Skip to main content

Androgenesis: A Fascinating Doubled Haploid Production Process

  • Chapter
  • First Online:
Progress and Opportunities of Doubled Haploid Production

Part of the book series: SpringerBriefs in Plant Science ((BRIEFSPLANT,volume 6))

Abstract

Androgenesis is one of the most important methods that have been extensively used in plant breeding programs to produce double haploids. It involves the induction of microspore embryogenesis that leads to the development of a haploid embryo instead of mature pollen grain. The microspore embryogenesis is usually brought about by modifying the environmental conditions of anthers/microspores by reprogramming their gametophytic pathway towards sporophytic growth and development. Under natural conditions, the microspore develops into a mature pollen grain that comprises of generative and vegetative nuclei. The generative nucleus develops into two sperm nuclei. Thus, the sporophytic development should be started before the onset of cell division when the gamete cells in the microspores are still totipotent. However, the embryogenic stage of microspores varies greatly among species (Touraev et al. 2001). The microspores are amenable to androgenesis and consist of haploid (n) number of chromosomes and therefore; give rise to haploid plants. Androgenesis can be divided into three distinguished steps (1) embryogenesis induction (2) regeneration of haploids followed by (3) artificial chromosome doubling. The production of haploids or doubled haploids (DH) via androgenesis can be achieved either through isolated microspore culture or anther culture.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abadie JC, Puttsepp U, Gebauer G, Faccio A, Bonfante P, Selosse MA (2006) Cephalanthera longifolia (Neottieae, Orchidaceae) is mixotrophic: a comparative study between green and nonphotosynthetic individuals. Can J Bot 84(9):1462–1477. doi:10.1139/b06-101

    Article  CAS  Google Scholar 

  • Agache S, Bachelier B, Debuyser J, Henry Y, Snape J (1989) Genetic analysis of anther culture response in wheat using aneuploid, chromosome substitution and translocation lines. Theor Appl Genet 77(1):7–11. doi:10.1007/bf00292308

    Article  Google Scholar 

  • Agarwal PK, Bhojwani SS (1993) Enhanced pollen grain embryogenesis and plant-regeneration in anther cultures of Brassica juncea cv PR-45. Euphytica 70(3):191–196. doi:10.1007/bf00023759

    Article  Google Scholar 

  • Aionesei T, Touraev A, Heberle-Bors E (2005) Pathways to microspore embryogenesis. In: Palmer CE, Keller WA, Kasha KJ (eds) Biotechnology in agriculture and forestry, vol 56. Springer, Berlin, pp 11–34

    Google Scholar 

  • Aldemita RR, Zapata FJ (1991) Anther culture of rice - effects of radiation and media components on callus induction and plant-regeneration. Cereal Res Commun 19(1–2):9–32

    Google Scholar 

  • Almoguera C, Jordano J (1992) Developmental and environmental concurrent expression of sunflower dry-seed-stored low-molecular-weight heat-shock protein and lea messenger-RNAs. Plant Mol Biol 19(5):781–792. doi:10.1007/bf00027074

    Article  PubMed  CAS  Google Scholar 

  • Antoine MS, Beckert M (1997) Spontaneous versus colchicine-induced chromosome doubling in maize anther culture. Plant Cell Tissue Organ Cult 48(3):203–207. doi:10.1023/a:1005840400121

    Article  Google Scholar 

  • Arnison PG, Keller WA (1990) A survey of anther culture response of B. oleracea L. cultivars grown under field conditions. Plant Breed 104:125–133

    Article  Google Scholar 

  • Asif M, François E, Aakash G, Eric A, Harpinder R, Dean S (2013) Organelle antioxidants improve microspore embryogenesis in wheat and triticale. In Vitro Cell Dev Biol Plant. doi:10.1007/s11627-013-9514-z

    Google Scholar 

  • Atak Q, Celik O, Olgun A, Alikamanoglu S, Rzakoulieva A (2007) Effect of magnetic field on peroxidase activities of soybean tissue culture. Biotechnol Biotechnol Equip 21(2):166–171

    CAS  Google Scholar 

  • Bajaj YPS (1980) Enhancement of the in-vitro development of triticale embryos by the endosperm of durum wheat Triticum durum. Cereal Res Commun 8(2):359–364

    Google Scholar 

  • Bajaj YPS (1990) In vitro production of haploids and their use in cell genetics and plant breeding. In: Bajaj YPS (ed) Haploids in crop improvement, vol 12, Biotechnology in agriculture and forestry. Springer, Berlin, pp 1–44

    Chapter  Google Scholar 

  • Bajaj YPS, Reinert J, Heberle E (1977) Factors enhancing in vitro production of haploid plants in anthers and isolated microspores. In: Gautheret RJ (ed) La culture des tissus et des cellules des vegetaux. Masson, Paris, pp 47–58

    Google Scholar 

  • Ball ST, Zhou HP, Konzak CF (1993) Influence of 2,4-D, IAA, and duration of callus induction in anther cultures of spring wheat. Plant Sci 90(2):195–200. doi:10.1016/0168-9452(93)90240-z

    Article  CAS  Google Scholar 

  • Barany I, Testillano PS, Mityko J, Risueno MC (2001) The switch of the microspore developmental programme in Capsicum involves HSP70 expression and leads to the production of haploid plants. Int J Dev Biol 45:S39–S40

    CAS  Google Scholar 

  • Barclay IR (1975) High-frequencies of haploid production in wheat (Triticum aestivum) by ­chromosome elimination. Nature 256(5516):410–411. doi:10.1038/256410a0

    Article  Google Scholar 

  • Barro F, Martin A (1999) Response of different genotypes of Brassica carinata to microspore culture. Plant Breed 118(1):79–81. doi:10.1046/j.1439-0523.1999.118001079.x

    Article  Google Scholar 

  • Barwale UB, Widholm JM (1987) Somaclonal variation in plants regenerated from cultures of soybean. Plant Cell Rep 6(5):365–368

    Article  Google Scholar 

  • Bernard S (1977) Study of some factors contributing to the success of androgenesis by in vitro anther culture in hexaploid triticale. Annales de l’ Amelioration des Plantes 27:639–656

    Google Scholar 

  • Binarova P, Hause G, Cenklova V, Cordewener JHG, Campagne MMV (1997) A short severe heat shock is required to induce embryogenesis in late bicellular pollen of Brassica napus L. Sex Plant Reprod 10(4):200–208. doi:10.1007/s004970050088

    Article  Google Scholar 

  • Bishnoi U, Jain RK, Rohilla JS, Chowdhury VK, Gupta KR, Chowdhury JB (2000) Anther culture of recalcitrant indica × Basmati rice hybrids. Euphytica 114(2):93–101. doi:10.1023/A:1003915331143

    Article  CAS  Google Scholar 

  • Blakeslee AF (1939) The present and potential service of chemistry to plant breeding. Am J Bot 26(3):163–172. doi:10.2307/2436533

    Article  CAS  Google Scholar 

  • Branch WD, Kvien CK (1992) Cytoplasmically inherited albinism in peanut seedlings. J Hered 83(6):455–457

    Google Scholar 

  • Broughton S (2008) Ovary co-culture improves embryo and green plant production in anther culture of Australian spring wheat (Triticum aestivum L.). Plant Cell Tissue Organ Cult 95(2):185–195. doi:10.1007/s11240-008-9432-7

    Article  Google Scholar 

  • Campbell AW, Griffin WB, Burritt DJ, Conner AJ (2001) The importance of light intensity for pollen tube growth and embryo survival in wheat x maize crosses. Ann Bot 87(4):517–522. doi:10.1006/anbo.2000.1363

    Article  Google Scholar 

  • Caredda S, Clement C (1999) Androgenesis and albinism in Poaceae: influence of genotype and carbohydrates. In: Clement C, Pacini E, Audran JC (eds) Anther and pollen: from biology to biotechnology. Springer, Berlin, pp 211–226

    Chapter  Google Scholar 

  • Caredda S, Doncoeur C, Devaux P, Sangwan RS, Clement C (2000) Plastid differentiation during androgenesis in albino and non-albino producing cultivars of barley (Hordeum vulgare L.). Sex Plant Reprod 13(2):95–104. doi:10.1007/s004970000043

    Article  CAS  Google Scholar 

  • Caredda S, Devaux P, Sangwan RS, Proult I, Clement C (2004) Plastid ultrastructure and DNA related to albinism in androgenetic embryos of various barley (Hordeum vulgare) cultivars. Plant Cell Tissue Organ Cult 76(1):35–43. doi:10.1023/a:1025812621775

    Article  CAS  Google Scholar 

  • Casimiro I, Beeckman T, Graham N, Bhalerao R, Zhang HM, Casero P, Sandberg G, Bennett MJ (2003) Dissecting Arabidopsis lateral root development. Trends Plant Sci 8(4):165–171. doi:10.1016/s1360-1385(03)00051-7

    Article  PubMed  CAS  Google Scholar 

  • Chanana NP, Dhawan V, Bhojwani SS (2005) Morphogenesis in isolated microspore cultures of Brassica juncea. Plant Cell Tissue Organ Cult 83(2):169–177. doi:10.1007/s11240-005-4855-x

    Article  Google Scholar 

  • Chaudhary HK, Dhaliwal I, Singh S, Sethi GS (2003) Genetics of androgenesis in winter and spring wheat genotypes. Euphytica 132(3):311–319. doi:10.1023/a:1025094606482

    Article  Google Scholar 

  • Chen CC (1977) Invitro development of plants from microspores of rice. In Vitro Cell Dev Biol Plant 13(8):484–489

    Article  CAS  Google Scholar 

  • Chen X-W, Cistue L, Munoz-Amatriain M, Sanz M, Romagosa I, Castillo A-M, Valles M-P (2007) Genetic markers for doubled haploid response in barley. Euphytica 158(3):287–294. doi:10.1007/s10681-006-9310-5

    Article  CAS  Google Scholar 

  • Chiancone B, Tassoni A, Bagni N, Germana MA (2006) Effect of polyamines on in vitro anther culture of Citrus clementina Hort. ex Tan. Plant Cell Tissue Organ Cult 87(2):145–153. doi:10.1007/s11240-006-9149-4

    Article  CAS  Google Scholar 

  • Cho MS, Zapata FJ (1990) Plant-regeneration from isolated microspore of indica rice. Plant Cell Physiol 31(6):881–885

    Google Scholar 

  • Chory J, Aguilar N, Peto CA (1991) The phenotype of Arabidopsis thaliana DETl mutants suggests a role for cytokinins in greening. In: Jenkins GI, Schuch W (eds) Molecular biology of plant development. Society for Experimental Biology, Cambridge, pp 21–29

    Google Scholar 

  • Chu CC (1981) The N6 medium and its applications to anther culture of cereal crops. In: Proceedings of symposium on plant tissue culture, Beijing, pp 43–50

    Google Scholar 

  • Chu CC, Hill RD, Brulebabel AL (1990) High-frequency of pollen embryoid formation and plant-­regeneration in triticum-aestivum l on monosaccharide containing media. Plant Sci 66(2):255–262. doi:10.1016/0168-9452(90)90211-6

    Article  CAS  Google Scholar 

  • Cistué L, Vallés MP, Echavarri B, Sanz J, Castillo A (2003) Barley anther culture. In: Maluszynski M, Kasha KJ, Forster BP, Szarejko I (eds) Doubled haploid production in crop plants: a manual. Kluwer Academic, Dordrecht, pp 29–34

    Chapter  Google Scholar 

  • Cistue L, Romagosa I, Batlle F, Echavarri B (2009) Improvements in the production of doubled haploids in durum wheat (Triticum turgidum L.) through isolated microspore culture. Plant Cell Rep 28(5):727–735. doi:10.1007/s00299-009-0690-6

    Article  PubMed  CAS  Google Scholar 

  • Clewer HWB, Green SJ, Tutin F (1915) The constituents of Gloriosa superba. J Chem Soc 107:835–846. doi:10.1039/ct9150700835

    Article  CAS  Google Scholar 

  • Collins JL (1927) A low temperature type of albinism in barley. J Hered 18(7):331–334

    Google Scholar 

  • Croser JS, Lulsdorf MM, Davies PA, Clarke HJ, Bayliss KL, Mallikarjuna N, Siddique KHM (2006) Toward doubled haploid production in the fabaceae: progress, constraints, and opportunities. Crit Rev Plant Sci 25(2):139–157. doi:10.1080/07352680600563850

    Article  Google Scholar 

  • Croser JS, Lulsdorf MM, Grewal RK, Usher KM, Siddique KHM (2011) Isolated microspore culture of chickpea (Cicer arietinum L.): induction of androgenesis and cytological analysis of early haploid divisions. In Vitro Cell Dev Biol Plant 47(3):357–368. doi:10.1007/s11627-011-9346-7

    Article  CAS  Google Scholar 

  • Dahleen LS (1999) Donor-plant environment effects on regeneration from barley embryo-derived callus. Crop Sci 39(3):682–685

    Article  Google Scholar 

  • Datta SK, Potrykus I (1998) Direct pollen embryogenesis in cereals. Experientia 44:43. doi:10.1104/pp. 121.3.687

    Google Scholar 

  • Datta SK, Wenzel G (1987) Isolated microspore derived plant formation via embryogenesis in Tricum aestivum L. Plant Sci 48(1):49–54. doi:10.1016/0168-9452(87)90069-0

    Article  Google Scholar 

  • Davies PA (2003) Barley isolated microspore culture (IMC) method. In: Maluszynski M, Kasha KJ, Forster BP, Szarejko I (eds) Doubled haploid production in crop plants: a manual. Kluwer Academic, Dordrecht, pp 49–92

    Chapter  Google Scholar 

  • Devaux P, Pickering R (2005) Haploids in the Improvement of Poaceae. In: Don Palmer CE, Keller W, Kasha K (eds) Haploids in crop improvement II, vol 56. Biotechnology in agriculture and forestry. Springer, Berlin, pp 215–242. doi:10.1007/3-540-26889-8_11

    Google Scholar 

  • Dhawi F, Al-Khayri JM (2008) Magnetic fields induce changes in photosynthetic pigments content in datepalm (Phoenix dactylifera L.) seedlings. Open Agric J 2:121–125

    Article  CAS  Google Scholar 

  • Dhooghe E, Van Laere K, Eeckhaut T, Leus L, Van Huylenbroeck J (2011) Mitotic chromosome doubling of plant tissues in vitro. Plant Cell Tissue Organ Cult 104(3):359–373. doi:10.1007/s11240-010-9786-5

    Article  Google Scholar 

  • Dias JCD (2001) Effect of incubation temperature regimes and culture medium on broccoli microspore culture embryogenesis. Euphytica 119(3):389–394

    Article  Google Scholar 

  • Duncan EJ, Heberle E (1976) Effect of temperature shock on nuclear phenomena in microspores of Nicotiana tabacum and consequently on plantlet production. Protoplasma 90(1–2):173–177. doi:10.1007/bf01276486

    Article  Google Scholar 

  • Dunwell JM (1976) Comparative-study of environmental and developmental factors which influence embryo induction and growth in cultured anthers of Nicotiana tabacum. Environ Exp Bot 16(2–3):109–118. doi:10.1016/0098-8472(76)90002-2

    Article  Google Scholar 

  • Dunwell JM (2010) Haploids in flowering plants: origins and exploitation. Plant Biotechnol J 8(4):377–424. doi:10.1111/j.1467-7652.2009.00498.x

    Article  PubMed  CAS  Google Scholar 

  • Dunwell JM, Thurling N (1985) Role of sucrose in microspore embryo production in Brassica napus ssp oleifera. J Exp Bot 36(170):1478–1491. doi:10.1093/jxb/36.9.1478

    Article  CAS  Google Scholar 

  • Dwivedi SL, Nigam SN, Pandey SK, Gibbons RW (1984) Inheritance of albinism in certain interspecific and intersubspecific crosses in groundnut (Arachis hypogaea L). Euphytica 33(3):705–708. doi:10.1007/bf00021898

    Article  Google Scholar 

  • Echavarri B, Soriano M, Cistue L, Valles MP, Castillo AM (2008) Zinc sulphate improved microspore embryogenesis in barley. Plant Cell Tissue Organ Cult 93(3):295–301. doi:10.1007/s11240-008-9376-y

    Article  CAS  Google Scholar 

  • Eder J, Chalyk S (2002) In vivo haploid induction in maize. Theor Appl Genet 104(4):703–708. doi:10.1007/s00122-001-0773-4

    Article  PubMed  CAS  Google Scholar 

  • Ekiz H, Konzak CF (1991) Nuclear and cytoplasmic control of anther culture response in wheat. 1. Analyses of alloplasmic lines. Crop Sci 31(6):1421–1427

    Article  Google Scholar 

  • Eudes F, Chugh A (2009) An overview of Triticale doubled haploids. In: Touraev A, Forster BP, Jain SM (eds) Advances in haploid production in higher plants. Springer, Dordrecht, pp 87–96. doi:10.1007/978-1-4020-8854-4_6

    Chapter  Google Scholar 

  • Fan Z, Armstrong KC, Keller WA (1988) Development of microspores invivo and invitro in Brassica napus L. Protoplasma 147(2–3):191–199. doi:10.1007/bf01403347

    Article  Google Scholar 

  • Ferrie AMR (2003) Microspore culture of Brassica species. In: Maluszynski M, Kasha KJ, Forster BP, Szarejko I (eds) Doubled haploid production in crop plants: a manual. Kluwer Academic, Dordrecht, pp 205–215

    Chapter  Google Scholar 

  • Ferrie AMR, Epp DJ, Keller WA (1995a) Evaluation of Brassica rapa L genotypes for microspore culture response and identification of a highly embryogenic line. Plant Cell Rep 14(9):580–584

    Article  CAS  Google Scholar 

  • Ferrie AMR, Palmer CE, Keller WA (1995b) Haploid embryogenesis. In: Thorpe TA (ed) In vitro embryogenesis in plants. Kluwer Academic, Dordrecht, pp 309–344

    Chapter  Google Scholar 

  • Ferrie AMR, Taylor DC, MacKenzie SL, Keller WA (1999) Microspore embryogenesis of high sn-2 erucic acid Brassica oleracea germplasm. Plant Cell Tissue Organ Cult 57(2):79–84. doi:10.1023/a:1006325431653

    Article  CAS  Google Scholar 

  • Filonova LH, Bozhkov PV, Brukhin VB, Daniel G, Zhivotovsky B, von Arnold S (2000) Two waves of programmed cell death occur during formation and development of somatic embryos in the gymnosperm, Norway spruce. J Cell Sci 113(24):4399–4411

    PubMed  CAS  Google Scholar 

  • Fletcher R, Coventry J, Kott L (1998) Manual for microspore culture technique for Brassica napus. Technical Bulletin, Department of Plant Agriculture, University of Guelph, Guelph, ON

    Google Scholar 

  • Francis D (2007) The plant cell cycle - 15 years on. New Phytol 174(2):261–278. doi:10.1111/j.1469-8137.2007.02038.x

    Article  PubMed  CAS  Google Scholar 

  • Furusho M, Suenaga K, Nakajima K (1991) Production of haploid barley plants from barley x maize and barley x italian ryegrass crosses. Jpn J Breed 41(1):175–179

    CAS  Google Scholar 

  • Gagliardi D, Breton C, Chaboud A, Vergne P, Dumas C (1995) Expression of heat shock factor and heat shock protein 70 genes during maize pollen development. Plant Mol Biol 29(4):841–856. doi:10.1007/bf00041173

    Article  PubMed  CAS  Google Scholar 

  • Gaillard A, Vergne P, Beckert M (1991) Optimization of maize microspore isolation and culture conditions for reliable plant regeneration. Plant Cell Rep 10(2):55–58. doi:10.1007/BF00236456

    Article  Google Scholar 

  • Garrido D, Vicente O, Heberlebors E, Rodriguezgarcia MI (1995) Cellular-changes during the acquisition of embryogenic potential in isolated pollen grains of Nicotiana tabacum. Protoplasma 186(3–4):220–230. doi:10.1007/bf01281332

    Article  Google Scholar 

  • Geiger HH, Gordillo GA (2009) Doubled haploids in hybrid maize breeding. Maydica 54(4):485–499

    Google Scholar 

  • Gemes-Juhasz A, Balogh P, Ferenczy A, Kristof Z (2002) Effect of optimal stage of female gametophyte and heat treatment on in vitro gynogenesis induction in cucumber (Cucumis sativus L.). Plant Cell Rep 21(2):105–111. doi:10.1007/s00299-002-0482-8

    Article  CAS  Google Scholar 

  • Germana MA (2007) Haploidy. Citrus Genet Breed Biotechnol. doi:10.1079/9780851990194.0167

    Google Scholar 

  • Germana MA (2011a) Anther culture for haploid and doubled haploid production. Plant Cell Tissue Organ Cult 104(3):283–300. doi:10.1007/s11240-010-9852-z

    Article  Google Scholar 

  • Germana MA (2011b) Gametic embryogenesis and haploid technology as valuable support to plant breeding. Plant Cell Rep 30(5):839–857. doi:10.1007/s00299-011-1061-7

    Article  PubMed  CAS  Google Scholar 

  • Germana MA, Chiancone B (2003) Improvement of Citrus clementina Hort. ex Tan. microspore-­derived embryoid induction and regeneration. Plant Cell Rep 22(3):181–187. ­doi:10.1007/s00299-003-0669-7

    Article  PubMed  CAS  Google Scholar 

  • Germana MA, Crescimanno FG, Motisi A (2000) Factors affecting androgenesis in Citrus clementina Hort. ex Tan. Adv Hortic Sci 14(2):43–51

    Google Scholar 

  • Gernand D, Rutten T, Varshney A, Rubtsova M, Prodanovic S, Bruss C, Kumlehn J, Matzk F, Houben A (2005) Uniparental chromosome elimination at mitosis and interphase in wheat and pearl millet crosses involves micronucleus formation, progressive heterochromatinization, and DNA fragmentation. Plant Cell 17(9):2431–2438. doi:10.1105/tpc.105.034249

    Article  PubMed  CAS  Google Scholar 

  • Gland A, Lichter R, Schweiger HG (1988) Genetic and exogenous factors affecting embryogenesis in isolated microspore cultures of Brassica napus L. J Plant Physiol 132(5):613–617

    Article  Google Scholar 

  • Greplova M, Polzerova H, Domkarova J (2009) Intra- and inter-specific crosses of Solanum materials after mitotic polyploidization in vitro. Plant Breed 128(6):651–657. doi:10.1111/j.1439-0523.2009.01632.x

    Article  Google Scholar 

  • Gu HH, Zhou WJ, Hagberg P (2003a) High frequency spontaneous production of doubled haploid plants in microspore cultures of Brassica rapa ssp chinensis. Euphytica 134(3):239–245. doi:10.1023/B:EUPH.0000004945.01455.6d

    Article  Google Scholar 

  • Gu HH, Zhu J, Zhang G, Zhou W (2003b) Microspore culture and ploidy identification of regenerated plant in Chinese flowering cabbage (Brassica rapa ssp. parachinensis). J Agric Biol 11(6):572–576

    Google Scholar 

  • Guha S, Maheshwari SC (1964) In vitro production of embryos from anthers of datura. Nature 204(495):497. doi:10.1038/204497a0

    Article  Google Scholar 

  • Guo YD, Pulli S (2000a) An efficient androgenic embryogenesis and plant regeneration method through isolated microspore culture in timothy (Phleum pratense L.). Plant Cell Rep 19(8): 761–767

    Article  CAS  Google Scholar 

  • Guo YD, Pulli S (2000b) Isolated microspore culture and plant regeneration in rye (Secale cereale L.). Plant Cell Rep 19(9):875–880

    Article  CAS  Google Scholar 

  • Gustafson VD, Baenziger PS, Wright MS, Stroup WW, Yen Y (1995) Isolated wheat microspore culture. Plant Cell Tissue Organ Cult 42(2):207–213. doi:10.1007/bf00034239

    Article  Google Scholar 

  • Hansen M (2000) ABA treatment and desiccation of microspore-derived embryos of cabbage (Brassica oleracea ssp capitata L.) improves plant development. J Plant Physiol 156(2):164–167

    Article  CAS  Google Scholar 

  • Hansen M (2003) Protocol for microspore culture in Brassica. In: Maluszymski M, Kasha KJ, Forster BP, Szarejko I (eds) Doubled haploid production in crop plants: a manual. Kluwer Academic, Dordrecht, pp 217–222

    Chapter  Google Scholar 

  • Harada H, Kyo M, Imamura J (1988) The induction of embryogenesis in nicotiana immature pollen in culture. In: Bock G, Marsh J (eds) Applications of plant cell and tissue culture. Ciba Foundation Symposium, Kyoto, Japan, pp 59–69

    Google Scholar 

  • He P, Shen LH, Lu CF, Chen Y, Zhu LH (1998) Analysis of quantitative trait loci which contribute to anther culturability in rice (Oryza sativa L.). Mol Breed 4(2):165–172. doi:10.1023/a:1009692221152

    Article  CAS  Google Scholar 

  • Heberle-Bors E (1984) Pollen embryogenesis a model system for the life cycle of higher plants. J Embryol Exp Morphol 82(suppl):17

    Google Scholar 

  • Heberle-Bors E (1989) Isolated pollen culture in tobacco: plant reproductive development in a nutshell. Sex Plant Reprod 2(1):1–10

    Article  Google Scholar 

  • Ho KM, Kasha KJ (1975) Genetic-control of chromosome elimination during haploid formation in barley. Genetics 81(2):263–275

    PubMed  CAS  Google Scholar 

  • Hoekstra S, Vanzijderveld MH, Louwerse JD, Heidekamp F, Vandermark F (1992) Anther and microspore culture of Hordeum vulgare L cv Igri. Plant Sci 86(1):89–96. doi:10.1016/0168-9452(92)90182-l

    Article  CAS  Google Scholar 

  • Hu T, Kasha KJ (1997) Improvement of isolated microspore culture of wheat (Triticum aestivum L) through ovary co-culture. Plant Cell Rep 16(8):520–525

    Article  CAS  Google Scholar 

  • Hu TC, Kasha KJ (1999) A cytological study of pretreatments used to improve isolated microspore cultures of wheat (Triticum aestivum L.) cv. Chris. Genome 42(3):432–441. ­doi:10.1139/gen-42-3-432

    Google Scholar 

  • Huang B, Bird S, Kemble R, Simmonds D, Keller W, Miki B (1990) Effects of culture density, conditioned medium and feeder cultures on microspore embryogenesis in Brassica napus L cv Topas. Plant Cell Rep 8(10):594–597

    Article  Google Scholar 

  • Hunter CP (1987) Plant regeneration method. European Patent

    Google Scholar 

  • Immonen S, Anttila H (2000) Media composition and anther plating for production of androgenetic green plants from cultivated rye (Secale cereale L.). J Plant Physiol 156(2):204–210

    Article  CAS  Google Scholar 

  • Inagaki MN, Mujeeb-Kazi A (1997) Production of polyhaploids of hexaploid wheat using stored pearl millet pollen. Wheat: prospects for global improvement. In: Proceedings of the 5th international wheat conference, Ankara, Turkey, 10–14 June 1996

    Google Scholar 

  • Indrianto A, Heberle-Bors E, Touraev A (1999) Assessment of various stresses and carbohydrates for their effect on the induction of embryogenesis in isolated wheat microspores. Plant Sci 143(1):71–79. doi:10.1016/s0168-9452(99)00022-9

    Article  CAS  Google Scholar 

  • Indrianto A, Barinova I, Touraev A, Heberle-Bors E (2001) Tracking individual wheat microspores in vitro: identification of embryogenic microspores and body axis formation in the embryo. Planta 212(2):163–174. doi:10.1007/s004250000375

    Article  PubMed  CAS  Google Scholar 

  • Iqbal MCM, Wijesekara KB (2007) A brief temperature pulse enhances the competency of microspores for androgenesis in Datura metel. Plant Cell Tissue Organ Cult 89(2–3):141–149. doi:10.1007/s11240-007-9222-7

    Article  Google Scholar 

  • Jacquard C, Asakaviciute R, Hamalian AM, Sangwan RS, Devaux P, Clement C (2006) Barley anther culture: effects of annual cycle and spike position on microspore embryogenesis and albinism. Plant Cell Rep 25(5):375–381. doi:10.1007/s00299-005-0070-9

    Article  PubMed  CAS  Google Scholar 

  • Jacquard C, Nolin F, Hecart C, Grauda D, Rashal I, Dhondt-Cordelier S, Sangwan RS, Devaux P, Mazeyrat-Gourbeyre F, Clement C (2009) Microspore embryogenesis and programmed cell death in barley: effects of copper on albinism in recalcitrant cultivars. Plant Cell Rep 28(9):1329–1339. doi:10.1007/s00299-009-0733-z

    Article  PubMed  CAS  Google Scholar 

  • Jensen CJ (1974) Chromosome doubling techniques in haploids. In: Kasha KJ (ed) Haploids in higher plants, advances and potential III. Methods of chromosome doubling. University of Guelph, Guelph, ON, pp 153–190

    Google Scholar 

  • Joersbo M, Jorgensen RB, Olesen P (1990) Transient electropermeabilization of barley (Hordeum vulgare L) microspores to propidium iodide. Plant Cell Tissue Organ Cult 23(2):125–129. doi:10.1007/bf00035832

    Article  CAS  Google Scholar 

  • Kao KN (1981) Plant formation from barley anther cultures with ficoll media. Zeitschrift Fur Pflanzenphysiologie 103(5):437–443

    CAS  Google Scholar 

  • Kao KN, Saleem M, Abrams S, Pedras M, Horn D, Mallard C (1991) Culture conditions for induction of green plants from barley microspores by anther culture methods. Plant Cell Rep 9(11):595–601

    Article  Google Scholar 

  • Karsai I, Bedo Z (1997) Effect of carbohydrate content on the embryoid and plant production in triticale anther culture. Cereal Res Commun 25(2):109–116

    Google Scholar 

  • Kasha KJ, Kao KN (1970) High frequency haploid production in barley (Hordeum vulgare L.). Nature 225(5235):874–876. doi:10.1038/225874a0

    Article  PubMed  CAS  Google Scholar 

  • Kasha KJ, Maluszynski M (2003) Production of doubled haploids in crop plants. In: Maluszymski M, Kasha KJ, Forster BP, Szarejko I (eds) Doubled haploid production in crop plants: a manual. Kluwer Academic, Dordrecht, pp 1–4

    Chapter  Google Scholar 

  • Kasha KJ, Simion E, Oro R, Yao QA, Hu TC, Carlson AR (2001) An improved in vitro technique for isolated microspore culture of barley. Euphytica 120(3):379–385. doi:10.1023/a:1017564100823

    Article  Google Scholar 

  • Kasha KJ, Simion E, Miner M, Letarte J, Hu TC (2003a) Haploid wheat isolated microspore culture protocol. In: Maluszymski M, Kasha KJ, Forster BP, Szarejko I (eds) Doubled haploid production in crop plants: a manual. Kluwer Academic, Dordrecht, pp 77–81

    Chapter  Google Scholar 

  • Kasha KJ, Simion E, Oro R, Shim YS (2003b) Barley isolated microspore culture protocol. In: Maluszymski M, Kasha KJ, Forster BP, Szarejko I (eds) Doubled haploid production in crop plants: a manual. Kluwer Academic, Dordrecht, pp 43–48

    Chapter  Google Scholar 

  • Keller W, Arnison PG, Cardy BJ (1987a) Haploids from gametophytic cells recent developments and future prospects. In: Green CE et al (eds) Plant biology. Liss, New York, pp 223–242

    Google Scholar 

  • Keller W, Fan Z, Pechan P, Long N, Grainger J (1987b) An efficient method for culture of isolated microspores in Brassica napus (Poster). In: 7th International rapeseed congress, Poznan, 11–14 May 1987, p 71

    Google Scholar 

  • Kieffer M, Fuller MP, Chauvin JE, Schlesser A (1993) Anther culture of kale (Brassica oleracea L convar acephala (dc) alef). Plant Cell Tissue Organ Cult 33(3):303–313. doi:10.1007/bf02319016

    Article  Google Scholar 

  • Kim NS, Armstrong KC, Fedak G, Ho K, Park NI (2002) A microsatellite sequence from the rice blast fungus (Magnaporthe grisea) distinguishes between the centromeres of Hordeum vulgare and H. bulbosum in hybrid plants. Genome 45(1):165–174. doi:10.1139/g01-129

    Article  PubMed  CAS  Google Scholar 

  • Kim M, Jang I-C, Kim J-A, Park E-J, Yoon M, Lee Y (2008) Embryogenesis and plant regeneration of hot pepper (Capsicum annuum L.) through isolated microspore culture. Plant Cell Rep 27(3):425–434. doi:10.1007/s00299-007-0442-4

    Article  PubMed  CAS  Google Scholar 

  • Kiviharju E, Laurila J, Lehtonen M, Tanhuanpaa P, Manninen O (2004) Anther culture properties of oat x wild red oat progenies and a search for RAPD markers associated with anther culture ability. Agric Food Sci 13(1–2):151–162. doi:10.2137/1239099041838094

    Article  Google Scholar 

  • Knox RE, Clarke JM, DePauw RM (2000) Dicamba and growth condition effects on doubled haploid production in durum wheat crossed with maize. Plant Breed 119(4):289–298. doi:10.1046/j.1439-0523.2000.00498.x

    Article  Google Scholar 

  • Konzak CF, Polle EA, Liu W, Zheng Y (1999) Methods for generating doubled-haploid plants. US Patent US6362393. PCT/US99/19498

    Google Scholar 

  • Kumar HGA, Ravishankar BV, Murthy HN (2004) The influence of polyamines on androgenesis of Cucumis sativus L. Eur J Hortic Sci 69(5):201–205

    CAS  Google Scholar 

  • Kyo M, Harada H (1986) Control of the developmental pathway of tobacco pollen invitro. Planta 168(4):427–432. doi:10.1007/bf00392260

    Article  CAS  Google Scholar 

  • Kyo M, Harada H (1990) Specific phosphoproteins in the initial period of tobacco pollen embryogenesis. Planta 182(1):58–63

    Article  CAS  Google Scholar 

  • Lantos C, Paricsi S, Zofajova A, Weyen J, Pauk J (2006) Isolated microspore culture of wheat (Triticum aestivum L.) with Hungarian cultivars. Acta Biologica Szegediensis 50(1–2):31–35

    Google Scholar 

  • Lantos C, Juhasz AG, Somogyi G, Otvos K, Vagi P, Mihaly R, Kristof Z, Somogyi N, Pauk J (2009) Improvement of isolated microspore culture of pepper (Capsicum annuum L.) via co-­culture with ovary tissues of pepper or wheat. Plant Cell Tissue Organ Cult 97(3):285–293. doi:10.1007/s11240-009-9527-9

    Article  Google Scholar 

  • Larsen ET, Tuvesson IKD, Andersen SB (1991) Nuclear genes affecting percentage of green plants in barley (Hordeum vulgare L) anther culture. Theor Appl Genet 82(4):417–420. doi:10.1007/bf00588593

    Article  Google Scholar 

  • Letarte J, Simion E, Miner M, Kasha KJ (2006) Arabinogalactans and arabinogalactan-proteins induce embryogenesis in wheat (Triticum aestivum L.) microspore culture. Plant Cell Rep 24(12):691–698. doi:10.1007/s00299-005-0013-5

    Article  PubMed  CAS  Google Scholar 

  • Li HC, Devaux P (2003) High frequency regeneration of barley doubled haploid plants from isolated microspore culture. Plant Sci 164(3):379–386. doi:10.1016/s0168-9452(02)00424-7

    Article  CAS  Google Scholar 

  • Liang GH, Xu A, Hoangtang (1987) Direct generation of wheat haploids via anther culture. Crop Sci 27(2):336–339

    Article  Google Scholar 

  • Lichter R (1982) Induction of haploid plants from isolated pollen of Brassica napus. Zeitschrift Fur Pflanzenphysiologie 105(5):427–434

    Article  Google Scholar 

  • Lindstorm EW (1929) A haploid mutant in tomato. J Hered 17:351–357

    Google Scholar 

  • Low D, Brandle K, Nover L, Forreiter C (2000) Cytosolic heat-stress proteins Hsp17.7 class I and Hsp17.3 class II of tomato act as molecular chaperones in vivo. Planta 211(4):575–582. doi:10.1007/s004250000315

    Article  PubMed  CAS  Google Scholar 

  • Lu R, Wang Y, Sun Y, Shan L, Chen P, Huang J (2008) Improvement of isolated microspore culture of barley (Hordeum vulgare L.): the effect of floret co-culture. Plant Cell Tissue Organ Cult 93(1):21–27. doi:10.1007/s11240-008-9338-4

    Article  Google Scholar 

  • Luckett DJ (1989) Colchicine mutagenesis is associated with substantial heritable variation in ­cotton. Euphytica 42(1–2):177–182. doi:10.1007/bf00042630

    Article  CAS  Google Scholar 

  • Luk YSF, Ignatova SA, Sozinov AA (1983) Use of in vitro techniques for producing haploids in barley and triticale. Tagungsbericht, Akademie der Landwirtschaftswissenschaften der Deutschen Demokratischen Republik (207):41–48

    Google Scholar 

  • Maine D (2003) Potato haploid technologies. In: Maluszynski M, Kasha KJ, Forster BP, Szarejko I (eds) Doubled haploid production in crop plants: a manual. Kluwer Academic, Dordrecht, pp 241–247

    Chapter  Google Scholar 

  • Marciniak K, Kaczmarek Z, Adamski T, Surma M (2003) The anther-culture response of triticale line X tester progenies. Cell Mol Biol Lett 8(2):343–351

    PubMed  Google Scholar 

  • Mejza SJ, Morgant V, Dibona DE, Wong JR (1993) Plant-regeneration from isolated microspores of Triticum aestivum. Plant Cell Rep 12(3):149–153

    Article  Google Scholar 

  • Miah MAA, Earle ED, Khush GS (1985) Inheritance of callus formation ability in anther cultures of rice, Oryza sativa L. Theor Appl Genet 70(2):113–116

    Google Scholar 

  • Mochida K, Tsujimoto H (2001) Production of wheat doubled haploids by pollination with Job’s tears (Coix lachryma-jobi L.). J Hered 92(1):81–83. doi:10.1093/jhered/92.1.81

    Article  PubMed  CAS  Google Scholar 

  • Moieni A, Sarrafi A (1995) Genetic-analysis for haploid-regeneration responses of hexaploid-­wheat anther cultures. Plant Breed 114(3):247–249. doi:10.1111/j.1439-0523.1995.tb00803.x

    Article  Google Scholar 

  • Morejohn LC, Fosket DE (1984) Inhibition of plant microtubule polymerization invitro by the phosphoric amide herbicide Amiprophos methyl. Science 224(4651):874–876. doi:10.1126/science.224.4651.874

    Article  PubMed  CAS  Google Scholar 

  • Mouritzen P, Holm PB (1994) Chloroplast genome breakdown in microspore cultures of barley (Hordeum vulgare L) occurs primarily during regeneration. J Plant Physiol 144(4–5):586–593

    Article  CAS  Google Scholar 

  • Murashige T, Skoog F (1962) A revised medium for rapid growth and bio assays with tobacco tissue cultures. Physiol Plant 15(3):473–497. doi:10.1111/j.1399-3054.1962.tb08052.x

    Article  CAS  Google Scholar 

  • Neuffer MG, Coe EH, Wessler SR (1997) Mutants of maize. Cold Spring Harbor Laboratory Press, Plainville, NY

    Google Scholar 

  • Nimura M, Kato J, Horaguchi H, Mii M, Sakai K, Katoh T (2006) Induction of fertile amphidiploids by artificial chromosome-doubling in interspecific hybrid between Dianthus caryophyllus L. and D. japonicus thunb. Breed Sci 56(3):303–310. doi:10.1270/jsbbs.56.303

    Article  Google Scholar 

  • Nishiyam I, Motoyosh F (1966) Cytogenetic studies in avena 16. Chlorophyll formation in albino sand oats under certain culture conditions. Jpn J Genet 41(5):403. doi:10.1266/jjg.41.403

  • Nishiyama I, Motoyoshi F (1966) Cytogenetic studies in Avena. XVI. Chlorophyll formation in albino sand oats under certain culture conditions. Jpn J Genet 41:403–411

    Article  Google Scholar 

  • Nitsch C (1974) Pollen culture - a new technique for mass production of haploid and homozygous plants. In: Kasha KJ (ed) Haploids in higher plants, advances and potential. II. Methods of producing haploids. University of Guelph, Guelph, ON, pp 123–135

    Google Scholar 

  • Niu YZ, Liu YZ, Wang LZ, Yuang YX, Li SC, Fang QJ (1999) A preliminary study on isolated microspore culture and plant regeneration of resynthesized Brassica napus. J Sichuan Agric Univ 17:167–171

    Google Scholar 

  • Obert B, Barnabas B (2004) Colchicine induced embryogenesis in maize. Plant Cell Tissue Organ Cult 77(3):283–285. doi:10.1023/b:ticu.0000018399.60106.33

    Article  CAS  Google Scholar 

  • Ohkawa Y, Belvis E, Keller WA (1987) Validity study and microspore culture method in Brassica napus. Cruciferae Newslett 13:75

    Google Scholar 

  • Olsen FL (1987) Induction of microspore embryogenesis in cultured anthers of Hordeum vulgare - the effects of ammonium-nitrate, glutamine and asparagine as nitrogen-sources. Carlsberg Res Commun 52(6):393–404. doi:10.1007/bf02907527

    Article  CAS  Google Scholar 

  • Olsen FL (1991) Isolation and cultivation of embryogenic microspores from barley (Hordeum vulgare L). Hereditas 115(3):255–266

    Article  PubMed  CAS  Google Scholar 

  • Omran SA, Guerra-Sanz JM, Garrido Cardenas JA (2008) Methodology of tetraploid induction and expression of microsatellite alleles in triploid watermelon. In: Pitrat M (ed) Cucurbitaceae 2008: Proceedings of the IXth Eucarpia meeting on genetics and breeding of cucurbitaceae, 21–24 May 2008. INRA, Avignon, France, pp 381–384

    Google Scholar 

  • Osolnik B, Bohanec B, Jelaska S (1993) Stimulation of androgenesis in white cabbage (Brassica oleracea var capitata) anthers by low-temperature and anther dissection. Plant Cell Tissue Organ Cult 32(2):241–246. doi:10.1007/bf00029849

    Article  Google Scholar 

  • Otani M, Shimada T (1994) Pollen embryo formation and plant regeneration from cultured anthers of tetraploid wheat. J Genet Breed 48(1):103–106

    Google Scholar 

  • Pan JL, Gao GH, Ban H (1983) Initial patterns of androgenesis in wheat anther culture. Acta Bot Sin 25:34–39

    Google Scholar 

  • Parcellier A, Gurbuxani S, Schmitt E, Solary E, Garrido C (2003) Heat shock proteins, cellular chaperones that modulate mitochondrial cell death pathways. Biochem Biophys Res Commun 304(3):505–512. doi:10.1016/s0006-291x(03)00623-5

    Article  PubMed  CAS  Google Scholar 

  • Pauk J, Puolimatka M, Toth KL, Monostori T (2000) In vitro androgenesis of triticale in isolated microspore culture. Plant Cell Tissue Organ Cult 61(3):221–229. doi:10.1023/a:1006416116366

    Article  CAS  Google Scholar 

  • Pauk J, Mihaly R, Monostori T, Puolimatka M (2003) Protocol of triticale (x Triticosecale Wittmack) microspore culture. In: Maluszynski M, Kasha KJ, Forster BP, Szarejko I (eds) Doubled haploid production in crop plants: a manual. Kluwer Academic, Dordrecht, pp 129–134

    Chapter  Google Scholar 

  • Pechan PM, Keller WA (1989) Induction of microspore embryogenesis in Brassica napus L by gamma-irradiation and ethanol stress. In Vitro Cell Dev Biol Plant 25(11):1073–1074

    Article  CAS  Google Scholar 

  • Pechan PM, Smykal P (2001) Androgenesis: affecting the fate of the male gametophyte. Physiol Plant 111(1):1–8. doi:10.1034/j.1399-3054.2001.1110101.x

    Article  CAS  Google Scholar 

  • Pei XS (1985) Polyploidy induction and breeding. Shanghai Science and Technology Press, Shanghai, pp 95–98

    Google Scholar 

  • Petolino JF, Jones AM, Thompson SA (1988) Selection for increased anther culture response in maize. Theor Appl Genet 76(1):157–159. doi:10.1007/bf00288847

    Article  Google Scholar 

  • Phippen C, Ockendon DJ (1990) Genotype, plant, bud size and media factors affecting anther culture of cauliflowers (Brassica oleracea var botrytis). Theor Appl Genet 79(1):33–38

    Article  Google Scholar 

  • Pickering RA (1984) The influence of genotype and environment on chromosome elimination in crosses between Hordeum vulgare-L x Hordeum bulbosum L. Plant Sci Lett 34(1–2):153–164. doi:10.1016/0304-4211(84)90138-x

    Google Scholar 

  • Pingping Z, Ruochun Y, Zhiyou C, Zengliang Y (2011) Genotoxic effects of superconducting static magnetic fields (SMFs) on wheat (Triticum aestivum) pollen mother cells (PMCs). Plasma Sci Technol 9(2):241–247

    Article  Google Scholar 

  • Prem D, Gupta K, Sarkar G, Agnihotri A (2008) Activated charcoal induced high frequency microspore embryogenesis and efficient doubled haploid production in Brassica juncea. Plant Cell Tissue Organ Cult 93(3):269–282. doi:10.1007/s11240-008-9373-1

    Article  CAS  Google Scholar 

  • Puddephat IJ, Robinson HT, Smith BM, Lynn J (1999) Influence of stock plant pretreatment on gynogenic embryo induction from flower buds of onion. Plant Cell Tissue Organ Cult 57(2):145–148. doi:10.1023/a:1006312614874

    Article  Google Scholar 

  • Pulli S, Guo JD (2003) Microspore culture of rye. In: Maluszymski M, Kasha KJ, Forster BP, Szarejko I (eds) Doubled haploid production in crop plants: a manual. Kluwer Academic, Dordrecht, pp 151–154

    Chapter  Google Scholar 

  • Qu RD, Chen Y (1984) Pathways of androgenesis and observations on cultured pollen grains in rice Oryza sativa ssp keng. Acta Bot Sin 26(6):580–587

    Google Scholar 

  • Raghavan V (1976) Role of generative cell in androgenesis in henbane. Science 191(4225):388–389. doi:10.1126/science.191.4225.388

    Article  PubMed  CAS  Google Scholar 

  • Raghavan V (1978) Origin and development of pollen embryoids and pollen calluses in cultured anther segments of Hyoscyamus niger (henbane). Am J Bot 65(9):984–1002. doi:10.2307/2442686

    Article  CAS  Google Scholar 

  • Raghavan V (1986) Embryogenesis in angiosperms. A developmental and experimental study. Developmental and cell biology, vol 17. Cambridge University Press, Melbourne

    Google Scholar 

  • Raghavan V (1990) From microspore to embryoid - faces of the angiosperm pollen grain, vol 9. Progress in plant cellular and molecular biology. Kluwer Academic, Dordrecht

    Google Scholar 

  • Raina SK, Irfan ST (1998) High-frequency embryogenesis and plantlet regeneration from isolated microspores of indica rice. Plant Cell Rep 17(12):957–962

    Article  CAS  Google Scholar 

  • Rajyalakshmi K, Chowdhry CN, Maheshwari N, Maheshwari SC (1995) Anther culture response in some Indian wheat cultivars and the role of polyamines in induction of haploids. Phytomorphology 45(1–2):139–145

    Google Scholar 

  • Ramirez C, Testillano PS, Castillo AM, Valles MP, Coronado MJ, Cistue L, Risueno MD (2001) The early microspore embryogenesis pathway in barley is accompanied by concrete ultrastructural and expression changes. Int J Dev Biol 45:S57–S58

    Google Scholar 

  • Randolph LF (1932) Some effects of high temperature on polyploidy and other variations in maize. Proc Natl Acad Sci USA 18:222–229. doi:10.1073/pnas.18.3.222

    Article  PubMed  CAS  Google Scholar 

  • Redha A, Talaat A (2008) Improvement of green plant regeneration by manipulation of anther culture induction medium of hexaploid wheat. Plant Cell Tissue Organ Cult 92(2):141–146. doi:10.1007/s11240-007-9315-3

    Article  Google Scholar 

  • Reinbothe C, Buhr F, Pollmann S, Reinbothe S (2003a) In vitro reconstitution of light-harvesting POR-protochlorophyllide complex with protochlorophyllides a and b. J Biol Chem 278(2):807–815. doi:10.1074/jbc.M209738200

    Article  PubMed  CAS  Google Scholar 

  • Reinbothe S, Pollmann S, Reinbothe C (2003b) In situ conversion of protochlorophyllide b to protochlorophyllide a in barley - evidence for a novel role of 7-formyl reductase in the prolamellar body of etioplasts. J Biol Chem 278(2):800–806. doi:10.1074/jbc.M209737200

    Article  PubMed  CAS  Google Scholar 

  • Reynolds TL (1993) A cytological analysis of microspores of Triticum aestivum (poaceae) during normal ontogeny and induced embryogenic development. Am J Bot 80(5):569–576. doi:10.2307/2445374

    Article  Google Scholar 

  • Riera-Lizarazu O, Mujeeb-Kazi A, William MDHM (1993) Maize (Zea mays L.) mediated polyhaploid production in some Triticeae using a detached tiller method. J Genet Breed 46(4):335–346

    Google Scholar 

  • Rines HW (2003) Oat haploids from wide hybridization. In: Maluszymski M, Kasha KJ, Forster BP, Szarejko I (eds) Doubled haploid production in crop plants: a manual. Kluwer Academic, Dordrecht, pp 155–160

    Chapter  Google Scholar 

  • Rines HW, Dahleen LS (1990) Haploid oat plants produced by application of maize pollen to emasculated oat florets. Crop Sci 30(5):1073–1078

    Article  Google Scholar 

  • Sabehat A, Lurie S, Weiss D (1998) Expression of small heat-shock proteins at low temperatures - a possible role in protecting against chilling injuries. Plant Physiol 117(2):651–658. doi:10.1104/pp. 117.2.651

    Article  PubMed  CAS  Google Scholar 

  • Saidi N, Cherkaoui S, Chlyah A, Chlyah H (1997) Embryo formation and regeneration in Triticum turgidum ssp. durum anther culture. Plant Cell Tissue Organ Cult 51(1):27–33. doi:10.1023/a:1005765529154

    Article  Google Scholar 

  • Sangwan RS, Sangwannorreel BS (1987a) Biochemical cytology of pollen embryogenesis. Int Rev Cytol 107:221–272. doi:10.1016/s0074-7696(08)61077-3

    Article  Google Scholar 

  • Sangwan RS, Sangwannorreel BS (1987b) Ultrastructural cytology of plastids in pollen grains of certain androgenic and nonandrogenic plants. Protoplasma 138(1):11–22. doi:10.1007/bf01281180

    Article  Google Scholar 

  • Sari N, Abak K, Pitrat M (1999) Comparison of ploidy level screening methods in watermelon: Citrullus lanatus (Thunb.) Matsum. and Nakai. Sci Hortic 82(3–4):265–277. doi:10.1016/s0304-4238(99)00077-1

    Article  Google Scholar 

  • Sato S, Katoh N, Iwai S, Hagimori M (2002) Effect of low temperature pretreatment of buds or inflorescence on isolated microspore culture in Brassica rapa (syn. B. campestris). Breed Sci 52:23–26

    Article  Google Scholar 

  • Scott P, Lyne RL, Aprees T (1995) Metabolism of maltose and sucrose by microspores isolated from barley (Hordeum vulgare L). Planta 197(3):435–441

    Article  CAS  Google Scholar 

  • Segui-Simarro JM, Testillano PS, Risueno MC (2003) Hsp70 and Hsp90 change their expression and subcellular localization after microspore embryogenesis induction in Brassica napus L. J Struct Biol 142(3):379–391. doi:10.1016/s1047-8477(03)00067-4

    Article  PubMed  CAS  Google Scholar 

  • Shariatpanahi ME, Bal U, Heberle-Bors E, Touraev A (2006) Stresses applied for the re-­programming of plant microspores towards in vitro embryogenesis. Physiol Plant 127(4):519–534. doi:10.1111/j.1399-3054.2006.00675.x

    Article  CAS  Google Scholar 

  • Sibi ML, Kobaissi A, Shekafandeh A (2001) Green haploid plants from unpollinated ovary culture in tetraploid wheat (Triticum durum Defs.). Euphytica 122(2):351–359. doi:10.1023/a:1012991325228

    Article  Google Scholar 

  • Snape JW, Chapman V, Moss J, Blanchard CE, Miller TE (1979) Crossabilities of wheat-varieties with Hordeum bulbosum. Heredity 42:291–298. doi:10.1038/hdy.1979.32

    Article  Google Scholar 

  • Sopory SK, Munshi M (1997) Anther culture. In: Jain SM, Sopory SK, Veilleux RE (eds) In vitro haploid production in higher plants. Kluwer Academic, Dordrecht, pp 145–176

    Google Scholar 

  • Soriano M, Cistue L, Castillo AM (2008) Enhanced induction of microspore embryogenesis after n-butanol treatment in wheat (Triticum aestivum L.) anther culture. Plant Cell Rep 27(5):805–811. doi:10.1007/s00299-007-0500-y

    Article  PubMed  CAS  Google Scholar 

  • Subrahma NC, Kasha KJ (1973) Selective chromosomal elimination during haploid formation in barley following interspecific hybridization. Chromosoma 42(2):111–125. doi:10.1007/bf00320934

    Article  Google Scholar 

  • Sun CS (1978) Androgenesis of cereal crops. In: Proceedings of symposium on plant tissue culture. Science Press, Peking, pp 117–123

    Google Scholar 

  • Sunderla N, Wicks FM (1971) Embryoid formation in pollen grains of Nicotiana tabacum. J Exp Bot 22(70):213–226. doi:10.1093/jxb/22.1.213

    Article  Google Scholar 

  • Sunderland N (1974) Anther culture as a means of haploid induction. In: Kasha KJ (ed) Haploids in higher plants, advances and potential II. Methods of producing haploids. University of Guelph, Guelph, ON, pp 91–122

    Google Scholar 

  • Sunderland N, Dunwell JM (1977) Anther and pollen culture. In: Street HE (ed) Plant tissue and cell culture. Blackwell, Oxford, pp 223–265

    Google Scholar 

  • Sunderland N, Roberts M (1977) New approach to pollen culture. Nature 270(5634):236–238. doi:10.1038/270236a0

    Article  Google Scholar 

  • Sunderland N, Roberts M (1979) Cold-pretreatment of excised flower buds in float culture of tobacco anthers. Ann Bot 43(4):405–414

    Google Scholar 

  • Sunderland N, Xu ZH (1982) Shed pollen culture in Hordeum vulgare. J Exp Bot 33(136):1086–1095. doi:10.1093/jxb/33.5.1086

    Article  Google Scholar 

  • Sunderland N, Huang B, Hills GJ (1984) Disposition of pollen insitu and its relevance to anther pollen culture. J Exp Bot 35(153):521–530. doi:10.1093/jxb/35.4.521

    Article  Google Scholar 

  • Swanson EB, Coumans MP, Wu SC, Barsby TL, Beversdorf WD (1987) Efficient isolation of microspores and the production of microspore-derived embryos from Brassica napus. Plant Cell Rep 6(2):94–97

    Google Scholar 

  • Takahata Y, Brown DCW, Keller WA (1991) Effect of donor plant-age and inflorescence age on microspore culture of Brassica napus L. Euphytica 58(1):51–55. doi:10.1007/bf00035339

    Article  Google Scholar 

  • Takamura T, Lim KB, Van Tuyl JM (2002) Effect of a new compound on the mitotic polyploidization of Lilium longiflorum and oriental hybrid lilies. In: VanHuylenbroeck J, VanBockstaele E, Debergh P (eds) Proceedings of the twentieth international eucarpia symposium - Section ornamentals: strategies for new ornamentals II, vol 572, Acta Hortic., pp 37–42

    Google Scholar 

  • Telmer CA, Newcomb W, Simmonds DH (1993) Microspore development in Brassica napus and the effect of high-temperature on division invivo and invitro. Protoplasma 172(2–4):154–165. doi:10.1007/bf01379373

    Article  Google Scholar 

  • Testillano P, Georgiev S, Mogensen HL, Coronado MJ, Dumas C, Risueno MC, Matthys-Rochon E (2004) Spontaneous chromosome doubling results from nuclear fusion during in vitro maize induced microspore embryogenesis. Chromosoma 112(7):342–349. doi:10.1007/s00412-004-0279-3

    Article  PubMed  CAS  Google Scholar 

  • Torp AM, Hansen AL, Andersen SB (2001) Chromosomal regions associated with green plant regeneration in wheat (Triticum aestivum L.) anther culture. Euphytica 119(3):377–387. doi:10.1023/a:1017554129904

    Article  CAS  Google Scholar 

  • Touraev A, Ilham A, Vicente O, HeberleBors E (1996a) Stress-induced microspore embryogenesis in tobacco: an optimized system for molecular studies. Plant Cell Rep 15(8):561–565

    Article  CAS  Google Scholar 

  • Touraev A, Indrianto A, Wratschko I, Vicente O, HeberleBors E (1996b) Efficient microspore embryogenesis in wheat (Triticum aestivum L) induced by starvation at high temperature. Sex Plant Reprod 9(4):209–215. doi:10.1007/bf02173100

    Article  Google Scholar 

  • Touraev A, Pfosser M, Vicente O, HeberleBors E (1996c) Stress as the major signal controlling the developmental fate of tobacco microspores: towards a unified model of induction of microspore/pollen embryogenesis. Planta 200(1):144–152

    Article  CAS  Google Scholar 

  • Touraev A, Pfosser M, Heberle-Bors E (2001) The microspore: a haploid multipurpose cell. Adv Bot Res 35:53–109. doi:10.1016/s0065-2296(01)35004-8

    Article  Google Scholar 

  • Touraev A, Forster BP, Jain SM (2009) Advances in haploid production in higher plants. Springer, Dordrecht

    Book  Google Scholar 

  • Tsay HS (1982) The microspore development and haploid embryogenesis of anther culture with five nitrogen doses to the donor tobacco plants. J Agric Res China 31(1):1–13

    Google Scholar 

  • Tuvesson IKD, Pedersen S, Andersen SB (1989) Nuclear genes affecting albinism in wheat (Triticum aestivum L) anther culture. Theor Appl Genet 78(6):879–883

    Article  Google Scholar 

  • Ushiyama T, Shimizu T, Kuwabara T (1991) High-frequency of haploid production of wheat through intergeneric cross with teosinte. Jpn J Breed 41(2):353–357

    Google Scholar 

  • Vagera J, Havranek P (1983) Regulation of androgenesis in Nicotiana tabacum L cv white burley and Datura innoxia mill effect of bivalent and trivalent iron and chelating substances. Biol Plant 25(1):5–14. doi:10.1007/bf02878260

    Article  CAS  Google Scholar 

  • Vagera J, Novotny J, Ohnoutkova L (2004) Induced androgenesis in vitro in mutated populations of barley, Hordeum vulgare. Plant Cell Tissue Organ Cult 77(1):55–61. doi:10.1023/B:TICU.0000016504.82810.a4

    Article  CAS  Google Scholar 

  • Van LK (2008) Interspecific hybridisation in woody ornamentals. Ghent University, Ghent

    Google Scholar 

  • Vasil IK (1980) Androgenic haploids. Int Rev Cytol Suppl 11A:195–223

    Google Scholar 

  • Wang CC, Chu CC, Sun CS, Wu SH, Yin KC, Hsu C (1973) The androgenesis in wheat (Triticum aestivum) anthers cultured in vitro. Sci Sin 16(2):218–225

    Google Scholar 

  • Wedzony M (2003) Protocol for anther culture in hexaploid triticale (Triticosecale Wittm.). In: Maluszynski M, Kasha KJ, Forster BP, Szarejko L (eds) Doubled haploid production in crop plants: a manual. Kluwer Academic, Dordrecht, pp 123–128

    Chapter  Google Scholar 

  • Wedzony M, Marcinska I, Ponitka A, Slusarkiewicz-Jarzina A, Wozna J (1998) Production of doubled haploids in Triticale (X Triticosecale Wittm) by means of crosses with maize (Zea mays L) using picloram and dicamba. Plant Breed 117(3):211–215. doi:10.1111/j.1439-0523.1998.tb01928.x

    Article  CAS  Google Scholar 

  • Wedzony M, Forster BP, Zur I, Golemiec E, Szechynska-Hebda M, Dubas E, Gotebiowska G (2009) Progress in doubled haploid technology in higher plants. In: Touraev A, Forster BP, Jain SM (eds) Advances in haploid production in higher plants. Springer, Dordrecht, pp 1–33. doi:10.1007/978-1-4020-8854-4_1

    Chapter  Google Scholar 

  • Wehmeyer N, Hernandez LD, Finkelstein RR, Vierling E (1996) Synthesis of small heat-shock proteins is part of the developmental program of late seed maturation. Plant Physiol 112(2):747–757. doi:10.1104/pp. 112.2.747

    Article  PubMed  CAS  Google Scholar 

  • Wojnarowiez G, Jacquard C, Devaux P, Sangwan RS, Clement C (2002) Influence of copper sulfate on anther culture in barley (Hordeum vulgare L.). Plant Sci 162(5):843–847. doi:10.1016/s0168-9452(02)00036-5

    Article  CAS  Google Scholar 

  • Wolyn DJ, Nichols B (2003) Asparagus microspore and anther culture. In: Maluszynski M, Kasha KJ, Forster BP, Szarejko L (eds) Doubled haploid production in crop plants: a manual. Kluwer Academic, Dordrecht, pp 265–273

    Chapter  Google Scholar 

  • Xu L, Najeeb U, Tang GX, Gu HH, Zhang GQ, He Y, Zhou WJ (2007) Haploid and doubled haploid technology. In: Gupta SK (ed) Advances in botanical research: incorporating advances in plant pathology, vol 45. Advances in botanical research. Elsevier, Amsterdam, pp 181–216. doi:10.1016/s0065-2296(07)45007-8

  • Yao JL, Cohen D (2000) Multiple gene control of plastome-genome incompatibility and plastid DNA inheritance in interspecific hybrids of Zantedeschia. Theor Appl Genet 101(3):400–406. doi:10.1007/s001220051496

    Article  CAS  Google Scholar 

  • Yao QA, Simion E, William M, Krochko J, Kasha KJ (1997) Biolistic transformation of haploid isolated microspores of barley (Hordeum vulgare L). Genome 40(4):570–581. ­doi:10.1139/g97-075

    Article  PubMed  CAS  Google Scholar 

  • Yu SM (1999) Cellular and genetic responses of plants to sugar starvation. Plant Physiol 121(3):687–693. doi:10.1104/pp. 121.3.687

    Article  PubMed  CAS  Google Scholar 

  • Zarsky V, Rihova L, Tupy J (1990) Biochemical and cytological changes in young tobacco pollen during invitro starvation in relation to pollen embryogenesis. In: Progress in plant cellular and molecular biology, vol 9. Springer, Dordrecht

    Google Scholar 

  • Zarsky V, Garrido D, Rihova L, Tupy J, Vicente O, Heberlebors E (1992) Derepression of the cell-­cycle by starvation is involved in the induction of tobacco pollen embryogenesis. Sex Plant Reprod 5(3):189–194. doi:10.1007/bf00189810

    Article  Google Scholar 

  • Zarsky V, Garrido D, Eller N, Tupy J, Vicente O, Schoffl F, Heberlebors E (1995) The expression of a small heat-shock gene is activated during induction of tobacco pollen embryogenesis by starvation. Plant Cell Environ 18(2):139–147. doi:10.1111/j.1365-3040.1995.tb00347.x

    Article  CAS  Google Scholar 

  • Zhang YL, Li DS (1984) Anther culture of monosomics in Triticum aestivum. Hereditas 6(3):7–10

    CAS  Google Scholar 

  • Zhang GQ, Zhang DQ, Tang GX, He Y, Zhou WJ (2006) Plant development from microspore-­derived embryos in oilseed rape as affected by chilling, desiccation and cotyledon excision. Biol Plant 50(2):180–186. doi:10.1007/s10535-006-0004-6

    Article  Google Scholar 

  • Zhao JP, Simmonds DH, Newcomb W (1996a) High frequency production of doubled haploid plants of Brassica napus cv Topas derived from colchicine-induced microspore embryogenesis without heat shock. Plant Cell Rep 15(9):668–671

    Article  CAS  Google Scholar 

  • Zhao JP, Simmonds DH, Newcomb W (1996b) Induction of embryogenesis with colchicine instead of heat in microspores of Brassica napus L cv Topas. Planta 198(3):433–439. doi:10.1007/bf00620060

    Article  CAS  Google Scholar 

  • Zheng MY (2003) Microspore culture in wheat (Triticum aestivum)-doubled haploid production via induced embryogenesis. Plant Cell Tissue Organ Cult 73(3):213–230. doi:10.1023/a:1023076213639

    Article  CAS  Google Scholar 

  • Zhou H (1996) Genetics of green plant regeneration from anther culture in cereals. In: Jain SM, Sopory SK, Veilleux RE (eds) In vitro haploid production in higher plants, vol 2. Kluwer Academic, Dordrecht, pp 169–187

    Chapter  Google Scholar 

  • Zhou H, Zheng Y, Konzak CF (1991) Osmotic potential of media affecting green plant percentage in wheat anther culture. Plant Cell Rep 10(2):63–66

    Article  Google Scholar 

  • Zhou HP, Ball ST, Konzak CF (1992) Functional-properties of ficoll and their influence on anther culture responses of wheat. Plant Cell Tissue Organ Cult 30(1):77–83. doi:10.1007/bf00040004

    Article  CAS  Google Scholar 

  • Zhu ZQ, Sun JS, Wang JJ (1978) Cytological investigation on androgenesis of Triticum aestivum. Acta Bot Sin 20(1):6–12

    Google Scholar 

  • Zoriniants S, Tashpulatov AS, Heberle-Bors E, Touraev A (2005) The role of stress in the induction of haploid microspore embryogenesis. In: Palmer CE, Keller WA, Kasha KJ (eds) Biotechnology in agriculture and forestry, vol 56. Springer, Berlin, pp 35–52

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Asif, M. (2013). Androgenesis: A Fascinating Doubled Haploid Production Process. In: Progress and Opportunities of Doubled Haploid Production. SpringerBriefs in Plant Science, vol 6. Springer, Heidelberg. https://doi.org/10.1007/978-3-319-00732-8_2

Download citation

Publish with us

Policies and ethics