Skip to main content

Neuroprostheses for management of dysphagia resulting from cerebrovascular disorders

  • Chapter
Operative Neuromodulation

Part of the book series: Acta Neurochirurgica Supplements ((NEUROCHIRURGICA,volume 97/1))

  • 2474 Accesses

Summary

Swallowing is a complicated process that involves intricate timing between many different muscles in the mouth and neck. The primary purpose of swallowing is to move food through the mouth and pharynx and into the esophagus for transport to the stomach for digestion. Dysphagia is a general term that refers to a disruption in any part of the process. The consequences of dysphagia include social embarrassment; malnutrition; and aspiration. Of these, aspiration is the most significant as it is associated with a significantly greater risk of pneumonia and death. If patients fail to adequately protect the airways with standard exercise and therapy, they are often disallowed from taking food by mouth and receive nutrition by alternate means. If patients still experience frequent pneumonia, more drastic surgical measures that permanently separate the airway from foodway are required. As an alternative to these surgical procedures, neuroprostheses can dynamically restore airway protection. There are two primary protective mechanisms that neuroprostheses seek to restore. The first is laryngeal elevation and the second is vocal fold closure. The present article is an introductory overview of the swallowing process, the primary muscles and nerves related to swallowing, the effects of dysphagia, the standard treatment options, and the neuroprosthetic options.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Agency for Health Care Policy and Research (1999) Diagnosis and treatment of swallowing disorders (dysphagia) in acute-care stroke patients. Evidence report/technology assessment no. 8. (Prepared by ecri evidence-based practice center under contract no. 290-97-0020.), ahcpr publication no. 99-e024. Rockville, MD

    Google Scholar 

  2. Agnew WF, McCreery DB, Yuen TG, Bullara LA (1989) Histologic and physiologic evaluation of electrically stimulated peripheral nerve: considerations for the selection of parameters. Ann Biomed Eng 17: 39–60

    Article  PubMed  CAS  Google Scholar 

  3. Agnew WF, McCreery DB, Yuen TG, Bullara LA (1999) Evolution and resolution of stimulation-induced axonal injury in peripheral nerve. Muscle Nerve 22: 1393–1402

    Article  PubMed  CAS  Google Scholar 

  4. Ambalavanar R, Tanaka Y, Selbie WS, Ludlow CL (2004) Neuronal activation in the medulla oblongata during selective elicitation of the laryngeal adductor response. J Neurophysiol 92: 2920–2932

    Article  PubMed  Google Scholar 

  5. Aviv JE, Martin JH, Sacco RL, Zagar D, Diamond B, Keen MS, Blitzer A (1996) Supraglottic and pharyngeal sensory abnormalities in stroke patients with dysphagia. Ann Otol Rhinol Laryngol 105: 92–97

    PubMed  CAS  Google Scholar 

  6. Baredes S, Blitzer A, Krespi YP, Logemann JA (1992) Swallowing disorders and aspiration. In: Blitzer A (ed) Neurologic disorders of the larynx. Thieme Medical Publishers, New York, pp 201–213

    Google Scholar 

  7. Barkmeier JM, Bielamowicz S, Takeda N, Ludlow CL (2000) Modulation of laryngeal responses to superior laryngeal nerve stimulation by volitional swallowing in awake humans. J Neurophysiol 83: 1264–1272

    PubMed  CAS  Google Scholar 

  8. Barkmeier JM, Bielamowicz S, Takeda N, Ludlow CL (2002) Laryngeal activity during upright vs. Supine swallowing. J Appl Physiol 93: 740–745

    PubMed  Google Scholar 

  9. Billante CR, Zealear DL, Courey MS, Netterville JL (2002) Effect of chronic electrical stimulation of laryngeal muscle on voice. Ann Otol Rhinol Laryngol 111: 328–332

    PubMed  Google Scholar 

  10. Broderick J, Brott T, Kothari R, Miller R, Khoury J, Pancioli A, Gebel J, Mills D, Minneci L, Shukla R (1998) The greater cincinnati/northern kentucky stroke study: preliminary first-ever and total incidence rates of stroke among blacks. Stroke 29: 415–421

    PubMed  CAS  Google Scholar 

  11. Broniatowski M (1988) Bionic larynx. Electronic control of the reimplanted organ in the dog. Laryngoscope 98: 1107–1115

    PubMed  CAS  Google Scholar 

  12. Broniatowski M (1993) Dynamic control of the larynx and future perspectives in the management of deglutitive aspiration. Dysphagia 8: 334–336

    Article  PubMed  CAS  Google Scholar 

  13. Broniatowski M (1994) The potential for neurostimulation in obstructive sleep apnea. Asaio J 40: 13–16

    Article  PubMed  CAS  Google Scholar 

  14. Broniatowski M, Tucker HM, Nose Y (1990) The future of electronic pacing in laryngeal rehabilitation. Am J Otolaryngol 11: 51–62

    Article  PubMed  CAS  Google Scholar 

  15. Broniatowski M, Dessoffy R, Strome M (1998) Long-term excitability and fine tuning of nerve pedicles reinnervating strap muscles in the dog. Ann Otol Rhinol Laryngol 107: 301–311

    PubMed  CAS  Google Scholar 

  16. Broniatowski M, Kelly JH, Rubin JS (2000) The swallowing manual. San Diego: Singular Pub. Group

    Google Scholar 

  17. Broniatowski M, Dessoffy R, Shields RW, Strome M (1999) Vagal stimulation for reciprocal coupling between glottic and upper esophageal sphincter activities in the canine. Dysphagia 14: 196–203

    Article  PubMed  CAS  Google Scholar 

  18. Broniatowski M, Kaneko S, Jacobs G, Nose Y, Tucker HM (1985) Laryngeal pacemaker. Ii. Electronic pacing of reinnervated posterior cricoarytenoid muscles in the canine. Laryngoscope 95: 1194–1198

    Article  PubMed  CAS  Google Scholar 

  19. Broniatowski M, Tucker HM, Kaneko S, Jacobs G, Nose Y (1986) Laryngeal pacemaker. Part i. Electronic pacing of reinnervated strap muscles in the dog. Otolaryngol Head Neck Surg 94: 41–44

    PubMed  CAS  Google Scholar 

  20. Broniatowski M, Ilyes LA, Jacobs GB, Nose Y, Tucker HM (1988) Artificial reflex arc: a potential solution for chronic aspiration. Ii. A canine study based on a laryngeal prosthesis. Laryngoscope 98: 235–237

    PubMed  CAS  Google Scholar 

  21. Broniatowski M, Ilyes LA, Jacobs G, Nose Y, Tucker HM (1989) Dynamic rehabilitation of the paralyzed face — ii. Electronic control of the reinnervated facial musculature from the contralateral side in the rabbit. Otolaryngol Head Neck Surg 101: 309–313

    PubMed  CAS  Google Scholar 

  22. Broniatowski M, Grundfest-Broniatowski S, Chou SM, Nose Y, Tucker HM (1990) Correlation between histology and nerve excitability after reinnervation of paralyzed strap muscles in the rabbit. Otolaryngol Head Neck Surg 103: 889–896

    PubMed  CAS  Google Scholar 

  23. Broniatowski M, Azar K, Davies CR, Jacobs GB, Tucker HM (1993) Electronic control of laryngeal spasm. Ii. Selective blockage of glottic adduction by a closed-loop circuit in the canine. Laryngoscope 103: 734–740

    Article  PubMed  CAS  Google Scholar 

  24. Broniatowski M, Vito KJ, Shah B, Shields RW, Strome M (1997) Artificial control of glottic adduction for aspiration by orderly recruitment in the canine. Dysphagia 12: 93–97

    Article  PubMed  CAS  Google Scholar 

  25. Broniatowski M, Ilyes LA, Jacobs G, Stepnick DW, Nose Y, Tucker HM (1987) Artificial reflex arc: a potential solution for chronic aspiration. I. Neck skin stimulation triggering strap muscle contraction in the canine. Laryngoscope 97: 331–333

    Article  PubMed  CAS  Google Scholar 

  26. Broniatowski M, Davies CR, Kasick JC, Jacobs GB, Tucker HM, Nose Y (1988) New horizons in dynamic rehabilitation of paralyzed laryngeal functions. ASAIO Trans 34: 674–680

    PubMed  CAS  Google Scholar 

  27. Broniatowski M, Grundfest-Broniatowski S, Davies CR, Jacobs GB, Nose Y, Tucker HM (1989) Artificial agonist/antagonist coupling in paralyzed muscles: electronic balance of reinnervated straps from facial activity in the rabbit. Laryngoscope 99: 647–650

    Article  PubMed  CAS  Google Scholar 

  28. Broniatowski M, Ilyes LA, Sorensen K, Rosenthal DI, Nose Y, Maniglia AJ (1989) Direct nerve implantation vs. Nerve-muscle pedicle: a comparative study of reinnervation in the rabbit. Otolaryngol Head Neck Surg 100: 126–133

    PubMed  CAS  Google Scholar 

  29. Broniatowski M, Grundfest-Broniatowski S, Davies CR, Jacobs GB, Tucker HM, Nose Y (1991) Dynamic rehabilitation of the paralyzed face: Iii: Balanced coupling of oral and ocular musculature from the intact side in the canine. Otolaryngol Head Neck Surg 105: 727–733

    PubMed  CAS  Google Scholar 

  30. Broniatowski M, Grundfest-Broniatowski S, Davies CR, Jacobs GB, Tucker HM, Nose Y (1991) Electronic pacing of incapacitated head and neck structures. ASAIO Trans 37: 553–558

    PubMed  CAS  Google Scholar 

  31. Broniatowski M, Grundfest-Broniatowski S, Davies CR, Jacobs GB, Nose Y, Tucker HM (1994) An experimental model for complex dynamic control of the reinnervated face. Eur Arch Otorhinolaryngol [Suppl]: S147–S148

    Google Scholar 

  32. Broniatowski M, Ilyes LA, Jacobs GB, Rosenthal DI, Maniglia AJ, Tucker HM, Nose Y (1987) Dynamic rehabilitation of the paralyzed face: I. Electronic control of reinnervated muscles from intact facial musculature in the rabbit. Otolaryngol Head Neck Surg 97: 441–445

    PubMed  CAS  Google Scholar 

  33. Broniatowski M, Grundfest-Broniatowski S, Davies CR, Kasick JC, Jacobs GB, Nose Y, Tucker H (1989) Excitation thresholds for nerve pedicles: a preliminary report. Otolaryngol Head Neck Surg 100: 578–582

    PubMed  CAS  Google Scholar 

  34. Broniatowski M, Olsen E, Davies C, Benninger M, Jacobs G, Tucker H, Nose Y (1989) A canine model for global control of the reimplanted larynx. A potential avenue for human laryngeal transplantation. ASAIO Trans 35: 487–489

    PubMed  CAS  Google Scholar 

  35. Broniatowski M, Davies CR, Jacobs GB, Jasso J, Gerrity RG, Nose Y, Tucker HM (1990) Artificial restoration of voice. I: experiments in phonatory control of the reinnervated canine larynx. Laryngoscope 100: 1219–1224

    PubMed  CAS  Google Scholar 

  36. Broniatowski M, Davies CR, Jacobs GR, Jasso J, Gerrity RG, Tucker HM, Nose Y (1990) Excitation thresholds for nerves reinnervating the paralyzed canine larynx. ASAIO Trans 36: M432–M434

    PubMed  CAS  Google Scholar 

  37. Broniatowski M, Sohn J, Kayali H, Bold EL, Miller FR, Jacobs GB, Tucker HM (1994) Artificial reflex arc: a potential solution for chronic aspiration. Iii: stimulation of implanted cervical skin as a functional graft triggering glottic closure in the canine. Laryngoscope 104: 1259–1263

    Article  PubMed  CAS  Google Scholar 

  38. Broniatowski M, Dessoffy R, Azar K, Davies CR, Trott MS, Miller FR, Tucker HM (1995) Electronic integration of glottic closure and circopharyngeal relaxation for the control of aspiration: a canine study. Otolaryngol Head Neck Surg 112: 424–429

    Article  PubMed  CAS  Google Scholar 

  39. Broniatowski M, Vito KJ, Shah B, Shields RW, Secic M, Dessoffy R, Strome M (1996) Contraction patterns of intrinsic laryngeal muscles induced by orderly recruitment in the canine. Laryngoscope 106: 1510–1515

    Article  PubMed  CAS  Google Scholar 

  40. Broniatowski M, Grundfest-Broniatowski S, Tyler DJ, Scolieri P, Abbass F, Tucker HM, Brodsky S (2001) Dynamic laryngotracheal closure for aspiration: a preliminary report. Laryngoscope 111: 2032–2040

    Article  PubMed  CAS  Google Scholar 

  41. Burnett TA, Mann EA, Cornell SA, Ludlow CL (2003) Laryngeal elevation achieved by neuromuscular stimulation at rest. J Appl Physiol 94: 128–134

    PubMed  Google Scholar 

  42. Burnett TA, Mann EA, Stoklosa JB, Ludlow CL (2005) Self-triggered functional electrical stimulation during swallowing. J Neurophysiol 94: 4011–4018

    Article  PubMed  Google Scholar 

  43. Daniels SK (2000) Optimal patterns of care for dysphagic stroke patients. Semin Speech Lang 21: 323–331

    Article  PubMed  CAS  Google Scholar 

  44. Daniels SK, Foundas AL (1999) Lesion localization in acute stroke patients with risk of aspiration. J Neuroimaging 9: 91–98

    PubMed  CAS  Google Scholar 

  45. Daniels SK, Brailey K, Priestly DH, Herrington LR, Weisberg LA, Foundas AL (1998) Aspiration in patients with acute stroke. Archives of Physical Medicine and Rehabilitation 79: 14–19

    Article  PubMed  CAS  Google Scholar 

  46. Dick TE, Oku Y, Romaniuk JR, Cherniack NS (1993) Interaction between central pattern generators for breathing and swallowing in the cat. J Physiol 465: 715–730

    PubMed  CAS  Google Scholar 

  47. Ding R, Larson CR, Logemann JA, Rademaker AW (2002) Surface electromyographic and electroglottographic studies in normal subjects under two swallow conditions: normal and during the mendelsohn manuever. Dysphagia 17: 1–12

    Article  PubMed  Google Scholar 

  48. Friedman M, Wernicke JF, Caldarelli DD (1994) Safety and tolerability of the implantable recurrent laryngeal nerve stimulator. Laryngoscope 104: 1240–1244

    Article  PubMed  CAS  Google Scholar 

  49. Friedman M, Toriumi DM, Grybauskas V, Applebaum EL (1987) Treatment of spastic dysphonia without nerve section. Ann Otol Rhinol Laryngol 96: 590–596

    PubMed  CAS  Google Scholar 

  50. Fukushima S, Shingai T, Kitagawa J, Takahashi Y, Taguchi Y, Noda T, Yamada Y (2003) Role of the pharyngeal branch of the vagus nerve in laryngeal elevation and use pressure during swallowing in rabbits. Dysphagia 18: 58–63

    Article  PubMed  Google Scholar 

  51. Fukushima S-I, Shingai T, Takahashi Y, Taguchi Y, Noda T, Yamada Y (2005) Genesis of the decrement of intraluminal pressure in the ues during swallowing in rabbits. Brain Res 1044: 122–126

    Article  PubMed  CAS  Google Scholar 

  52. Gordon T, Sulaiman O, Boyd JG (2003) Experimental strategies to promote functional recovery after peripheral nerve injuries. J Periph Nerv Syst 8: 236–250

    Article  Google Scholar 

  53. Goyal RK, Padmanabhan R, Sang Q (2001) Neural circuits in swallowing and abdominal vagal afferent-mediated lower esophageal sphincter relaxation. The American Journal of Medicine 111: 95–105

    Article  Google Scholar 

  54. Groves DA, Brown VJ (2005) Vagal nerve stimulation: a review of its applications and potential mechanisms that mediate its clinical effects. Neurosci Biobehav Rev 29: 493–500

    Article  PubMed  Google Scholar 

  55. Grundfest-Broniatowski S, Broniatowski M, Davies CR, Jacobs GB, Tucker HM, Nose Y (1989) Fine control of reinnervated muscle. Dynamic rehabilitation of facial paralysis. ASAIO Trans 35: 484–486

    Article  PubMed  CAS  Google Scholar 

  56. Grundfest-Broniatowski S, Broniatowski M, Davies CR, Jacobs GB, Kasick JC, Chou SS, Nose Y, Hermann RE, Tucker HM (1989) An artificial myotatic reflex: a potential avenue to fine motor control. Otolaryngol Head Neck Surg 101: 621–628

    PubMed  CAS  Google Scholar 

  57. Hamdy S, Rothwell JC (1998) Gut feelings about recovery after stroke: the organization and reorganization of human swallowing motor cortex. Trends Neurosci 21: 278–282

    Article  PubMed  CAS  Google Scholar 

  58. Hamdy S, Aziz Q, Rothwell JC, Crone R, Hughes D, Tallis RC, Thompson DG (1997) Explaining oropharyngeal dysphagia after unilateral hemispheric stroke. Lancet 350: 686–692

    Article  PubMed  CAS  Google Scholar 

  59. Hamdy S, Aziz Q, Rothwell JC, Singh KD, Barlow J, Hughes DG, Tallis RC, Thompson DG (1996) The cortical topography of human swallowing musculature in health and disease. Nat Med 2: 1217–1224

    Article  PubMed  CAS  Google Scholar 

  60. Ishida R, Palmer JB, Hiiemae KM (2002) Hyoid motion during swallowing: factors affecting forward and upward displacement. Dysphagia 17: 262–272

    Article  PubMed  Google Scholar 

  61. Johnson ER, McKenzie SW, Sievers A (1993) Aspiration pneumonia in stroke [published erratum appears in arch phys med rehabil 1994 jun;75(6): 665]. Arch Phys Med Rehabil 74: 973–976

    PubMed  CAS  Google Scholar 

  62. Kaneko S, Jacobs G, Broniatowski M, Tucker H, Nose Y (1985) Physiological laryngeal pacemaker. Trans Am Soc Artif Intern Organs 31: 293–296

    PubMed  CAS  Google Scholar 

  63. Katada A, Nonaka S, Adachi M, Kunibe I, Arakawa T, Imada M, Hayashi T, Zealear DL, Harabuchi Y (2004) Functional electrical stimulation of laryngeal adductor muscle restores mobility of vocal fold and improves voice sounds in cats with unilateral laryngeal paralysis. Neurosci Res 50: 153–159

    Article  PubMed  Google Scholar 

  64. Lawrence ES, Coshall C, Dundas R, Stewart J, Rudd AG, Howard R, Wolfe CD (2001) Estimates of the prevalence of acute stroke impairments and disability in a multiethnic population. Stroke 32: 1279–1284

    PubMed  CAS  Google Scholar 

  65. Leelamanit V, Limsakul C, Geater A (2002) Synchronized electrical stimulation in treating pharyngeal dysphagia. Laryngoscope 112: 2204–2210

    Article  PubMed  Google Scholar 

  66. Ludlow CL, Hang C, Bielamowicz S, Choyke P, Hampshire V, Selbie WS (1999) Three-dimensional changes in the upper airway during neuromuscular stimulation of laryngeal muscles. Artificial Organs 23: 463–465

    Article  PubMed  CAS  Google Scholar 

  67. Ludlow CL, Bielamowicz S, Daniels Rosenberg M, Ambalavanar R, Rossini K, Gillespie M, Hampshire V, Testerman R, Erickson D, Carraro U (2000) Chronic intermittent stimulation of the thyroarytenoid muscle maintains dynamic control of glottal adduction. Muscle Nerve 23: 44–57

    Article  PubMed  CAS  Google Scholar 

  68. Martino R, Foley N, Bhogal S, Diamant N, Speechley M, Teasell R (2005) Dysphagia after stroke: incidence, diagnosis, and pulmonary complications. Stroke 36: 2756–2763

    Article  PubMed  Google Scholar 

  69. McCulloch TM, Jaffe DM, Hoffman HAT (1997) Diseases and operation of head and neck structures affecting swallowing. In: Perlman AL, Schulze-Delrieu K (eds) Deglutition and is disorders: anatomy, physiology, clinical diagnosis, and management. Singular Publishing Group, Inc., San Diego, pp 343–381

    Google Scholar 

  70. McKeown MJ, Torpey DC, Gehm WC (2002) Non-invasive monitoring of functionally distinct muscle activations during swallowing. Clin Neurophysiol 113: 354–366

    Article  PubMed  Google Scholar 

  71. Medda BK, Kern M, Ren J, Xie P, Ulualp SO, Lang IM, Shaker R (2003) Relative contribution of various airway protective mechanisms to prevention of aspiration during swallowing. Am J Physiol Gastrointest Liver Physiol 284: G933–G939

    PubMed  CAS  Google Scholar 

  72. Mu L, Sanders I (2000) Sensory nerve supply of the human oro-and laryngopharynx: a preliminary study. Anat Rec 258: 406–420

    Article  PubMed  CAS  Google Scholar 

  73. Netter FH, Colacino S (1997) Atlas of human anatomy. East Hanover, NJ: Navartis

    Google Scholar 

  74. Perlman AL, Palmer PM, McCulloch TM, Vandaele DJ (1999) Electromyographic activity from human laryngeal, pharyngeal, and submental muscles during swallowing. J Appl Physiol 86: 1663–1669

    PubMed  CAS  Google Scholar 

  75. Pommerenke W (1927) A study of the sensory areas eliciting the swallowing reflex. Am J Physiol 42: 36–42

    Google Scholar 

  76. Sanders I (1991) Electrical stimulation of laryngeal muscle. Otolaryngol Clin North Am 24: 1253–1274

    PubMed  CAS  Google Scholar 

  77. Sanders I, Wu BL, Mu L, Li Y, Biller HF (1993) The innervation of the human larynx. Arch Otolaryngol Head Neck Surg 119: 934–939

    PubMed  CAS  Google Scholar 

  78. Sengupta JN (2001) Electrophysiological recording from neurons controlling sensory and motor functions of the esophagus. Am J Med 111[Suppl] 8A: 169S–173S

    Article  PubMed  Google Scholar 

  79. Shaker R, Dua KS, Ren J, Xie P, Funahashi A, Schapira RM (2002) Vocal cord closure pressure during volitional swallow and other voluntary tasks. Dysphagia 17: 13–18

    Article  PubMed  Google Scholar 

  80. Tarver WB, George RE, Maschino SE, Holder LK, Wernicke JF (1992) Clinical experience with a helical bipolar stimulating lead. Pacing Clin Electrophysiol 15: 1545–1556

    Article  PubMed  CAS  Google Scholar 

  81. Teasell RW, McRae M, Marchik Y, Finestone HM (1996) Pneumonia associated with aspiration following stroke. Arch Phys Med Rehabil 77: 707–709

    Article  PubMed  CAS  Google Scholar 

  82. Terry RS, Tarver WB, Zabara J (1991) The implantable neurocybernetic prosthesis system. Pacing Clin Electrophysiol 14: 86–93

    Article  PubMed  CAS  Google Scholar 

  83. Zealear DL, Billante CR, Courey MS, Sant’Anna GD, Netterville JL (2002) Electrically stimulated glottal opening combined with adductor muscle botox blockade restores both ventilation and voice in a patient with bilateral laryngeal paralysis. Ann Otol Rhinol Laryngol 111: 500–506

    PubMed  Google Scholar 

  84. Zealear DL, Garren KC, Rodriguez RJ, Reyes JH, Huang S, Dokmeci MR, Najafi K (2001) The biocompatibility, integrity, and positional stability of an injectable microstimulator for reanimation of the paralyzed larynx. IEEE Trans Biomed Eng 48: 890–897

    Article  PubMed  CAS  Google Scholar 

  85. Zealear DL, Rodriguez RJ, Kenny T, Billante MJ, Cho Y, Billante CR, Garren KC (2002) Electrical stimulation of a denervated muscle promotes selective reinnervation by native over foreign motoneurons. J Neurophysiol 87: 2195–2199

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dustin J. Tyler .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Springer-Verlag

About this chapter

Cite this chapter

Tyler, D.J. (2007). Neuroprostheses for management of dysphagia resulting from cerebrovascular disorders. In: Sakas, D.E., Simpson, B.A., Krames, E.S. (eds) Operative Neuromodulation. Acta Neurochirurgica Supplements, vol 97/1. Springer, Vienna. https://doi.org/10.1007/978-3-211-33079-1_40

Download citation

  • DOI: https://doi.org/10.1007/978-3-211-33079-1_40

  • Publisher Name: Springer, Vienna

  • Print ISBN: 978-3-211-33078-4

  • Online ISBN: 978-3-211-33079-1

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics