–1362 (2010)

    PubMed  CAS  Google Scholar 

  235. Copland, M.J., et al.: Liposomal delivery of antigen to human dendritic cells. Vaccine 21, 883–890 (2003)

    PubMed  CAS  Google Scholar 

  236. Matsusaki, M., et al.: Nanosphere induced gene expression in human dendritic cells. Nano Lett. 5, 2168–2173 (2005)

    PubMed  CAS  Google Scholar 

  237. Kwon, Y.J., Standley, S.M., Goh, S.L., Fréchet, J.M.J.: Enhanced antigen presentation and immunostimulation of dendritic cells using acid-degradable cationic nanoparticles. J. Control. Release 105, 199–212 (2005)

    PubMed  CAS  Google Scholar 

  238. Sun, H., Pollock, K.G.J., Brewer, J.M.: Analysis of the role of vaccine adjuvants in modulating dendritic cell activation and antigen presentation in vitro. Vaccine 21, 849–855 (2003)

    PubMed  CAS  Google Scholar 

  239. Moon, H.-J., et al.: Mucosal immunization with recombinant influenza hemagglutinin protein and poly gamma-glutamate/chitosan nanoparticles induces protection against highly pathogenic influenza A virus. Vet. Microbiol. 160, 277–289 (2012)

    PubMed  CAS  Google Scholar 

  240. Geall, A., Verma, A.: Nonviral delivery of self-amplifying RNA vaccines. Proc. Natl. Acad. Sci. U. S. A. 109, 14604–14609 (2012)

    PubMed  CAS  Google Scholar 

  241. Van den Berg, J.H., et al.: Shielding the cationic charge of nanoparticle-formulated dermal DNA vaccines is essential for antigen expression and immunogenicity. J. Control. Release 141, 234–240 (2010)

    PubMed  Google Scholar 

  242. Varkouhi, A.K., Scholte, M., Storm, G., Haisma, H.J.: Endosomal escape pathways for delivery of biologicals. J. Control. Release 151, 220–228 (2011)

    PubMed  CAS  Google Scholar 

  243. Krieg, A.M.: CpG motifs in bacterial DNA and their immune effects. Annu. Rev. Immunol. 20, 709–760 (2002)

    PubMed  CAS  Google Scholar 

  244. Sudowe, S., et al.: Uptake and presentation of exogenous antigen and presentation of endogenously produced antigen by skin dendritic cells represent equivalent pathways for the priming of cellular immune responses following biolistic DNA immunization. Immunology 128, e193–e205 (2009)

    PubMed  Google Scholar 

  245. Joshi, M.D., Unger, W.J., Storm, G., Van Kooyk, Y., Mastrobattista, E.: Targeting tumor antigens to dendritic cells using particulate carriers. J. Control. Release 161, 25–37 (2012)

    PubMed  CAS  Google Scholar 

  246. Arigita, C., et al.: Liposomal meningococcal B vaccination: role of dendritic cell targeting in the development of a protective immune response. Infect. Immun. 71, 5210–5218 (2003)

    PubMed  CAS  Google Scholar 

  247. Espuelas, S., Haller, P., Schuber, F., Frisch, B.: Synthesis of an amphiphilic tetraantennary mannosyl conjugate and incorporation into liposome carriers. Bioorg. Med. Chem. Lett. 13, 2557–2560 (2003)

    PubMed  CAS  Google Scholar 

  248. Espuelas, S., Thumann, C., Heurtault, B., Schuber, F., Frisch, B.: Influence of ligand valency on the targeting of immature human dendritic cells by mannosylated liposomes. Bioconjug. Chem. 19, 2385–2393 (2008)

    PubMed  CAS  Google Scholar 

  249. Sheng, K.-C., et al.: Delivery of antigen using a novel mannosylated dendrimer potentiates immunogenicity in vitro and in vivo. Eur. J. Immunol. 38, 424–436 (2008)

    PubMed  CAS  Google Scholar 

  250. Chenevier, P., et al.: Grafting of synthetic mannose receptor-ligands onto onion vectors for human dendritic cells targeting. Chem. Commun. 20, 2446–2447 (2002)

    Google Scholar 

  251. Saraogi, G.K., et al.: Mannosylated gelatin nanoparticles bearing isoniazid for effective management of tuberculosis. J. Drug Target. 19, 219–227 (2011)

    PubMed  CAS  Google Scholar 

  252. Brandhonneur, N., et al.: Specific and non-specific phagocytosis of ligand-grafted PLGA microspheres by macrophages. Eur. J. Pharm. Sci. 36, 474–485 (2009)

    PubMed  CAS  Google Scholar 

  253. Hamdy, S., Haddadi, A., Shayeganpour, A., Samuel, J., Lavasanifar, A.: Activation of antigen-specific T cell-responses by mannan-decorated PLGA nanoparticles. Pharm. Res. 28, 2288–2301 (2011)

    PubMed  CAS  Google Scholar 

  254. Raghuwanshi, D., Mishra, V., Suresh, M.R., Kaur, K.: A simple approach for enhanced immune response using engineered dendritic cell targeted nanoparticles. Vaccine 30, 7292–7299 (2012)

    PubMed  CAS  Google Scholar 

  255. Fehr, T., Skrastina, D., Pumpens, P., Zinkernagel, R.M.: T cell-independent type I antibody response against B cell epitopes expressed repetitively on recombinant virus particles. Proc. Natl. Acad. Sci. U. S. A. 95, 9477–9481 (1998)

    PubMed  CAS  Google Scholar 

  256. Brinãs, R.P., et al.: Design and synthesis of multifunctional gold nanoparticles bearing tumor-associated glycopeptide antigens as potential cancer vaccines. Bioconjug. Chem. 23, 1513–1523 (2012)

    PubMed  Google Scholar 

  257. Hoffmann-Röder, A., et al.: Synthetic antitumor vaccines from tetanus toxoid conjugates of MUC1 glycopeptides with the Thomsen-Friedenreich antigen and a fluorine-substituted analogue. Angew. Chem. Int. Ed. Engl. 49, 8498–8503 (2010)

    PubMed  Google Scholar 

  258. Gaidzik, N., et al.: Synthetic antitumor vaccines containing MUC1 glycopeptides with two immunodominant domains-induction of a strong immune response against breast tumor tissues. Angew. Chem. Int. Ed. Engl. 50, 9977–9981 (2011)

    PubMed  CAS  Google Scholar 

  259. Cai, H., et al.: Variation of the glycosylation pattern in MUC1 glycopeptide BSA vaccines and its influence on the immune response. Angew. Chem. Int. Ed. Engl. 51, 1719–1723 (2012)

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Matthias Barz PhD .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Heller, P., Huesmann, D., Scherer, M., Barz, M. (2014). From Polymers to Nanomedicines: New Materials for Future Vaccines. In: Giese, M. (eds) Molecular Vaccines. Springer, Cham. https://doi.org/10.1007/978-3-319-00978-0_15

Download citation

Publish with us

Policies and ethics