Skip to main content

The relationship of early studies of monoamine oxidase to present concepts

  • Chapter
Oxidative Stress and Neuroprotection

Part of the book series: Journal of Neural Transmission. Supplementa ((NEURALTRANS,volume 71))

Summary

The development of our understanding of monoamine oxidase (MAO), of its role in the metabolism of amines and of the therapeutic usefulness of MAO inhibitors (MAOIs) have evolved, slowly at times and rapidly at other times, with leaps propelled by new discoveries, new techniques and new insights. Moussa Youdim was one of the major contributors to propulsion of several of these leaps, including the detection of multiple forms of MAO, the descriptions of their properties, active sites and substrates, the use of MAOIs for enhancement of DOPA in treating Parkinson’s disease and the evolution of MAO-B inhibitors from mere enzyme inhibitors to lead compounds in the discovery of neuroprotective agents for use in degenerative neurological diseases. Since others will be describing the more recent developments in this field, I thought it would be of interest and instructive to recount the unfolding of our early understanding of MAO, dating from its discovery until the events that first suggested that drugs that inhibit MAO might be neuroprotective. While even the earliest observations about MAO were valid, they were often misinterpreted or confusing, whereas others were predictive of several of our newer concepts of MAO and of side effects encountered in patients treated with MAOIs.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Armstrong MD, McMillan A, Shaw KN (1957) 3-Methoxy-4-hydroxy-Dmandelic acid, a urinary metabolite of norepinephrine. Biochim Biophys Acta 25: 422–423

    Article  PubMed  CAS  Google Scholar 

  • Axelrod J, Hertting G, Potter L (1962) Effect of drugs on the uptake and release of 3H-norepinephrine in the rat heart. Nature 194: 297

    Article  PubMed  CAS  Google Scholar 

  • Axelrod J, Inscoe JK, Senoh S, Witkop B (1958a) O-methylation, the principal pathway for the metabolism of epinephrine and norepinephrine in the rat. Biochim Biophys Acta 27: 210–201

    Article  PubMed  CAS  Google Scholar 

  • Axelrod J, Kopin IJ, Mann JD (1959) 3-Methoxy-4-hydroxyphenylglycol sulfate, a new metabolite of epinephrine and norepinephrine. Biochim Biophys Acta 36: 576–577

    Article  PubMed  CAS  Google Scholar 

  • Axelrod J, Laroche MJ (1959) Inhibitor of O-methylation of epinephrine and norepinephrine in vitro and in vivo. Science 130: 800

    Article  PubMed  CAS  Google Scholar 

  • Axelrod J, Senoh S, Witkop B (1958b) O-Methylation of catechol amines in vivo. J Biol Chem 233: 697–701

    PubMed  CAS  Google Scholar 

  • Axelrod J, Tomchick R (1958) Enzymatic O-methylation of epinephrine and other catechols. J Biol Chem 233: 702–705

    PubMed  CAS  Google Scholar 

  • Axelrod J, Weil-Malherbe H Tomchick R (1959) The physiological disposition of H3-epinephrine and its metabolite metanephrine. J Pharmacol Exp Ther 127: 251–256

    PubMed  CAS  Google Scholar 

  • Axelrod J, Whitby LG, Hertting G (1961) Effect of psychotropic drugs on the uptake of H3-norepinephrine by tissues. Science 133: 383–384

    Article  PubMed  CAS  Google Scholar 

  • Bach AW, Lan NC, Johnson DL, Abell CW, Bembenek ME, Kwan SW, Seeburg PH, Shih JC (1988) cDNA cloning of human liver monoamine oxidase A and B: molecular basis of differences in enzymatic properties. Proc Natl Acad Sci USA 85: 4934–4938

    Article  PubMed  CAS  Google Scholar 

  • Bacq ZM (1936) Sensibilisation ae l’adrenaline et ae l’excitatiou des nerfs adrenergiques par les antioxygenes. Arch intern Physiol 42: 340, 44: 15

    CAS  Google Scholar 

  • Bacq, ZM, Gosselin L, Dresse A, Renson J (1959) Inhibition of O-methyltransferase by catechol and sensitization to epinephrine. Science 130: 453–454

    Article  PubMed  CAS  Google Scholar 

  • Bernheim MLC (1931) Tyramine oxidase II Course of the oxidation. J Biol Chem 93: 299–314

    CAS  Google Scholar 

  • Bertler A, Carlsson A, Rosengren E (1956) Release by reserpine of catecholamines from rabbit’s hearts. Naturwissenschaften 22: 521–522

    Article  Google Scholar 

  • Birkmayer W, Riederer P, Youdim MB, Linauer W (1975) The potentiation of the anti akinetic effect after L-dopa treatment by an inhibitor of MAO-B, Deprenil. J Neural Transm 36: 303–326

    Article  PubMed  CAS  Google Scholar 

  • Blackwell B (1963) Hypertensive Crisis Due to Monoamine Oxidase Inhibitors. Lancet 1: 849–850

    Article  Google Scholar 

  • Blackwell B, Mabbitt LA (1965) Tyramine in Cheese Related toHypertensive Crises after Monoamine Oxidase Inhibitions. Lancet 1: 938–940

    Article  PubMed  CAS  Google Scholar 

  • Blaschko H (1952) Amine oxidase and amine metabolism. Pharm Rev 4: 415–458

    PubMed  CAS  Google Scholar 

  • Blaschko H, Richter D, Schlossman H (1937) The oxidation of adrenaline and other amines. Biochem J 31: 2187–2196

    PubMed  CAS  Google Scholar 

  • Bloch RG, Dooneieff AS, Buchberg AS, Spellman S (1954) The clinical effect of isoniazid and iproniazid in the treatment of pulmonary tuberculosis. Ann Intern Med 40: 881–900

    PubMed  CAS  Google Scholar 

  • Blombery PA, Kopin IJ, Gordon EK, Markey SP, Ebert MH (1980) Conversion of MHPG to vanillylmandelic acid. Implications for the importance of urinary MHPG. Arch Gen Psychiatry 37: 1095–1098

    PubMed  CAS  Google Scholar 

  • Brown GL, Gillespie JS (1957) The output of sympathetic transmitter from the spleen of the cat. J Physiol 138: 81–102

    PubMed  CAS  Google Scholar 

  • Burke WJ, Li SW, Chung HD, Ruggiero DA, Kristal BS, Johnson EM, Lampe P, Kumar VB, Franko M, Williams EA, Zahm DS (2004) Neurotoxicity of MAO metabolites of catecholamine neurotransmitters: role in neurodegenerative diseases. Neurotoxicology 25: 101–115

    Article  PubMed  CAS  Google Scholar 

  • Burn JH, Rand MJ (1958) The action of sympathomimetic amines in animals treated with reserpine. J Physiol 144: 314–336

    PubMed  CAS  Google Scholar 

  • Burns RS, Chiueh CC, Markey SP, Ebert MH, Jacobowitz DM, Kopin IJ (1983) A primate model of parkinsonism: selective destruction of dopaminergic neurons in the pars compacta of the substantia nigra by N-methyl-4-phenyl-1,2,3,6-tetrahydropyridine. Proc Natl Acad Sci USA 80: 4546–4550

    Article  PubMed  CAS  Google Scholar 

  • Chiba K, Trevor A, Castagnoli N Jr (1984) Metabolism of the neurotoxic tertiary amine, MPTP, by brain monoamine oxidase. Biochem Biophys Res Commun 20: 574–578

    Article  Google Scholar 

  • Chorine V (1945) Action de l’amide nicotinique sur les bacilles du genre Mycobacterium. Comptes Rendus de l’Academie des Sciences (Paris) 220: 150–151

    Google Scholar 

  • Corne SJ, Graham JD (1957) The effect of inhibition of amine oxidase in vivo on administered adrenaline, noradrenaline, tyramine and serotonin. J Physiol 135: 339–349

    PubMed  CAS  Google Scholar 

  • Crout JR (1961) Effect of inhibiting both catechol-O-methyl transferase and monoamine oxidase on cardiovascular responses to norepinephrine. Proc Soc Exp Biol Med 108: 482–484

    PubMed  CAS  Google Scholar 

  • Dale HH Dixon WE (1909) The action of Pressor Amines Produced by Putrifaction J Physiol 25: 78–87

    Google Scholar 

  • Davis GC, Williams AC, Markey SP, Ebert MH, Caine ED, Reichert CM, Kopin IJ (1979) Chronic Parkinsonism secondary to intravenous injection of meperidine analogues. Psychiatry Res 1: 249–254

    Article  PubMed  CAS  Google Scholar 

  • Eisenhofer G, Kopin IJ, Goldstein DS (2004) Catecholamine metabolism: a contemporary view with implications for physiology and medicine. Pharmacol Rev 56: 331–349

    Article  PubMed  CAS  Google Scholar 

  • Ewins AJ, Laidlaw PP (1910) The fate of parahydroxyphenylethylamine in the organism. J Physiol 41: 78–87

    PubMed  CAS  Google Scholar 

  • Fenton HJH (1894) The oxidation of tartaric acid in the presence of iron. J Chem Soc 65: 899–910

    CAS  Google Scholar 

  • Frölich A, Loewi O (1910) Ăśber eine Steigerung der Adrenalinempfindlichkeit durch Cocaine. Arch f exper Path u Pharmakol 62: 159–169

    Article  Google Scholar 

  • Griesemer EC, Barsky J, dragstedt CA, Wells JA, Zeller EA (1953) Potentiating effect of iproniazid on the pharmacological action of sympathomimetic amines. Proc Soc Exp Biol Med 84: 699–701

    PubMed  CAS  Google Scholar 

  • Haber F, Weiss J (1932) Ăśber die Katalyse des Hydroperoxydes. Naturwiss 51: 948–950

    Article  Google Scholar 

  • Hare MLC (1928) Tyramine Oxidase. I. A new enzyme system in the liver. Biochem J 22: 968–979

    PubMed  CAS  Google Scholar 

  • Hertting G, Axelrod J, Kopin IJ, Whitby LG (1961) Lack of uptake of catecholamines after chronic denervation of sympathetic nerves. Nature 189: 66–67

    Article  PubMed  CAS  Google Scholar 

  • Hillarp NA (1958) Isolation and some biochemical properties of the catecholamine granules in the cow adrenal medulla. Acta Physiol Scand 43: 82–96

    Article  PubMed  CAS  Google Scholar 

  • Holtz P, Stock K, Westermann E (1964) Pharmacology of Tetrahydropapaveroline and its Formation from Dopamine. NaunynSchmiedebergs Arch Exp Pathol Pharmakol 248: 387–405

    CAS  Google Scholar 

  • Holtzbauer M, Vogt (1956) Depression by reserpine of the noradrenaline concentration in the hypothalamus of the cat. J Neurochem 1: 8–11

    Article  Google Scholar 

  • Horwitz D, Lovenberg W, Engelman K, Sjoerdsma A (1964) Monoamine Oxidase Inhibitors, Tyramine, and Cheese. JAMA 188: 1108–1010

    PubMed  CAS  Google Scholar 

  • Johnston JP (1968) Some observations upon a new inhibitor of monoamine oxidase in brain tissue. Biochem Pharmacol 17: 1285–1297

    Article  PubMed  CAS  Google Scholar 

  • Kakimoto Y, Armstrong MD (1962) On the identification of octopamine in mammals. J Biol Chem 237: 208–214

    PubMed  CAS  Google Scholar 

  • Knoll J, Magyar K (1972) Some puzzling pharmacological effects of monoamine oxidase inhibitors. Adv Biochem Psychopharmacol 5: 393–408

    PubMed  CAS  Google Scholar 

  • Kohn HI (1937) Tyramine oxidase. Biochem J 31: 1693–1704

    PubMed  CAS  Google Scholar 

  • Kopin IJ (1960) Technique for the study of alternate metabolic pathways: Epinephrine metabolism in man. Science 131: 1372–1374

    Article  PubMed  CAS  Google Scholar 

  • Kopin IJ (1964) Storage and Metabolism of Catecholamines: the Role of Monoamine Oxidase. Pharmacol Rev 16: 179–191

    PubMed  CAS  Google Scholar 

  • Kopin IJ (1968) False adrenergic transmitters. Annu Rev Pharmacol 8: 377–394

    Article  PubMed  CAS  Google Scholar 

  • Kopin IJ, Axelrod J (1960) 3,4-Dihydroxyphenylglycol, a metabolite of epinephrine. Arch Biochem Biophys 89: 148

    Article  PubMed  CAS  Google Scholar 

  • Kopin IJ, Fischer JE, Musacchio J, Horst WD (1964) Evidence for a false neurochemical transmitter as a mechanism for the hypotensive effect of monoamine oxidase inhibitors. Proc Natl Acad Sci USA 52: 716–721

    Article  PubMed  CAS  Google Scholar 

  • Kopin IJ, Gordon EK (1963) Metabolism of administered and drug-released norepinephrine-7-H3 in the rat. J Pharmacol Exp Ther 140: 207–216

    PubMed  CAS  Google Scholar 

  • Langston JW, Ballard P, Tetrud JW, Irwin I (1983) Chronic Parkinsonism in humans due to a product of meperidine-analog synthesis. Science 219: 979–980

    Article  PubMed  CAS  Google Scholar 

  • Lees AJ, Shaw KM, Kohout LJ, Stern GM, Elsworth JD, Sandler M, Youdim MB (1977) Deprenyl in Parkinson’s disease. Lancet 2: 791–795

    Article  PubMed  CAS  Google Scholar 

  • Liechtenstein MR, Mizenberg E (1954) A controlled study of isoniazid and iproniazid. Dis Chest 25: 573–579

    Google Scholar 

  • Loomer HP, Saunders JC, Kline NS (1957) A clinical and pharmacodynamic evaluation of iproniazid as a psychic energizer. Psychiatr Res Rep Am Psychiatr Assoc 135: 129–141

    PubMed  CAS  Google Scholar 

  • Mardh G, Sjoquist B, Anggard E (1981) Norepinephrine metabolism in man sing deuterium labelling: the conversion of 4-hydroxy-3-methoxyphenylglycol to 4-hydroxy-3-methoxymandelic acid. J Neurochem 36: 1181–1185

    Article  PubMed  CAS  Google Scholar 

  • Marley E, Blackwell B (1970) Interactions of monoamine oxidase inhibitors, amines, and foodstuffs. Adv Pharmacol Chemother 8: 185–349

    Article  PubMed  CAS  Google Scholar 

  • McCord JM, Fridovich I (1969) Superoxide dismutase. An enzymic function for erythrocuprein (hemocuprein). J Biol Chem 244: 6049–6055

    PubMed  CAS  Google Scholar 

  • Philpot FT (1940) The Inhibition of Oxidation of Adrenaline Oxidation by Local Anaesthetics. J Physiol 97: 301–318

    PubMed  CAS  Google Scholar 

  • Pletscher A (1958) Einfluss von Isopropyl-isonocotinsaurehydrazid auf den Catecholamingehalt des myocards. Experientia 14: 73

    Article  PubMed  CAS  Google Scholar 

  • Pletscher A, Shore PA, Brodie BB (1955) Serotonin release as a possible mechanism of reserpine action. Science 122: 374–375

    Article  PubMed  CAS  Google Scholar 

  • Rebhun J, Feinberg SM, Zeller EA (1954) Potentiating effect of iproniazid on action of some sympathicomimetic amines. Proc Soc Exp Biol Med 87: 218–220

    PubMed  CAS  Google Scholar 

  • Richter D (1937) Adrenaline and amine oxidase. Biochem J 31: 2022–2028

    PubMed  CAS  Google Scholar 

  • Sandler M, Carter SB, Hunter KR, Stern GM (1973) Tetrahydroisoquinoline alkaloids: in vivo metabolites of L-dopa in man. Nature 241: 439–443

    Article  PubMed  CAS  Google Scholar 

  • Sandler M, Glover V, Ashford A, Stern GM (1978) Absence of “cheese effect” during deprenyl therapy: some recent studies. J Neural Transm 43: 209–215

    Article  PubMed  CAS  Google Scholar 

  • Sandler M, Youdim MB (1972) Multiple forms of monoamine oxidase: functional significance. Pharmacol Rev 24: 331–348

    PubMed  CAS  Google Scholar 

  • Schayer RW (1951) Studies on the metabolism of β-C14-dl-adrenaline. J Biol Chem 189: 301–306

    PubMed  CAS  Google Scholar 

  • Schayer RW, Smiley RL (1951) The metabolism of adrenalin containing isotopic carbon. J Biol Chem 192: 875–881

    PubMed  CAS  Google Scholar 

  • Schayer RW, Smiley RL (1953) III Metabolism of epinephrine containing isotopic carbon. III. J Biol Chem 202: 425–430

    PubMed  CAS  Google Scholar 

  • Schayer RW, Smiley RL, Davis KJ, Kobayashi Y (1955) Role of monoamine oxidase in nor-adrenaline metabolism. Am J Physiol 82: 285–286

    Google Scholar 

  • Schayer RW, Smiley RL, Kaplan EH (1952) The metabolism of epinephrine containing isotopic carbon. II. J Biol Chem 198: 545–551

    PubMed  CAS  Google Scholar 

  • Shore PA Mead JAR, Kuntzman, RG, Spector, S, Brodie, BB (1957) On the physiological significance of monoamine oxidase in brain. Science 126: 1063–1064

    Article  PubMed  CAS  Google Scholar 

  • Tanner CM (1989) The role of environmental toxins in the etiology of Parkinson’s disease. Trends Neurosci 12: 49–54

    Article  PubMed  CAS  Google Scholar 

  • Whitby LG, Axelrod J, Weil-Malherbe H (1961) The fate of H3-norepinephrine in animals. J Pharmacol Exp Ther 132: 193–201

    PubMed  CAS  Google Scholar 

  • Whitby LG, Hertting G, Axelrod J (1960) Effect of cocaine on the disposition of noradrenaline labelled with tritium. Nature 187: 604

    Article  PubMed  CAS  Google Scholar 

  • Wolfe DE, Potter LT, Richardson KC, Axelrod J (1962) Localizing tritiated norepinephrine in sympathetic axons by electron microscopic autoradiography. Science 138: 440–442

    Article  PubMed  CAS  Google Scholar 

  • Youdim MB, Buccafusco JJ (2005) Multi-functional drugs for various CNS targets in the treatment of neurodegenerative disorders. Trends Pharmacol Sci 26: 27–35

    Article  PubMed  CAS  Google Scholar 

  • Youdim MB, Collins GG, Sandler M (1969) Multiple forms of rat brain monoamine oxidase. Nature 223: 626–628

    Article  PubMed  CAS  Google Scholar 

  • Youdim MB, Finberg JP (1987) Monoamine oxidase B inhibition and the “cheese effect”. J Neural Transm 25[Suppl]: 27–33

    CAS  Google Scholar 

  • Youdim MB, Riederer PF (2004) A review of the mechanisms and role of monoamine oxidase inhibitors in Parkinson’s disease. Neurology 63[Suppl 2]: S32–S35

    PubMed  Google Scholar 

  • Youdim MB, Sourkes TL (1966) Properties of purified, soluble monoamine oxidase. Can J Biochem 44: 1397–1400

    Article  PubMed  CAS  Google Scholar 

  • Zeller EA (1963) New reflections on monoamine oxidase inhibition. Ann NY Acad Sci 107: 809–1158

    Article  Google Scholar 

  • Zeller EA, Barsky J (1952) In vivo inhibition of liver and brain monoamine oxidase by 1-Isonicotinyl-2-isopropyl hydrazine. Proc Soc Exp Biol Med 81: 459–461

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Springer-Verlag

About this chapter

Cite this chapter

Kopin, I.J. (2006). The relationship of early studies of monoamine oxidase to present concepts. In: Parvez, H., Riederer, P. (eds) Oxidative Stress and Neuroprotection. Journal of Neural Transmission. Supplementa, vol 71. Springer, Vienna. https://doi.org/10.1007/978-3-211-33328-0_9

Download citation

  • DOI: https://doi.org/10.1007/978-3-211-33328-0_9

  • Publisher Name: Springer, Vienna

  • Print ISBN: 978-3-211-33327-3

  • Online ISBN: 978-3-211-33328-0

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics