Skip to main content

Applications of voltammetric methods for probing the chemistry of redox proteins

  • Chapter
Bioelectrochemistry of Biomacromolecules

Part of the book series: Bioelectrochemistry: Principles and Practice ((BPP,volume 5))

Abstract

Despite their recognised excellence for observing and analyzing the redox thermodynamics and kinetics of small molecule systems, voltammetric methods are relatively unfamiliar tools for investigating redox centres in proteins. Prior to breakthroughs achieved in the 1970s, it was widely believed that proteins were able to undergo facile direct (unmediated) electron exchange with an electrode [1]. Presumed complications in applying direct electrochemical methods, i.e. irreversible adsorption with denaturation, and sluggish electrode kinetics due to the protein’s occluded active site(s), appeared serious obstacles to progress, and interest was focused instead on indirectmethods of electrochemical measurement. Thus potentiometry, with employment of small redox mediators to facilitate electrochemical equilibration during spectroscopically monitored titrations of redox centres, has become the established way to determine reduction potentials [2]. The first studies to demonstrate conclusively that voltammetry might be as viable for Proteins (MW > 01 kDa) as for small molecules were carried out with cytochromes. Nikki and co-workers found that cytochrome c3, an active and robust electron-controlled electrochemistry at a mercury electrode [3], while the research groups of Hill and Kuwana independently achieved reversible, diffusion-controlled electrochemistry of mitochemical cytochrome c, respectivey at 4,4′-bipyridyl modified gold and at metal oxide electrodes [4, 5].

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. G Dryhurst, KM Kadish, F Scheller and R Renneberg, Biological Electrochemistry, Academic Press, New York and London, 1982.

    Google Scholar 

  2. GS Wilson, Meth. Enzymol. 54 (1978) 396–410.

    Article  CAS  Google Scholar 

  3. K Niki, T Yagi, H Inokuchi and K Kimura, J. Electrochem. Soc. 124 (1977) 1889–1891.

    Google Scholar 

  4. MJ Eddowes and HAO Hill, J. Chem. Soc. Chem. Commun. (1977) 771–772.

    Google Scholar 

  5. P Yeh and T Kuwana, Chem. Lett. (1977) 1145–1146.

    Google Scholar 

  6. MJ Eddowes and HAO Hill, J. Amer. Chem. Soc. 101 (1979) 4462–4464.

    Google Scholar 

  7. AJ Bard and LR Faulkner, Electrochemical Methods: Fundamentals and Applications, John Wiley, New York (1980).

    Google Scholar 

  8. AM Bond, Modern Polarographic Methods in Analytical Chemistry, Dekker, New York (1980).

    Google Scholar 

  9. Southampton Electrochemistry Group, Instrumental Methods in Electrochemistry, Ellis Horwood, Chichester (1985).

    Google Scholar 

  10. CM A Brett and AM Oliveira Brett, Electrochemistry: Principles, Methods and Applications, Oxford Science Publications, Oxford (1993).

    Google Scholar 

  11. RS Nicholson and I Shain, Anal. Chem. 36 (1964) 706–723.

    Article  CAS  Google Scholar 

  12. AM Bond, KB Oldham and CG Zoski, Anal. Chim. Acta 216 (1989) 177–230.

    Google Scholar 

  13. CM A Brett and AMCF Oliveira Brett in Comprehensive Chemical Kinetics, CH Bamford and RG Compton (eds), Elsevier. Amsterdam, (1986) Vol 26, Chapter 5.

    Google Scholar 

  14. AP Brown and FC Anson, Anal. Chem. 49 (1977) 1589–1595.

    Article  CAS  Google Scholar 

  15. E Laviron in Electroanalytical Chemistry, AJ Bard (ed), Marcel Dekker, New York (1982) Vol 12, pp 53–157.

    Google Scholar 

  16. H Matsuda, K Aoki and KTokuda, J. Electroanal. Chem. 217 (1987) 15–33.

    Google Scholar 

  17. FC Anson, Anal. Chem. 38 (1966) 54–57.

    Article  CAS  Google Scholar 

  18. CEDChidsey, Science 251 (1991) 919–922.

    Google Scholar 

  19. JG Osteryoung and RA Osteryoung, Anal. Chem. 57 (1985) 101 A–110 A.

    Google Scholar 

  20. JH Reeves, S Song and EF Bowden, Anal. Chem. 65 (1993) 683–688.

    Google Scholar 

  21. WR Hagen, Eur. J. Biochem. 182 (1989) 523–530.

    Article  CAS  Google Scholar 

  22. ET Smith, DW Bennett and BA Feinberg, Anal. Chim. Acta 251 (1991) 27–33.

    Google Scholar 

  23. WJ Albery, MJ Eddowes, HAO Hill and AR Hillman, J. Amer. Chem. Soc. (1981) 103, 3904–3910.

    Google Scholar 

  24. J Haladjian, P Bianco and R Pilard, Electrochim. Acta 28 (1983) 1823–1828.

    Article  CAS  Google Scholar 

  25. PM Allen, HAO Hill and NJ Walton, J. Electroanal. Chem. 178 (1984) 69–86.

    Article  CAS  Google Scholar 

  26. I Taniguchi, N Higo, K Umekita and KYasukouchi, J. Electroanal. Chem. 206 (1986) 341–348.

    Google Scholar 

  27. T Sagara, K Niwa, A Sone, C Hinnen and K Niki, Langmuir 6 (1990) 254–262.

    Google Scholar 

  28. FA Armstrong, Structure and Bonding 72 (1990) 137–230.

    Article  CAS  Google Scholar 

  29. AM Bond and HAO Hill in Metal Ions in Biological Systems, H Sigel and A Sigel (eds), Marcel Dekker, New York (1991) Vol 27, Chapter 12, pp. 431–494.

    Google Scholar 

  30. DA Reed and FM Hawkridge, Anal. Chem. 59 (1987) 2334–2339.

    Article  CAS  Google Scholar 

  31. T Daido andT Akaike, J. Electroanal. Chem. 344 (1993) 91–106.

    Google Scholar 

  32. EF Bowden, FM Hawkridge and HN Blount, J. Electroanal. Chem. 161 (1984) 355–376.

    Google Scholar 

  33. FA Armstrong, PA Cox, HAO Hill, VJ Lowe and BN Oliver, J. Electroanal. Chem. 217 (1987) 331–366.

    Google Scholar 

  34. FA Armstrong, HAO Hill, BN Oliver and D Whitford, J. Amer. Chem. Soc. 107 (1985) 1473–1476.

    Google Scholar 

  35. D Datta, HAO Hill and H Nakayama, J. Electroanal. Chem. 324 (1992) 307–323.

    Google Scholar 

  36. FA Armstrong, AM Bond, HAO Hill, ISM Psalti and CG Zoski, J. Phys. Chem. 93 (1989) 6485–6493.

    Google Scholar 

  37. AM Bond, HAO Hill, DJ Page, ISM Psalti and NJ Walton, Eur. J. Biochem. 191 (1990) 737–742.

    Article  CAS  Google Scholar 

  38. FN Buchi and AM Bond, J. Electroanal. Chem. 314 (1991) 191–206.

    Article  CAS  Google Scholar 

  39. AM Bond, Analytical Proceedings 29 (1992) 132–148.

    Article  CAS  Google Scholar 

  40. W Norde, Adv. Colloid Interfac. Sci. 25 (1986) 267–340.

    Article  CAS  Google Scholar 

  41. Z Salamon and G Tollin, Bioelectrochem. Bioenerg. 26 (1991) 321–334.

    Article  CAS  Google Scholar 

  42. Z Salamon and G Tollin, Bioelectrochem. Bioenerg. 27 (1992) 381–391.

    Article  CAS  Google Scholar 

  43. JL Willit and EF Bowden, J. Electroanal. Chem. 221 (1987) 265–274.

    Article  CAS  Google Scholar 

  44. JL Willit and EF Bowden, J. Phys. Chem. 94 (1990) 8241–8246.

    Article  CAS  Google Scholar 

  45. M Collinson and EF Bowden, Langmuir 8 (1992) 2552–2559.

    Article  CAS  Google Scholar 

  46. M Collinson and EF Bowden, Anal. Chem. 64 (1992) 1470–1476.

    Article  CAS  Google Scholar 

  47. MJ Tarlov and EF Bowden, J. Amer. Chem. Soc. 113 (1991) 1847–1849.

    Article  CAS  Google Scholar 

  48. M Collinson, EF Bowden and MJ Tarlov, Langmuir 8 (1992) 1247–1250.

    Google Scholar 

  49. S Song, RA Clark, EF Bowden and MJ Tarlov, J. Phys. Chem. 97 (1993) 6564–6572.

    Google Scholar 

  50. EF Bowden, RA Clark, JL Willit and S Song, in Redox Mechanisms and Interfacial Properties of Molecules of Biological Importance, FA Schultz and I Taniguchi (eds), The Electrochemical Society Inc., (1993) pp 34–45.

    Google Scholar 

  51. FA Armstrong in Advances in Inorganic Chemistry, R Cammack and AG Sykes (eds), Academic Press, San Diego (1993) Vol. 38, pp. 117–163.

    Google Scholar 

  52. FA Armstrong, JN Butt, SJ George, EC Hatchikian and AJ Thomson, FEBS Lett. 259 (1989) 15–18.

    Google Scholar 

  53. JN Butt, FA Armstrong, J Breton, SJ George, AJ Thomson and EC Hatchikian, J. Amer. Chem. Soc. 113 (1991) 6663–6670.

    Google Scholar 

  54. JN Butt, A Sucheta, FA Armstrong, J Breton, AJ Thomson and EC Hatchikian, J. Amer. Chem. Soc. 113 (1991) 8948–8950.

    Google Scholar 

  55. JN Butt, A Sucheta, FA Armstrong, J Breton, A J Thomson and EC Hatchikian, J. Amer. Chem. Soc. 115 (1993) 1413–1421.

    Google Scholar 

  56. JN Butt, J Niles, FA Armstrong, J Breton and AJ Thomson, Nature Structural Biology 1 (1994) 427–433.

    Google Scholar 

  57. B Shen, LL Martin, JN Butt, FA Armstrong, CD Stout, GM Jensen, et al., J. Biol. Chem. 268 (1993) 25928–25939.

    CAS  Google Scholar 

  58. JN Butt, A Sucheta, LL Martin, B Shen, BK Burgess and FA Armstrong, J. Amer. Chem. Soc. 115 (1993) 12587–12588.

    Google Scholar 

  59. A Sucheta, BAC Ackrell, B Cochran and FA Armstrong, Nature 356 (1992) 361–362.

    Google Scholar 

  60. BAC Ackrell, FA Armstrong, B Cochran, A Sucheta andT Yu, FEBS Lett. 326 (1993) 92–94.

    Google Scholar 

  61. A Sucheta, R Cammack, J Weiner and FA Armstrong, Biochemistry 32 (1993) 5455–5465.

    Article  CAS  Google Scholar 

  62. FA Armstrong, A Sucheta, BAC Ackrell and JH Weiner in Redox Mechanisms and Interfacial Properties of Molecules of Biological Importance, FA Schultz and I Taniguchi (eds), The Electrochemical Society Inc. (1993) pp. 184–196.

    Google Scholar 

  63. FA Armstrong, JN Butt and A Sucheta, Methods in Enzymology 223 (1993) 479–500.

    Google Scholar 

  64. TM Cotton, SG Schultz and RP Van Duyne, J. Amer. Chem. Soc. 102 (1980) 7962–7965.

    Google Scholar 

  65. G Smulevich andTG Spiro, J. Phys. Chem. 89 (1985) 5168–5173.

    Article  CAS  Google Scholar 

  66. K Niki, Y Kawasaki, K Kimura, Y Higura and N Yasuoka, Langmuir 3 (1987) 982–986.

    Google Scholar 

  67. P Hildebrandt, J. Molecular Structure 242 (1991) 379–395.

    Article  CAS  Google Scholar 

  68. C Hinnen, R Parsons and K Niki, J. Electroanal. Chem. 147 (1983) 329–337.

    Google Scholar 

  69. A Manjaqui, J Haladjean and P Bianco, Electrochim Acta 35 (1990) 177–185.

    Article  Google Scholar 

  70. T Ikeda, S Miyaoka and K Miki, J. Electroanal Chem. 352 (1993) 267–278.

    Google Scholar 

  71. DL Scott, RM Paddock and EF Bowden, J. Electroanal. Chem. 341 (1992) 307–321.

    Google Scholar 

  72. FA Armstrong, AM Bond, FN Buchi, A Hamnett, HAO Hill, AM Lannon et al., Analyst 118 (1993) 973–978.

    Google Scholar 

  73. T Yokuta, K Itoh and A Fujishima, J. Electroanal. Chem. 216 (1987) 289–292.

    Google Scholar 

  74. JM Cooper, KR Greenough and CJ McNeil, J. Electroanal. Chem. 347 (1993) 267–275.

    Google Scholar 

  75. JF Rusling and A-EF Nassar, J. Amer. Chem. Soc. 115 (1993) 11891–11897.

    Article  CAS  Google Scholar 

  76. I Taniguchi, K Watanabe, M Tominaga and FM Hawkridge, J. Electroanal. Chem. 333 (1992)331–338.

    Google Scholar 

  77. BC King, FM Hawkridge and BM Hoffman, J. Amer. Chem. Soc. 114 (1992) 10603–10608.

    Google Scholar 

  78. L Campanella, MP Sammartino, P Stefanoni, M Brunori and R Santucci, Bioelectrochem. Bioenerg, 21 (1989) 55–62.

    Google Scholar 

  79. BN Oliver, JO Egekeze and RW Murray, J. Amer. Chem. Soc. 110 (1988) 2321–2322.

    Google Scholar 

  80. AM Bond and KB Oldham, J. Phys. Chem. 87 (1983) 2492–2502.

    Article  CAS  Google Scholar 

  81. DH Evans and KM O’Connell in Electroanalytical Chemistry, AJ Bard (ed), Marcel Dekker, New York (1986) Vol 14, pp 113–207.

    Google Scholar 

  82. M Wikstrom and GT Babcock, Nature 356 (1992) 301–209.

    Article  Google Scholar 

  83. H Lauble, MC Kennedy, H Beinert and CD Stout, Biochemistry 31 (1992) 2735–2748.

    Google Scholar 

  84. R Cammack in Advances in Inorganic Chemistry, R Cammack and AG Sykes (eds), Academic Press, San Diego (1993) Vol 38, pp 281–322.

    Google Scholar 

  85. J Kim and DG Rees, Nature 360 (1992) 553–560.

    Article  CAS  Google Scholar 

  86. MW Hentze and P Argos, Nucleic Acids Research 19 (1991) 1739–1740.

    Article  CAS  Google Scholar 

  87. JL Smith, EJ Zaluzec, J-P Wery, L Niu, R Switzer, H Zalkin et al., Science 264 (1993)

    Google Scholar 

  88. RH Holm in Advances in Inorganic Chemistry, R Cammack and AG Sykes (eds), Academic Press, San Diego (1993) Vol 38, pp 1–71.

    Google Scholar 

  89. KK Surerus, E Miinck, I Moura, JJG Moura and J LeGall, J. Amer. Chem. Soc. 109 (1987) 3805–3807.

    Google Scholar 

  90. KKP Srivastava, KK Surerus, RC Conover, MK Johnson, J-B Park, MWW Adams et al., Inorg. Chem. 32 (1993) 927–936.

    Google Scholar 

  91. W Fu, J Telser, BM Hoffman, ET Smith, MWW Adams, MG Finnegan et al., J. Amer. Chem. Soc. 116 (1993) 5722–5729.

    Article  Google Scholar 

  92. SJ George, FA Armstrong, EC Hatchikian and AJ Thomson, Biochem. J. 264 (1989) 275–284.

    Google Scholar 

  93. WR Hagen in Advances in Inorganic Chemistry. Fe-S Proteins, R Cammack and AG Sykes (eds), Academic Press, San Diego (1993) pp 165–222.

    Google Scholar 

  94. FA Armstrong, SJ George, R Cammack, EC Hatchikian and AJ Thomson, Biochem. J. 264 (1989) 265–273.

    Google Scholar 

  95. CD Stout, J. Biol. Chem. 268 (1993) 15920–25927.

    Google Scholar 

  96. AJ Thomson, FEBS Lett. 285 (1991) 230–236.

    Article  CAS  Google Scholar 

  97. FA Armstrong, SJ George, AJ Thomson and MG Yates, FEBS Lett. 234 (1988) 107–110.

    Google Scholar 

  98. G Feher, Annu. Rev. Biochem. 61 (1992) 861–896.

    Article  Google Scholar 

  99. SJ George, AJM Richards, AJ Thomson and MG Yates, Biochem. J. 224 (1984) 247–251.

    Google Scholar 

  100. PJ Stephens, GM Jensen, FJ Devlin, TV Morgan, CD Stout, AE Martin et al., Biochemistry 30 (1991) 3200–3209.

    Article  CAS  Google Scholar 

  101. SE lismaa, AE Vazquez, GM Jensen, PJ Stephens, JN Butt, FA Armstrong et al., J. Biol. Chem. 266 (1991) 21563–21571.

    Google Scholar 

  102. BAC Ackrell, MK Johnson, RP Gunsalus and G Cecchini in Chemistry and Biochemistry of Flavoenzymes, F Muller (ed), CRC Press, Boca Raton, Florida (1992) Vol 3, pp 229–297.

    Google Scholar 

  103. DR Mackenroth and LG Sands in Illustrated Encyclopedia of Solid-state Circuits and Applications, Prentice Hall, Englewood Cliffs, New Jersey (1984) Chapter 1.

    Google Scholar 

  104. SK Lahr, HO Finklea and FA Schultz, J. Electroanal. Chem. 163 (1984) 237–255.

    Google Scholar 

  105. JP Collman and K Kim, J. Amer. Chem Soc. 108 (1986) 7847–7849.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1997 Birkhäuser Verlag Basel/Switzerland

About this chapter

Cite this chapter

Armstrong, F.A. (1997). Applications of voltammetric methods for probing the chemistry of redox proteins. In: Lenaz, G., Milazzo, G. (eds) Bioelectrochemistry of Biomacromolecules. Bioelectrochemistry: Principles and Practice, vol 5. Birkhäuser Basel. https://doi.org/10.1007/978-3-0348-9179-0_4

Download citation

  • DOI: https://doi.org/10.1007/978-3-0348-9179-0_4

  • Publisher Name: Birkhäuser Basel

  • Print ISBN: 978-3-0348-9936-9

  • Online ISBN: 978-3-0348-9179-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics