Skip to main content

Abstract

Arterial blood pressure is maintained by the tonic vasomotor activity of sympathetic preganglionic neurons which are located in the intermediolateral cell column of the thoracic and lumbar spinal cord. Supraspinal inputs are critical in maintaining the activity of SPN. The medulla and pons have been recognized as essential for maintaining tonic sympathetic activity since the late 1800’s when experiments showed that transection of the brain stem caudal to the inferior colliculus failed to lower blood pressure. Transections more caudally produced increasingly greater falls in blood pressure. Reductions in blood pressure reached a maximum with transections at the level of the obex (see ref [1] for historical review). A major goal of central autonomic research has been to identify the descending neuronal pathways which project to SPN and to determine the neurotransmitters contained within these pathways (see ref [2–6] for review). Neuroanatomical and immunocytochemical techniques have been used to identify chemically specific pathways between areas thought to be important in central autonomic regulation. This information combined with experiments utilizing sophisticated electrophysiological and pharmacological analysis have begun to elucidate the role of these pathways in central autonomic regulation and to determine the functional significance of putative neurotransmitters contained within these pathways. This review describes recent developments which have had a major influence on our understanding of the central neurotransmitters involved in the regulation of sympathetic nerve discharge.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. G. L. Gebber: Brainstem systems involved in cardiovascular regulation. In: W.C. Randall (Ed.): Nervous control of cardiovascular function. Oxford: Oxford University Press, 1984: 346–368.

    Google Scholar 

  2. R.B. McCall: Effects of putative neurotransmitters on sympathetic preganglionic neurons. In: R.M. Berne (Ed.): Annual Reviews of Physiology, vol. 50. Palo Alto: Annual Reviews Inc., 1988: 553–564.

    Google Scholar 

  3. P.G. Guyenet: Role of the ventral medulla oblongata in blood pressure regulation. In: A.D. Loewy and K.M. Spyer (Eds.): Central Regulation of Autonomic Functions, Oxford: Oxford Univ. Press, 1990, 145–167.

    Google Scholar 

  4. R.B. McCall: Role of neurotransmitters in the central regulation of the cardiovascular system. In: E. Jucker (Ed.): Prog. Drug Res. Basel: Birkhäuser Verlag, 1990; 25–84.

    Google Scholar 

  5. R.A.L. Dampney: Functional organization of central pathways regulating the cardiovascular system. Physiol. Rev. 1994: 74, 323–364.

    PubMed  CAS  Google Scholar 

  6. R.A.L. Dampney: The subretrofacial vasomotor nucleus: anatomical, chemical and pharmacological properties and role in cardiovascular regulation. Prog. in Neuro-biol. 1994; 42: 197–227.

    CAS  Google Scholar 

  7. J.B. Cabot: Sympathetic preganglionic neurons: cytoarchitecture, ultrastructure, and biophysical properties. In: A.D. Loewy and K.M. Spyer (Eds.): Central Regulation of Autonomic Functions, Oxford: Oxford Univ. Press, 1990, 22–34.

    Google Scholar 

  8. J.H. Coote: The organization of cardiovascular neurons in the spinal cord. Rev. Physiol Biochem. Pharmacol. 1988; 160: 13–35.

    Google Scholar 

  9. C.G. Charlton and C.J. Helke: Substance P-containing medullary projections to the intermediolateral cell column: Identification with retrogradely transported rhoda-mine-labeled latex microspheres and immunohistochemistry. Brain Res. 1987; 418: 245–254.

    PubMed  CAS  Google Scholar 

  10. C.J. Helke, S.C. Sayson, J.R. Keeler and C.G. Charlton: Thyrotropin-releasing hor-mone-immunoreactive neurons project from the ventral medulla to the intermediolateral cell column: partial coexistence with serotonin. Brain Res. 1986; 381: 1–7.

    PubMed  CAS  Google Scholar 

  11. A.D. Loewy: Raphe pallidus and raphe obscurus projections to the intermediolateral cell column in the rat. Brain Res. 1981; 222: 129–133.

    PubMed  CAS  Google Scholar 

  12. A.D. Loewy and S. McKellar: Serotonergic projections from the ventral medulla to the intermediolateral cell column in the rat. Brain Res. 1981; 211: 146–152.

    PubMed  CAS  Google Scholar 

  13. M. Miura, T. Onai and K. Takayama: Projections of the upper structure to the spinal cardioacceleratory center in cats: an HRP study using a new microinjection method. J. Auton. Nerv. Syst. 1983; 7: 119–140.

    PubMed  CAS  Google Scholar 

  14. C.A. Sasek and C.J. Heike: Enkephalin-immunoreaetive neuronal projections from the medulla oblongata to the intermediolateral cell column-relationship to substance P-immunoreactive neurons. J. Comp. Neurol. 1989; 287: 484–494.

    PubMed  CAS  Google Scholar 

  15. Z.Q. Ding, Y.-W. Li, S.L. Wesselingh and W.W. Blessing: Transneuronal labelling of neurons in rabbit brain after injection of Herpes simplex virus type 1 into the renal nerve. J. Auton. Nerv. Syst. 1993; 42: 23–31.

    PubMed  CAS  Google Scholar 

  16. A.S. Jansen, D.G. Farwell and A.D. Loewy: Specificity of Pseudorabies virus as a retrograde marker of sympathetic preganglionic neurons: implications for transneuronal labeling studies. Brain Res. 1993; 617: 103–112.

    PubMed  CAS  Google Scholar 

  17. A.M. Strack, W.B. Sawyer, J.H. Hughes, K.B. Platt and A.D. Loewy: A general pattern of CNS innervation of the sympathetic outflow demonstrated by transneuro-nal Pseudorabies viral infections. Brain Res. 1989; 491: 156–162.

    PubMed  CAS  Google Scholar 

  18. A.M. Strack, W.B. Sawyer, K.B. Platt and A.D. Loewy: CNS cell groups regulating the sympathetic outflow to adrenal gland as revealed by transneuronal cell body labeling with Pseudorabies virus. Brain Res. 1989; 491: 274–296.

    PubMed  CAS  Google Scholar 

  19. S.L. Wesselingh, Y.W. Li and W.W. Blessing: PNMT-containing neurons in the rostral medulla oblongata (C1, C3 groups are transneuronally labelled after injection of herpes simplex virus type 1 into the adrenal gland. Neurosci. Lett. 1989; 106: 99–104.

    PubMed  CAS  Google Scholar 

  20. P. Carrive, R. Bandler and R.A.L. Dampney: Anatomical evidence that hypertension associated with the defence reaction in the cat is mediated by a direct projection from a restricted portion of the midbrain periaqueductal grey to the subretro-facial nucleus of the medulla. Brain Res. 1988; 460: 339–345.

    PubMed  CAS  Google Scholar 

  21. R.A.L. Dampney, J. Czachurski, K. Dembowsky, A.K. Goodchild and H. Seller: Afferent connections and spinal projections of the vasopressor region in the rostral ventrolateral medulla of the cat. J. Auton. Nerv. Syst. 1987; 20: 73–86.

    PubMed  CAS  Google Scholar 

  22. R.A.L. Dampney, A.K. Goodchild, L.G. Robertson and W. Montgomery: Role of ventrolateral medulla in vasomotor regulation: a correlative anatomical and physiological study. Brain Res. 1982; 249: 223–235.

    PubMed  CAS  Google Scholar 

  23. C.A. Ross, D.A. Ruggiero and D.J. Reis: Projections from the nucleus tractus soli-tarii to the rostral ventrolateral medulla. J. Comp. Neurol. 1985; 242: 511–534.

    PubMed  CAS  Google Scholar 

  24. K. Takayama, J. Okada and M. Muira: Evidence that neurons of the central amygdaloid nucleus directly project to the site concerned with circulatory and respiratory regulation in the ventrolateral nucleus of the cat — a WGA-HRP study. Neurosci. Lett. 1990; 109: 241–246.

    PubMed  CAS  Google Scholar 

  25. A.M. Allen and P.G. Guyenet: Alpha 2-adrenoceptor-mediated inhibition of bulbospinal barosensitive cells of rat rostral medulla. Am. J. Physiol. 1993; 265: R1065–R1075.

    PubMed  CAS  Google Scholar 

  26. N. Koshiya, D.H. Huangfu and P.G. Guyenet: Ventrolateral medulla and sympathetic chemoreflex in the rat. Brain Res. 1993; 609: 174–184.

    PubMed  CAS  Google Scholar 

  27. S.K. Agarwal and F.R. Calaresu: Monosynaptic connection from caudal to rostral ventrolateral medulla in the baroreceptor reflex pathway. Brain Res. 1991; 555: 70–74.

    PubMed  CAS  Google Scholar 

  28. M.E. Clement and R.B. McCall: Impairment of baroreceptor reflexes following kainic acid lesions of the lateral tegmental field. Brain Res. 1993; 618: 328–332.

    PubMed  CAS  Google Scholar 

  29. C. Dean and J.H. Coote: A ventromedullary relay involved in the hypothalamic and chemoreceptor activation of sympathetic postganglionic neurones to skeletal muscle, kidney and splanchnic area. Brain Res. 1986; 377: 279–285.

    PubMed  CAS  Google Scholar 

  30. A.R. Granata, D.A. Ruggiero, D.H. Park, T.H. Joh and D.J. Reis: Lesions of epinephrine neurons in the rostral ventrolateral medulla abolish the vasodepressor components of baroreflex and cardiopulmonary reflex. Hypertension 1983; 5: V80–V84.

    Google Scholar 

  31. A.R. Granata, D.A. Ruggiero, D.H. Park, T.H. Joh and D.J. Reis: Brain stem area with Cl epinephrine neurons mediates baroreflex vasodepressor responses. Am. J. Physiol. 1985; 248: H547–H567.

    PubMed  CAS  Google Scholar 

  32. R.M. McAllen: Mediation of fastigial pressor response and a somatosympathetic reflex by ventral medullary neurones in the cat. J. Physiol. 1985; 368: 423–433.

    PubMed  CAS  Google Scholar 

  33. R.L. Stornetta, S.F. Morrison, D.A. Ruggiero and D.J. Reis: Neurons of rostral ventrolateral medulla mediate somatic pressor reflex. Am. J. Physiol. 1989; 256: R448–R462.

    PubMed  CAS  Google Scholar 

  34. A.M. Strack, W.B. Sawyer, L.M. Marubio and A.D. Loewy: Spinal origin of sympathetic preganglionic neurons in the rat. Brain Res. 1988; 455: 187–191.

    PubMed  CAS  Google Scholar 

  35. M.B. Hancock: Separate populations of lumbar preganglionic neurons identified with the retrograde transport of HRP and 4,6-diamidine-phenylindole (DAPI). J. Auton. Nerv. Syst. 1982; 5:135–143.

    PubMed  CAS  Google Scholar 

  36. Y.-W. Li, Z.Q. Ding, S.I. Wesselingh and W.W. Blessing: Renal and adrenal sympathetic preganglionic neurons in rabbit spinal cord-tracing with herpes simplex virus. Brain Res. 1992; 573: 147–152.

    PubMed  CAS  Google Scholar 

  37. J.L. Henry and F.R. Calaresu: Topography and numerical distribution of neurons of the thoraco-lumbar intermediolateral nucleus. J. Comp. Neurol. 1972; 144: 205–214.

    PubMed  CAS  Google Scholar 

  38. B.J. Oldfield and E.M. McLachlan: An analysis of the sympathetic preganglionic neurons projecting from the upper thoracic spinal roots of the cat. J. Comp. Neurol. 1981; 196: 329–346.

    Google Scholar 

  39. T.A. Rando, C.W. Bowers and R.E. Zigmond: Localization of neurons in the rat spinal cord which project to the superior cervical ganglion. J. Comp. Neurol. 1981; 196: 73–83.

    PubMed  CAS  Google Scholar 

  40. S.J. Bacon and A.D. Smith: Preganglionic sympathetic neurones innervating the rat adrenal medulla: immunocytochemical evidence of synaptic input from nerve terminals containing substance P, GABA or 5-hydroxytryptamine. J. Auton. Nerv. Syst. 1988; 24: 97–122.

    PubMed  CAS  Google Scholar 

  41. C.J. Forehand: Morphology of sympathetic preganglionic neurons in the neonatal rat spinal cord-an intracellular horseradish peroxidase study. J. Comp. Neurol. 1990; 298: 334–342.

    PubMed  CAS  Google Scholar 

  42. P.L. Vera, B.E. Hurwitz and N. Schneiderman: Sympathoadrenal preganglionic neurons in the adult rabbit send their dendrites into the contralateral hemicord. J. Auton. Nerv. Syst. 1990; 30: 193–198.

    PubMed  CAS  Google Scholar 

  43. T.L. Krukoff: Coexistence of neuropeptides in sympathetic preganglionic neurons of the cat. Peptides 1987; 8: 109–112.

    Google Scholar 

  44. T.L. Krukoff, J. Ciriello and F.R. Calaresu: Segmental distribution of peptide-and 5-HT-like immunoreactivity in nerve terminals and fibers of the thoracolumbar sympathetic nuclei of the cat. J. Comp. Neurol. 1985; 240: 103–116.

    PubMed  CAS  Google Scholar 

  45. R.B. McCall: Serotonergic excitation of sympathetic preganglionic neurons: a micro-iontophoretic study. Brain Res. 1983; 289: 121–127.

    PubMed  CAS  Google Scholar 

  46. L.C. Weaver and R.D. Stein: Effects of spinal cord transection on sympathetic discharge in decerebrate-unanesthetized cats. Am. J. Physiol. 1989; 257: R1506–R1511.

    PubMed  CAS  Google Scholar 

  47. J.H. Coote and D.R. Westbury: Intracellular recordings from sympathetic preganglionic neurones. Neurosci. Lett. 1979; 15: 171–176.

    PubMed  CAS  Google Scholar 

  48. K. Dembowsky, J. Czachurski and H. Seller: An intracellular study of the synaptic input to sympathetic preganglionic neurones of the third thoracic segment of the cat. J. Auton. Nerv. Syst. 1985; 13: 201–244.

    PubMed  CAS  Google Scholar 

  49. E.M. McLachlan and G.D.S. Hirst: Some properties of preganglionic neurons in upper thoracic spinal cord of the cat. J. Neurophysiol. 1980; 43: 1251–1265.

    PubMed  CAS  Google Scholar 

  50. I.J. Llewellyn-Smith, K.D. Phend, J.B. Minson, P.M. Pilowsky and J.P. Chalmers: Glu-tamate-immunoreactive synapses on retrogradely-labelled sympathetic preganglionic neurons in rat thoracic spinal cord. Brain Res. 1992; 581: 67–80.

    PubMed  CAS  Google Scholar 

  51. S.F. Morrison, I. Callaway, T.A. Milner and D.J. Reis: Glutamate in the spinal sympathetic intermediolateral nucleus: localization by light and electron microscopy. Brain Res. 1989; 503: 5–15.

    PubMed  CAS  Google Scholar 

  52. S.F. Morrison, P. Ernsberger, T.A. Milner, J. Callaway, A. Gong and D.J. Reis: A glutamate mechanism in the intermediolateral nucleus mediates sympathoexcitatory responses to stimulation of the rostral ventrolateral medulla. In: J. Ciriello, M. M. Caverson and C. Polosa (Eds.): Central Neural Organization of Cardiovascular Control. Progress in Brain Research. Amsterdam: Elsevier, 1989: vol. 81, 159–169.

    Google Scholar 

  53. N. Bogan, A. Mennone and J.B. Cabot: Light microscopic and ultrastructural localization of GABA-like immunoreactive input to retrogradely labeled sympathetic preganglionic neurons. Brain Res. 1989; 505: 257–270.

    PubMed  CAS  Google Scholar 

  54. T. Chiba and R. Semba: Immuno-electron microscopic studies on the gamma-ami-nobutyric acid and glycine receptor in the intermediolateral nucleus of the thoracic spinal cord of rats and guinea pigs. J. Auton. Nerv. Syst. 1991; 36: 173–182.

    PubMed  CAS  Google Scholar 

  55. J.B. Cabot, V. Alessi and A. Bushneil: Glycine-like immunoreactive input to sympathetic preganglionic neurons. Brain Res. 1992; 571: 1–18.

    PubMed  CAS  Google Scholar 

  56. T. Chiba and S. Masuko: Direct synaptic contacts of catecholamine axons on the preganglionic sympathetic neurons in the rat thoracic spinal cord. Brain Res. 1986; 380: 405–408.

    PubMed  CAS  Google Scholar 

  57. T. Chiba and S. Masuko: Synaptic structure of the monoamine and peptide nerve terminals in the intermediolateral nucleus of the guinea pig thoracic spinal cord. J. Comp. Neurol. 1987; 262: 242–255.

    PubMed  CAS  Google Scholar 

  58. H. Bernstein-Goral and M.C. Bohn: Phenylethanolamine N-methyltransferase-immunoreactive terminals synapse on adrenal preganglionic neurons in the rat spinal cord. Neuroscience 1989; 32: 521–537.

    Google Scholar 

  59. T.A. Milner, S.F. Morrison, C. Aboate and D.J. Reis: Phenylethanolamine N-methyl-transferase-containing terminals synapse directly on sympathetic preganglionic neurons in the rat. Brain Res. 1988; 448: 205–222.

    PubMed  CAS  Google Scholar 

  60. T. Chiba: Direct synaptic contacts of 5-hydroxytryptamine-, neuropeptide Y-, and somatostatin-immunoreactive nerve terminals on the preganglionic sympathetic neurons of the guinea pig. Neurosci. Lett. 1989; 105: 281–286.

    PubMed  CAS  Google Scholar 

  61. P. Poulat, L. Marlier, N. Rajaofetra and A. Privat: 5-hydroxytryptamine, substance P and thyrotropin-releasing hormone synapses in the intermediolateral cell column of the rat thoracic spinal cord. Neurosci. Lett. 1992; 136: 19–22.

    PubMed  CAS  Google Scholar 

  62. P.L. Vera, V.R. Holets and K.E. Miller: Ultrastructural evidence of synaptic contacts between substance-P-immunoreactive, enkephalin-immunoreactive, and serotonin-immunoreactive terminals and retrogradely labeled sympathetic preganglionic neurons in the rat-a study using a double-peroxidase procedure. Synapse 1990; 6: 221–229.

    Google Scholar 

  63. P. Pilowsky, I.J. Llewellyn-Smith, J. Lipski and J. Chalmers: Substance P immunoreactive boutons form synapses with feline sympathetic preganglionic neurons. J. Comp. Neurol. 1992; 320: 121–135.

    PubMed  CAS  Google Scholar 

  64. I.J. Llewellyn-Smith, J.B. Minson, D.A. Morilak, J.R. Oliver and J.P. Chalmers: Neuropeptide Y-immunoreactive synapses in the intermediolateral cell column of rat and rabbit thoracic spinal cord. Neurosci. Lett. 1990; 108: 243–248.

    PubMed  CAS  Google Scholar 

  65. Y.-W. Li, Z.Q. Ding, S.L. Wesselingh and W.W. Blessing: Renal sympathetic preganglionic neurons demonstrated by herpes simplex virus transneuronal labelling in the rabbit: close apposition of neuropeptide Y-immunoreactive terminals. Neuroscience 1993; 53: 1143–1152.

    Google Scholar 

  66. P.G. Galabov: Ultrastructural localization of angiotensin II-like immunoreactivity in the vegetative networks of the spinal cord of the guinea pig. J. Auton. Nerv. Syst. 1992; 40: 215–222.

    PubMed  CAS  Google Scholar 

  67. N.M. Appel and R.P. Elde: The intermediolateral cell column of the thoracic spinal cord is comprised of target-specific subnuclei: evidence from retrograde transport studies and immunohistochemistry. J. Neurosci. 1988; 8: 1767–1775.

    PubMed  CAS  Google Scholar 

  68. R.B. McCall and M.E. Clement: Identification of serotonergic and sympathetic neurons in medullary raphe nuclei. Brain Res. 1989; 477: 172–182.

    PubMed  CAS  Google Scholar 

  69. R.B. McCall and M.E. Clement: Role of serotonin 1A and serotonin2 receptors in the central regulation of the cardiovascular system. Pharmacol. Rev. 1994; 46: 231–243.

    PubMed  CAS  Google Scholar 

  70. C.A. Fornai and B.L. Jacobs: Physiological and behavioral correlates of serotonergic single-unit activity. In: N.N. Osborne and M. Hamon (Eds.): Neuronal serotonin, Chichester: John Wiley and Sons Ltd., 1988.

    Google Scholar 

  71. H. Inokuchi, M. Yoshimura, C. Polosa and S. Nishi: Adrenergic receptors (α1 and α2) modulate different potassium conductances in sympathetic preganglionic neurons. Can. J. Physiol. Pharmacol. 1992; 70: S92–S97.

    PubMed  CAS  Google Scholar 

  72. S.B. Backman and J.L. Henry: Effects of substance P and thyrotropin-releasing hormone on sympathetic preganglionic neurones in the thoracic intermediolateral nucleus of the cat. Can J Physiol Pharmacol. 1983; 62: 248–251.

    Google Scholar 

  73. M.P. Gilbey, K.E. McKenna and L.P. Schramm: Effects of substance P on sympathetic preganglionic neurones. Neurosci Lett. 1983; 41: 157–159.

    PubMed  CAS  Google Scholar 

  74. R.B. McCall: Serotonergic excitation of sympathetic preganglionic neurons: a micro-iontophoretic study. Brain Res. 1983; 289: 121–127.

    PubMed  CAS  Google Scholar 

  75. S. Nishi, M. Yoshimura and C. Polosa: Synaptic potentials and putative transmitter actions in sympathetic preganglionic neurons. In: J. Ciriello, F.R. Calaresu, L.P. Renaud and C. Polosa (Eds.): Organization of the autonomic nervous system: central and peripheral mechanisms. New York: Alan Liss Inc. 1987; 15–26.

    Google Scholar 

  76. H. Inokuchi, M. Yoshimura, S. Yamada, C. Polosa and S. Nishi: Fast excitatory postsynaptic potentials and the responses to excitant amino acids of sympathetic preganglionic neurons in the slice of the cat spinal cord. Neuroscience 1992; 46: 657–667.

    Google Scholar 

  77. P.G. Guyenet, M.-K. Sun and D.L. Brown: Role of GABA and excitatory amino-acids in medullary baroreflex pathway. In: J. Ciriello, F.R. Calaresu, L.P. Renaud, and C. Polosa (Eds.): Organization of the autonomic nervous system: central and peripheral mechanisms. New York: Alan Liss Inc. 1987; 215–225.

    Google Scholar 

  78. J. Minson, P. Pilowsky, I.J. LLewellyn-Smith, T. Kaneko, V. Kapoor and J.P. Chalmers: Glutamate in spinally projecting neurons of the rostral ventral medulla. Brain Res. 1991; 555: 326–331.

    PubMed  CAS  Google Scholar 

  79. O. Johansson, T. Hokfelt and B. Pernow et al.: Immunohistochemical support for three putative transmitters in one neuron: co-existence of 5-hydroxytryptamine, substance P and thyrotropin releasing hormone-like immunoreactivity in medullary neurons projecting to the spinal cord. J. Neurosci. 1981; 6: 1857–1881.

    CAS  Google Scholar 

  80. R.B. McCall and G.K. Aghajanian: Serotonergic facilitation of facial motoneuron excitation. Brain Res. 1979; 169: 11–27.

    PubMed  CAS  Google Scholar 

  81. D.I. Lewis and J.H. Coote: Excitation and inhibition of rat sympathetic preganglionic neurones by catecholamines. Brain Res. 1990; 530: 229–234.

    PubMed  CAS  Google Scholar 

  82. H. Inokuchi, M. Yoshimura, A. Trzebski, C. Polosa and S. Nishi: Fast inhibitory postsynaptic potentials and responses to inhibitory amino acids of sympathetic preganglionic neurons in the adult cat. J. Auton. Nerv. Syst. 1992; 41: 53–60.

    PubMed  CAS  Google Scholar 

  83. R.B. McCall, G.L. Gebber and S.M. Barman: Spinal interneurons in the barorecep-tor reflex arc. Am. J. Physiol. 1977; 232: H657–H665.

    PubMed  CAS  Google Scholar 

  84. S.B. Backman and J.L. Henry: Effects of GABA and glycine on sympathetic preganglionic neurons in the upper thoracic intermediolateral nucleus of the cat. Brain Res. 1983; 277: 365–369.

    PubMed  CAS  Google Scholar 

  85. F.J. Gordon: Spinal GABA receptors and central cardiovascular control. Brain Res. 1985; 328: 165–169.

    PubMed  CAS  Google Scholar 

  86. D. Blottner and H.G. Baumgarten: Nitric oxide synthetase (NOS)-containing sympathoadrenal cholinergic neurons of the rat IML cell column: evidence from histochemistry, immunohistochemistry, and retrograde labeling. J. Comp. Neurol. 1992; 316: 45–55.

    PubMed  CAS  Google Scholar 

  87. J.A. Gaily, P.R. Montague, G.N. Reeke and G.M. Edelman: The NO hypothesis: possible effects of a short-lived, rapidly diffusible signal in the development and function of the nervous system. Proc. Natl. Acad. Sci. 1990; 87: 3547–3551.

    Google Scholar 

  88. J. Garthwaite: Glutamate, nitric oxide and cell-cell signalling in the nervous system. Trends Neurosci. 1991; 14: 60–67.

    PubMed  CAS  Google Scholar 

  89. C.A. Ross, D.A. Ruggerio, D.H. Park, et al.: Tonic vasomotor control by the rostral ventrolateral medulla: effect of electrical or chemical stimulation of the area containing Cl adrenaline neurons on arterial pressure, heart rate and plasma catecholamines and vasopressin. J. Neurosci. 1984; 4: 474–494.

    PubMed  CAS  Google Scholar 

  90. R.A.L. Dampney, A.K. Goodchild, L.G. Robertson and W. Montgomery: Role of ventrolateral medulla in vasomotor regulation: a correlative anatomical and physiological study. Brain Res. 1982; 249: 223–235.

    PubMed  CAS  Google Scholar 

  91. P.J. Gad, W.P. Norman, A.M.T. Da Salve and R.A. Gills: Cardiorespiratory effects produced by microinjecting L-glutamic acid into medullary nuclei associated with the ventral surface of the feline medulla. Brain Res. 1986; 381: 281–288.

    Google Scholar 

  92. R.N. Willette, P.P. Barcas, A.J. Krieger and H.N. Sapru: Vasopressor and depressor areas in the rat medulla: identification by microinjection of L-glutamate. Neurophar-macol. 1983; 22: 1071–1079.

    CAS  Google Scholar 

  93. R.N. Willette, S. Punnen-Grandy, A.J. Krieger, H.N. Sapru: Differential regulation of regional vascular resistance by the rostral and caudal ventrolateral medulla in the rat. J. Auton. Nerv. Syst. 1987; 18: 143–151.

    PubMed  CAS  Google Scholar 

  94. W. Feldberg and P.G. Guertzenstein: A vasodepressor effect of pentobarbitone sodium. J. Physiol. 1972; 224: 83–103.

    PubMed  CAS  Google Scholar 

  95. P.G. Guertzenstein and A. Silver: Fall in blood pressure from discrete regions of the ventral surface of the medulla by glycine and lesions. J. Physiol. 1974; 242: 489–503.

    PubMed  CAS  Google Scholar 

  96. R.A. Dampney and E.A. Moon: Role of ventrolateral medulla in vasomotor response to cerebral ischemia. Am. J. Physiol. 1980; 239: H349–H358.

    PubMed  CAS  Google Scholar 

  97. E.E. Benarroch, A.R. Granata, D. Ruggiero, D.H. Park and D.J. Reis: Neurons of the Cl area mediate cardiovascular responses initiated form the ventral medullary surface. Am J Physiol. 1986; 250: R932–R945.

    PubMed  CAS  Google Scholar 

  98. S.M. Barman and G.L. Gebber: Basis for the naturally occurring activity of rostral ventrolateral medullary sympathoexcitatory neurons. In: J. Ciriello, M.M. Caverson and C. Polosa (Eds.): Central Neuronal Organization of Cardiovascular Control. Progress in Brain Research. Amsterdam: Elsevier, 1989: vol. 81, 117–129.

    Google Scholar 

  99. S.M. Barman and G.L. Gebber: Axonal projection patterns of ventrolateral medul-lospinal sympathoexcitatory neurons. J. Neurophysiol. 1985; 53: 1551–1566.

    PubMed  CAS  Google Scholar 

  100. D.L. Brown and P.G. Guyenet: Cardiovascular neurons of brainstem with projections to spinal cord. Am. J. Physiol. 1984; 247: R1009–R1016.

    PubMed  CAS  Google Scholar 

  101. P.G. Guyenet and D.L. Brown: Nucleus paragigantocellularis lateralis and lumbar sympathetic discharge in the rat. Am. J. Physiol. 1986; 250: R1081–R1094.

    PubMed  CAS  Google Scholar 

  102. R.M. McAllen: Identification and properties of subretrofacial bulbospinal neurones: a descending cardiovascular pathway in the cat. J. Auton. Nerv. Syst. 1986; 17: 151–164.

    PubMed  CAS  Google Scholar 

  103. R.B. McCall: Lack of involvement of GABA in baroreceptor-mediated sympathoin-hibition. Am. J. Physiol. 1986; 253: R1065–R1073.

    Google Scholar 

  104. R.B. McCall: GABA-mediated inhibition of sympathoexcitatory neurons by midline medullary stimulation. Am. J. Physiol. 1988; 255: R605–R615.

    PubMed  CAS  Google Scholar 

  105. M.-K. Sun and P.G. Guyenet: GABA-mediated baroreceptor inhibition of reticulospinal neurons. Am. J. Physiol. 1985; 249: R672–R680.

    PubMed  CAS  Google Scholar 

  106. S.M. Barman and G.L. Gebber: Lateral tegmental field neurons play a permissive role in governing the 10-Hz rhythm in sympathetic nerve discharge. Am. J. Physiol. 1993; 265: R1006–R1013.

    PubMed  CAS  Google Scholar 

  107. S.M. Barman, G.L. Gebber and S. Zhong: The 10-Hz rhythm in sympathetic nerve discharge. Am. J. Physiol. 1992; 262: R1006–1014.

    Google Scholar 

  108. S.M. Barman, H.S. Orer and G.L. Gebber: Caudal ventrolateral medullary neuron are elements of the network responsible for 10-Hz rhythm in sympathetic nerve discharge. J. Neurophysiol. 1994; 72: 106–120.

    PubMed  CAS  Google Scholar 

  109. S.M. Barman and G.L. Gebber: Rostral ventrolateral medullary and caudal medullary raphe neurons with activity correlated to the 10-Hz rhythm in sympathetic nerve discharge. J. Neurophysiol. 1992; 68: 1535–1547.

    PubMed  CAS  Google Scholar 

  110. S. Zhong, S.M. Barman and G.L. Gebber: Effects of brain stem lesions on 10-Hz and 2-to 6-Hz rhythms in sympathetic nerve discharge. Am. J. Physiol. 1992; 262: R1015–R1024.

    PubMed  CAS  Google Scholar 

  111. S.M. Barman and G.L. Gebber: Lateral tegmental field neurons of cat medulla: a source of basal activity of ventrolateral medullospinal sympathoexcitatory neurons. J. Neurophysiol. 1987; 57: 1410–1424.

    PubMed  CAS  Google Scholar 

  112. D.L. Brown and P.G. Guyenet: Electrophysiological study of cardiovascular neurons in the rostral ventrolateral medulla in rats. Circ. Res. 1985; 56: 359–369.

    PubMed  CAS  Google Scholar 

  113. R.M. McAllen: Actions of carotid chemoreceptors on subretrofacial bulbospinal neurons in the cat. J. Auton. Nerv. Syst. 1992; 40: 181–188.

    PubMed  CAS  Google Scholar 

  114. S.F. Morrison and D.J. Reis: Reticulospinal vasomotor neurons in the RVL mediate the somatosympathetic reflex. Am. J. Physiol. 1989; 256: R1084–R1097.

    PubMed  CAS  Google Scholar 

  115. Y. Saeki, N. Terui and M. Kumada: Participation of ventrolateral medullary neurons in the renal-sympathetic reflex in rabbits. Jpn. J. Physiol. 1988; 38: 267–281.

    PubMed  CAS  Google Scholar 

  116. L. Salve-Carvalho, J.F.R. Paton, G.E. Goldsmith and K.M. Spyer: The effects of electrical stimulation of lobule IXb of the posterior cerebellar vermis on neurones within the rostral ventrolateral medulla in the anaesthetized cat. J. Auton. Nerv. Syst. 1991; 36: 97–106.

    Google Scholar 

  117. M.-K. Sun: Medullospinal vasomotor neurones mediate hypotension from stimulation of prefrontal cortex. J. Auton. Nerv. Syst. 1992; 38: 209–218.

    PubMed  CAS  Google Scholar 

  118. M.-K. Sun and K.M. Spyer: Responses of rostroventrolateral medulla spinal vasomotor neurones to chemoreceptor stimulation in rats. J. Auton. Nerv. Syst. 1991; 33: 79–84.

    PubMed  CAS  Google Scholar 

  119. M.-K. Sun and K.M. Spyer: GABA-mediated inhibition of medullary vasomotor neurones by area postrema stimulation in rats. J. Physiol. 1991; 436: 669–684.

    PubMed  CAS  Google Scholar 

  120. M.-K. Sun and K.M. Spyer: Nociceptive inputs into rostral ventrolateral medulla spinal vasomotor neurones in rats. J. Physiol. 1991; 436: 685–700.

    PubMed  CAS  Google Scholar 

  121. A.J.M. Verberne and P.G. Guyenet: Midbrain central gray-influence on medullary sympathoexcitatory neurons and the baroreflex in rats. Am J. Physiol. 1992; 263: R24–R33.

    PubMed  CAS  Google Scholar 

  122. M.A. Vizzard, A. Standish and W.S. Ammons: Renal afferent input to the ventrolateral medulla of the cat. Am J. Physiol. 1992; 263: R412–R422.

    PubMed  CAS  Google Scholar 

  123. B.J. Yates, Y. Yamagata and P.S. Bolton: The ventrolateral medulla of the cat mediates vestibulosympathetic reflexes. Brain Res. 1991; 552: 265–272.

    PubMed  CAS  Google Scholar 

  124. B.J. Yates, Y. Goto and P.S. Bolton: Responses of neurons in the rostral ventrolateral medulla of the cat to natural vestibular stimulation. Brain Res. 1993; 601: 255–264.

    PubMed  CAS  Google Scholar 

  125. D.F. Cechetto and S.J. Chen: Hypothalamic and cortical sympathetic responses relay in the medulla of the rat. Am. J. Physiol. 1992; 263: R544–R552.

    PubMed  CAS  Google Scholar 

  126. R.A.L. Dampney: Brain stem mechanisms in the control of arterial pressure. Clin Exp. Hypertens. 1981; 3: 379–393.

    PubMed  CAS  Google Scholar 

  127. A.F. Sved, D.L. Mancini, J.C. Graham, A.M. Schreihofer and G.E. Hoffman: PNMT-containing neurons of the Cl cell group express c-fos in response to changes in baro-receptor input. Am. J. Physiol. 1994; 266: R361–R367.

    PubMed  CAS  Google Scholar 

  128. S.F. Morrison, T. A. Milner and D.J. Reis: Reticulospinal vasomotor neurons of the rat rostral ventrolateral medulla: relationship to sympathetic nerve activity and the C1 adrenergic cell group. J. Neurosci. 1988; 8: 1286–1301.

    PubMed  CAS  Google Scholar 

  129. J.R. Haselton and P.G. Guyenet: Electrophysiological characterization of putative Cl adrenergic neurons in the rat. Neuroscience 1989; 30: 199–214.

    Google Scholar 

  130. M.-K. Sun, J.T. Hackett and P.G. Guyenet: Sympathoexcitatory neurons of rostral ventrolateral medulla exhibit pacemaker properties in the presence of a glutamate-receptor antagonist. Brain Res. 1988; 438: 23–40.

    PubMed  CAS  Google Scholar 

  131. M.-K. Sun, B.S. Young, J.T. Hackett and P.G. Guyenet: Rostral ventrolateral medullary neurons with intrinsic pacemaker properties are not catecholaminergic. Brain Res. 1988; 451: 345–349.

    PubMed  CAS  Google Scholar 

  132. I. M. Kangraga and A.D. Loewy: Whole-cell patch-clamp recordings from visualized bulbospinal neurons in the brainstem slices. Brain Res. 1994; 641: 181–190.

    Google Scholar 

  133. D.J. Reis, C. Ross, A. R. Granata and D.A. Ruggiero: Role of Cl area of rostroven-trolateral medulla in cardiovascular control. In: J.P. Buckley and D.M. Ferrario (Eds.): Brain peptides and catecholamines in cardiovascular regulation. New York: Raven Press, 1987; 1–14.

    Google Scholar 

  134. C.A. Ross, D.A. Ruggiero, T.H. Joh, D.H. Park and D.J. Reis: Rostral ventrolateral medulla: selective projections to the thoracic autonomic cell column from the region containing C1 adrenaline neurons. J. Comp. Neurol. 1984; 228: 168–185.

    PubMed  CAS  Google Scholar 

  135. D.C. Tucker, C.B. Saper, D.A. Ruggiero and D.J. Reis: Organization of central adrenergic pathways: I. Relationships of ventrolateral medullary projections to the hypothalamus and spinal cord. J. Comp. Neurol. 1987; 259: 591–603.

    PubMed  CAS  Google Scholar 

  136. J.W. Poison, G.M. Halliday, R.M. McAllen, M.J. Coleman and R.A.L. Dampney: Ros-trocaudal differences in morphology and neurotransmitter content of cells in the subretrofacial vasomotor nucleus. J. Auton. Nerv. Syst. 1992; 38: 117–138.

    Google Scholar 

  137. D.A. Ruggiero, S.L. Cravo, V. Arango and D.J. Reis: Central control of the circulation by the rostral ventrolateral reticular nucleus-anatomical substrates. In: J. Ciriello, M.M. Caverson and C. Polosa (Eds.): Central Neural Organization of Cardiovascular Control. Progress in Brain Research. Amsterdam: Elsevier, 1989: vol. 81, 49–79.

    Google Scholar 

  138. M.E. Clement and R.B. McCall: Effects of Clonidine on sympathoexcitatory neurons in the rostral ventrolateral medulla. Brain Res. 1991; 550: 353–357.

    PubMed  CAS  Google Scholar 

  139. P.G. Guyenet and J.B. Cabot: Inhibition of sympathetic preganglionic neurons by catecholamines and Clonidine: mediation by an adrenergic receptor. J. Neurosci. 1981; 1: 908–917.

    PubMed  CAS  Google Scholar 

  140. P.G. Guyenet and R.L. Stornetta: Inhibition of sympathetic preganglionic discharges by epinephrine and α-methylepinephrine. Brain Res. 1982; 235: 271–283.

    PubMed  CAS  Google Scholar 

  141. K. Kadzielawa: Inhibition of the activity of sympathetic preganglionic neurones and neurones activated by visceral afferents, by alpha-methylnoradrenaline and endogenous catecholamines. Neuropharmacol. 1983; 22: 3–17.

    CAS  Google Scholar 

  142. A.V. Seybold and R.P. Elde: Receptor autoradiography in thoracic spinal cord: correlation of neurotransmitter binding sites with sympathoadrenal neurons. J. Neurosci. 1984; 4: 2533–2542.

    PubMed  CAS  Google Scholar 

  143. T. Miyazaki, J.H. Coote and N.J. Dun: Excitatory and inhibitory effects of epinephrine on neonatal rat sympathetic preganglionic neurons in vitro. Brain Res. 1989; 497: 108–116.

    PubMed  CAS  Google Scholar 

  144. C. Sangdee and D.N. Franz: Evidence for inhibition of sympathetic preganglionic neurons by bulbospinal epinephrine pathways. Neurosci. Lett. 1983; 37: 167–173.

    PubMed  CAS  Google Scholar 

  145. G.A. Head and P.R.C. Howe: Effects of 6-hydroxydopamine and the PNMT inhibitor LY134046 on pressor responses to stimulation of the subretrofacial nucleus in anaesthetized stroke-prone spontaneously hypertensive rats. J. Auton. Nerv. Syst. 1987; 18: 213–224.

    PubMed  CAS  Google Scholar 

  146. A.F. Sved: PNMT-containing catecholaminergic neurons are not necessarily adrenergic. Brain Res. 1989; 481: 113–118.

    PubMed  CAS  Google Scholar 

  147. T. Kubo and M. Kihara: Evidence of N-methyl-D-aspartate receptor-mediated modulation of the aortic baroreceptor reflex in the rat nucleus tractus solitarii. Neurosci. Lett. 1988; 87: 69–74.

    PubMed  CAS  Google Scholar 

  148. D. Haungfu, L.J. Hwang, T. A. Riley and P.G. Guyenet: Role of serotonin and catecholamines in sympathetic responses evoked by stimulation of rostral medulla. Am. J. Physiol. 1994; 266: R338–R352.

    Google Scholar 

  149. M.K. Bazil and F.J. Gordon: Effect of blockade of spinal NMDA receptors on sym-pathoexcitation and cardiovascular responses produced by cerebral ischemia. Brain Res. 1991; 555: 149–152.

    PubMed  CAS  Google Scholar 

  150. K. Sundara and H. Sapru: NMDA receptors in the intermediolateral column of the spinal cord mediate sympathoexcitatory cardiac responses elicited from the ventrolateral medullary pressor area. Brain Res. 1991; 544: 33–41.

    Google Scholar 

  151. A.R. Granata and H.T. Chang: Relationship of calbindin D-28k with afferent neurons to the rostral ventrolateral medulla in the rat. Brain Res. 1994; 645: 265–277.

    PubMed  CAS  Google Scholar 

  152. T.A. Milner, V.M. Pickel, S.F. Morrison and D.J. Reis: Adrenergic neurons in the rostral ventrolateral medulla: ultrastructure and synaptic relations with other transmitter-identified neurons. In: J. Ciriello, M.M. Caverson and C. Polosa (Eds.): Central Neural Organization of Cardiovascular Control. Progress in Brain Research. Amsterdam: Elsevier, 1989: vol. 81, 29–47.

    Google Scholar 

  153. M.-K. Sun and P.G. Guyenet: Arterial baroreceptor and vagal inputs to sympathoexcitatory neurons in rat medulla. Am. J. Physiol. 1986; 252: R699–R709.

    Google Scholar 

  154. M.-K. Sun and P.G. Guyenet: Hypothalamic glutamatergic input to medullary sympathoexcitatory neurons in rats. Am. J. Physiol. 1986; 251: R798–R810.

    PubMed  CAS  Google Scholar 

  155. V. Kapoor, D. Nakahara, R.J. Blood and J.P. Chalmers: Preferential release of neu-roactive amino acids from the ventrolateral medulla of the rat in vivo as measured by microdialysis. Neuroscience 1990; 37: 187–191.

    Google Scholar 

  156. V. Kapoor, V.J. Minson and J.P. Chalmers: Ventral medulla stimulation increases blood pressure and spinal cord amino acid release. NeuroReport 1992; 3: 55–58.

    Google Scholar 

  157. T.P. Abrahams, P.J. Hornby, K. Chen, A.M. da Silva and R.A. Gills: The non-NMDA subtype of excitatory amino acid receptor plays the major role in control of cardiovascular function by the subretrofacial nucleus in cats. J. Pharmacol. Exp. Therap. 1994; 270: 424–432.

    CAS  Google Scholar 

  158. Z.J. Gieroba and W.W. Blessing: Blockade of excitatory amino acid receptors in the ventrolateral medulla does not abolish the cardiovascular actions of L-glutamate. Naunyn Schmied. Arch. Pharmacol. 1993; 347: 66–72.

    CAS  Google Scholar 

  159. P.G. Guyenet, T.M. Filtz and S.R. Donaldson: Role of excitatory amino acids in rat vagal and sympathetic baroreflexes. Brain Res. 1987; 407: 272–284.

    PubMed  CAS  Google Scholar 

  160. R.A. Gills, I.J. Namath, C. Easington, T.P. Abrahams, A. Guidotti, J.A. Quest, P. Hamosh and A.M. Taveira-daSilva: Drug interaction with gamma-aminobutyric acid/benzodiazepine receptors at the ventral surface of the medulla results in pronounced changes in cardiorespiratory activity. J. Pharmacol. Exp. Therap. 1989; 248: 863–870.

    Google Scholar 

  161. R.A.L. Dampney, W.W. Blessing and E. Tan: Origin of tonic GABAergic inputs to vasopressor neurons in the subretrofacial nucleus of the rabbit. J. Auton. Nerv. Syst. 1988; 24: 227–239.

    PubMed  CAS  Google Scholar 

  162. T. Kubo and M. Kihara: Studies on GABAergic mechanisms responsible for cardiovascular regulation in the rostral ventrolateral medulla of the rat. Arch. Int. Phar-macodyn. Ther. 1987; 285: 277–287.

    CAS  Google Scholar 

  163. M.-K. Sun and P.G. Guyenet: GABA-mediated baroreceptor inhibition of reticulospinal neurons. Am. J. Physiol. 1985; 249: R672–R680.

    PubMed  CAS  Google Scholar 

  164. R.N. Willette, P.P. Barcas, A.J. Krieger and H.N. Sapru: Endogenous GABAergic mechanisms in the medulla and the regulation of blood pressure. J. Pharmacol. Exp. Therap. 1984; 230: 34–39.

    CAS  Google Scholar 

  165. A.J.M. Verberne and P.G. Guyenet: Medullary pathway of the Bezold-Jarisch reflex in the rat. Am. J. Physiol. 1992; 263: R1190–R1202.

    Google Scholar 

  166. M. Amano and T. Kubo: Involvement of both GABAA and GABAB receptors in tonic inhibitory control of blood pressure at the rostral ventrolateral medulla of the rat. Naunyn Schmied. Arch. Pharmacol. 1993; 348: 146–153.

    CAS  Google Scholar 

  167. Y.-W. Li and P.G. Guyenet: Neuronal inhibition by a GABAB receptor agonist in the rostral ventrolateral medulla of the rat. Am. J. Physiol. 1995; 268: R428–R437.

    PubMed  CAS  Google Scholar 

  168. R.B. McCall and S.J. Humphrey: Evidence for GABA mediation of sympathetic inhibition evoked from midline medullary depressor sites. Brain Res. 1985; 339: 356–361.

    PubMed  CAS  Google Scholar 

  169. D.A. Ruggiero, M.P. Meeley, M. Anwar and D.J. Reis: Newly identified GABAergic neurons in regions of the ventrolateral medulla which regulate blood pressure. Brain Res. 1985; 339: 171–177.

    PubMed  CAS  Google Scholar 

  170. M. Kihara and T. Kubo: Immunocytochemical localization of GABA containing neurons in the ventrolateral medulla oblongata of the rat. Histochem. 1989; 91: 309–314.

    CAS  Google Scholar 

  171. H.W.M. Steinbusch: Distribution of serotonin-immunoreactivity in the central nervous system of the rat-cell bodies and terminals. Neuroscience 1981; 6: 557–618.

    Google Scholar 

  172. K.B. Thor, A. Blitz-Siebert and C.J. Helke: Discrete localization of high-density 5-HT1A binding sites in the midline raphe and parapyramidal region of the ventral medulla oblongata of the rat. Neurosci. Lett. 1990; 108: 249–254.

    PubMed  CAS  Google Scholar 

  173. R.A. Gills, K.J. Hill, J.S. Kirby, J.A. Quest, P. Hamosh, W.P. Norman and K.J. Kellar: Effect of activation of central nervous system serotonin1A receptors on cardiorespiratory function. J. Pharmacol. Exp. Therap. 1989; 248: 851–857.

    Google Scholar 

  174. T.A. Lovick: Systemic and regional haemodynamic responses to microinjection of 5-HT agonists in the rostral ventrolateral medulla in the rat. Neurosci. Lett. 1989; 107: 157–161.

    PubMed  CAS  Google Scholar 

  175. A. Nosjean and P.G. Guyenet: Role of the ventrolateral medulla in the sympatholytic effect of 8-OH DPAT in rats. Am. J. Physiol. 1991; 260: R600–R609.

    PubMed  CAS  Google Scholar 

  176. A.K. Mandai, K.J. Kellar, and R.A. Gills: The subretrofacial nucleus: a major site of action for the cardiovascular effects of 5-HT1A and 5-HT2 agonist drugs. In: J.R. Fozard and P.R. Saxena (Eds.): Serotonin: Molecular Biology, Receptors and Functional Effects, Birkhäuser Verlag, Basel, 1991; 289–299.

    Google Scholar 

  177. K.A. King and J.R. Holtman: Characterization of the effects of activation of ventral medullary serotonin receptor subtypes on cardiovascular activity and respiratory motor outflow to the diaphragm and larynx. J. Pharmacol. Exp Therap. 1990; 252: 665–674.

    CAS  Google Scholar 

  178. M. Laubie, M. Drouillat, H. Dabire, C. Cherqui and H. Schmitt: Ventrolateral medullary pressor area: site of hypotensive and sympatho-inhibitory effects of 8-OH DPAT in anesthetized dogs. Eur. J. Pharmacol. 1989; 160: 385–394.

    PubMed  CAS  Google Scholar 

  179. M.E. Clement and R.B. McCall: Studies on the site and mechanism of the sympatholytic action of 8-OH DPAT. Brain Research 1990; 525: 232–241.

    Google Scholar 

  180. D.I. Lewis and J.H. Coote: The actions of 5-hydroxytryptamine on the membrane of putative sympatho-excitatory neurones in the rostral ventrolateral medulla of the adult rat in vitro. Brain Research 1993; 609: 103–109.

    Google Scholar 

  181. W.H. Wang and T.A. Lovick: Inhibitory serotonergic effects on rostral ventrolateral medullary neurons. Pflugers Arch. 1992; 422: 93–97.

    PubMed  CAS  Google Scholar 

  182. E.J. Mah and K.A. Cunningham: Electrophysiological studies of the serotonergic (5-HT) modulation of glutamate-evoked activity in amygdala neurons. Neurosci. Abst. 1993; 19: 1554.

    Google Scholar 

  183. A.K. Mandal K.J. Kellar, W.P. Norman and R.A. Gills: Stimulation of serotonin2 receptors in the ventrolateral medulla of the cat results in nonuniform increases in sympathetic outflow. Circ. Res. 1990; 67: 1267–1280.

    PubMed  CAS  Google Scholar 

  184. C. Vayssettes-Courchay, F. Bouysset, T.J. Verbeuren, M. Laubie and H. Schmitt: Qui-pazine-induced hypotension in anaesthetized cats is mediated by central and peripheral 5-HT2 receptors: role of the ventrolateral pressor area. Europ. J. Pharmacol. 1991; 192: 389–395.

    CAS  Google Scholar 

  185. M.E. Clement and R.B. McCall: Studies on the site and mechanism of the sympa-thoexcitatory action of 5-HT2 agonists. Brain Res. 1990; 515: 299–302.

    PubMed  CAS  Google Scholar 

  186. Y. Yasui, D.F. Cechetto and C.B. Saper: Evidence for a cholinergic projection from the pedunculopontine tegmental nucleus to the rostral ventrolateral medulla in the rat. Brain Res. 1990; 517: 19–24.

    PubMed  CAS  Google Scholar 

  187. S.B. Lee, S.Y. Kim and K.W. Sung: Cardiovascular regulation by cholinergic mechanisms in rostral ventrolateral medulla of spontaneously hypertensive rats. Eur. J. Pharmacol. 1991; 205: 117–123.

    PubMed  CAS  Google Scholar 

  188. K. Sundaram and J. Sapru: Cholinergic nerve terminals in the ventrolateral medullary pressor area: pharmacological evidence. J. Auton. Nerv. Syst. 1988; 22: 221–228.

    PubMed  CAS  Google Scholar 

  189. R.N. Willette, S. Punnen, A.J. Krieger and H.N. Sapru: Cardiovascular control by cholinergic mechanisms in the rostral ventrolateral medulla. J. Pharmacol. Exp. Therap. 1984; 231:457–463.

    CAS  Google Scholar 

  190. R. Giuliano, D.A. Ruggiero, S.F. Morrison, P. Ernsberger and D.J. Reis: Cholinergic regulation of arterial pressure by the Cl area of the rostral ventrolateral medulla. J. Neurosci. 1989; 9: 923–942.

    PubMed  CAS  Google Scholar 

  191. K. Sundaram and H. Sapru: Cholinergic nerve terminals in the ventrolateral medullary pressor area: pharmacological evidence. J. Auton. Nerv. Syst. 1988; 22: 221–228.

    PubMed  CAS  Google Scholar 

  192. H. Sapru: Cholinergic mechanisms subserving cardiovascular function in the medulla and spinal cord. Prog. Brain Res. 1989; 81: 171–179.

    PubMed  CAS  Google Scholar 

  193. S.P. Arneric, R. Giuliano, P. Ernsberger, M.D. Underwood and D.J. Reis: Synthesis, release and receptor binding of acetylcholine in the Cl area of the rostral ventrolateral medulla: contributions in regulating arterial pressure. Brain Res. 1990; 511: 98–112.

    PubMed  CAS  Google Scholar 

  194. H.S. Orer, S.M. Barman, S. Zhong and G.L. Gebber: A modulatory role of central cholinergic transmission in control of the 10-Hz rhythm in sympathetic nerve discharge. Brain Res. 1994; 661: 283–288.

    PubMed  CAS  Google Scholar 

  195. D.A. Morilak, P. Somogyi, R.A.J. McIlhinney and J.P. Chalmers: An enkephalin-con-taining pathway from nucleus tractus solitarius to the pressor area of the rostral ventrolateral medulla of the rabbit. Neuroscience 1989; 31: 187–194.

    Google Scholar 

  196. S. Punnen, R. Willette, A.J. Krieger and H.N. Sapru: Cardiovascular response to injections of enkephalin in the pressor area of the ventrolateral medulla. Neuropharma-col. 1984, 23: 939–946.

    Google Scholar 

  197. H.N. Sapru, S. Punnen and R.N. Willette: Role of enkephalins in ventrolateral medullary control of blood pressure. In: J.P. Buckley and C.M. Ferrano (Eds.): Brain Peptides and Catecholamines in Cardiovascular Regulation. New York: Raven, 1987; 153–167.

    Google Scholar 

  198. M.-K. Sun and P.G. Guyenet: Effects of vasopressin and other neuropeptides on rostral medullary sympathoexcitatory neurons in vitro. Brain Res. 1989; 492: 261–270.

    PubMed  CAS  Google Scholar 

  199. R.W. Urbanski, J. Murugaian, A. Krieger and H.N. Sapru: Cardiovascular effects of substance P receptor stimulation in the ventrolateral medullary pressor and depressor areas. Brain. Res. 1989; 491: 383–389.

    PubMed  CAS  Google Scholar 

  200. R.E. Gomez, M.A. Cannata, T.A. Milner, M. Anwar, D.J. Reis and D.A. Ruggiero: Vasopressinergic mechanisms in the nucleus reticularis lateralis in blood pressure control. Brain Res. 1993; 604: 90–105.

    PubMed  CAS  Google Scholar 

  201. A.M. Allen, S.Y. Chai, P.M. Sexton, S.J. Lewis, A.J.M. Verberne, B. Jarrott, W.J. Louis, J. Clevers, M.J. McKinley, G. Paxinos and F.A.O. Mendelsohn: Angiotensin II receptors and angiotensin converting enzyme in the medulla oblongata. Hypertension 1987; 9 Suppl.: III198–III205.

    Google Scholar 

  202. A.M. Allen, R.A.L. Dampney and F.A.O. Mendelsohn: Angiotensin receptor binding and pressor effects in cat subretrofacial nucleus. Am J. Physiol. 1988; 255: H1011–H1017.

    PubMed  CAS  Google Scholar 

  203. R.W. Lind, L.W. Swanson and D. Ganten: Organization of angiotensin immunoreac-tive cells and fibers in the rat central nervous system. Neuroendocrinology 1985; 40: 2–24.

    Google Scholar 

  204. G.P. Aldred, S.Y. Chai, K.-F. Song, J.-L Zhuo, D. MacGregor and F.A.O. Mendelsohn: Distribution of angiotensin receptor subtypes in the rabbit brain. Regul. Peptides 1993; 21: 119–130.

    Google Scholar 

  205. K.-F. Song, A.M. Allen, G. Paxinos and F.A.O. Mendelsohn: Mapping of angiotensin receptor subtype heterogeneity in rat brain. J. Comp. Neurol. 1992; 316: 467–484.

    PubMed  CAS  Google Scholar 

  206. S. Sasaki and R.A. Dampney: Tonic cardiovascular effects of angiotensin II in the ventrolateral medulla. Hypertension 1990; 15: 274–283.

    Google Scholar 

  207. H. Muratani, C.M. Ferrano and D.B. Averill: Ventrolateral medulla in spontaneously hypertensive rats-role of angiotensin II. Am J. Physiol. 1993; 264: R388–R395.

    PubMed  CAS  Google Scholar 

  208. S. Sasaki, Y.W. Li and R.A. Dampney: Comparison of the pressor effects of angiotensin II and III in the rostral ventrolateral medulla. Brain Res. 1993; 600: 335–338.

    PubMed  CAS  Google Scholar 

  209. Y.-W. Li, J.W. Poison and R.A. Dampney: Angiotensin II excites vasomotor neurons but not respiratory neurons in the rostral and caudal ventrolateral medulla. Brain Res. 1992; 577: 161–164.

    PubMed  CAS  Google Scholar 

  210. Y.-W. Li and P.G. Guyenet: Neuronal excitation by angiotensin II in the rostral ventrolateral medulla of the rat in vitro. Am J. Physiol. 1995; 268: R272–R277.

    PubMed  CAS  Google Scholar 

  211. R.M. Bowker, K.N. Westlund, M.C. Sullivan, J.F. Wilber and J.D. Coulter: Descending serotonergic, peptidergic and cholinergic pathways from the raphe nuclei: a multiple transmitter complex. Brain Res. 1983; 288: 33–48.

    PubMed  CAS  Google Scholar 

  212. N.M. Appel, M.W. Wessendorf and R.P. Elde: Thyrotropin-releasing hormone in spinal cord: coexistence with serotonin and with substance P in fibers and terminals apposing identified preganglionic sympathetic neurons. Brain Res. 1987; 415: 137–143.

    PubMed  CAS  Google Scholar 

  213. D.E. Millhorn, T. Hokfelt, K. Serogy, W. Oertel, A.A.J. Verhofstad and J.-Y. Wu: Immu-nohistochemical evidence for colocalization of g-aminobutyric acid and serotonin in neurons of the ventral medulla oblongata projecting to the spinal cord. Brain Res. 1987; 410:179–185.

    PubMed  CAS  Google Scholar 

  214. C.J. Helke, K.B. Thor and D.A. Sasek: Chemical neuroanatomy of the parapyrami-dal region of the ventral medulla in the rat. In: J. Ciriello, M.M. Caverson and C. Polosa (Eds.): Central Neural Organization of Cardiovascular Control. Progress in Brain Research. Amsterdam: Elsevier, 1989: vol. 81, 177–188.

    Google Scholar 

  215. P.R.C. Howe, D.M. Kuhn, J.B. Minson, B.H. Stead and J.P. Chalmers: Evidence for a bulbospinal serotonergic pressor pathway in the rat brain. Brain Res. 1983; 270: 29–36.

    PubMed  CAS  Google Scholar 

  216. G.A. Head and P.R.C. Howe: Effects of 6-hydroxydopamine and the PNMT inhibitor LY134046 on pressor responses to stimulation of the subretrofacial nucleus in anaesthetized stroke-prone spontaneously hypertensive rats. J. Auton. Nerv. Syst. 1987; 18: 213–224.

    PubMed  CAS  Google Scholar 

  217. J.B. Minson, J.P. Chalmers, A.C. Caon and B. Renaud: Separate areas of rat medulla oblongata with populations of serotonin-and adrenaline-containing neurons alter blood pressure after L-glutamate stimulation. J. Auton. Nerv. Syst. 1987; 19: 39–50.

    PubMed  CAS  Google Scholar 

  218. M.W. Wessendorf and R. Elde: The coexistence of serotonin-and substance P-like immunoreactivity in the spinal cord of the rat as shown by immunofluorescent double labeling. J. Neurosci. 1987; 7: 3252–3263.

    Google Scholar 

  219. C.J. Helke, J.J. Neil, V.J. Massari and A.D. Loewy: Substance P neurons project from the ventral medulla to the intermediolateral cell column in the rat. Brain Res. 1982; 243: 147–152.

    PubMed  CAS  Google Scholar 

  220. B.M. Davis, J.E. Krause, J.F. McKelry and J.B. Cabot: Effects of spinal lesions on substance P levels in the rat sympathetic preganglionic cell column: evidence for local spinal regulation. Neurosci. 1984; 13: 1311–1326.

    CAS  Google Scholar 

  221. S.B. Backman and J.L. Henry: Effects of substance P and thyrotropin-releasing hormone on sympathetic preganglionic neurones in the thoracic intermediolateral nucleus of the cat. Can. J. Physiol. Pharmacol. 1983; 62: 248–251.

    Google Scholar 

  222. M.P. Gilbey, K.E. McKenna and L.P. Schramm: Effects of substance P on sympathetic preganglionic neurones. Neurosci Lett. 1983; 41: 157–159.

    PubMed  CAS  Google Scholar 

  223. S.B. Backman, H. Sequeiramartinho and J.L. Henry: Adrenal versus nonadrenal sympathetic preganglionic neurones in the lower thoracic intermediolateral nucleus of the cat: effects of serotonin, substance P, and thyrotropin-releasing hormone. Can. J. Physiol. Pharmacol. 1990; 68: 1108–1118.

    PubMed  CAS  Google Scholar 

  224. N.J. Dun and N. Mo: In vitro effects of substance P on neonatal rat sympathetic preganglionic neurones. J. Physiol. 1988; 399: 321–334.

    PubMed  CAS  Google Scholar 

  225. C.J. Helke, E.T. Phillip and J.T. ONeil: Regional peripheral and CNS hemodynamic effects of intrathecal administration of a substance P receptor agonist. J. Auton. Nerv. Syst. 1987; 21: 1–7.

    PubMed  CAS  Google Scholar 

  226. A.P.M. Yusof and J.H. Coote: The action of a substance P antagonist on sympathetic nerve activity in the rat. Neurosci Lett. 1987; 75: 329–333.

    PubMed  CAS  Google Scholar 

  227. J.R. Keeler, C.G. Charlton and C.J. Helke: Cardiovascular effects of spinal cord substance P: studies with a stable receptor agonist. J. Pharmacol. Exp.Therap. 1985; 233: 755–760.

    CAS  Google Scholar 

  228. K. Yashpal, S. Gauthier and J.L. Henry: Substance P given intrathecally at the spinal T9 level increases arterial pressure and heart rate in the rat. J. Auton. Nerv. Syst. 1987; 18: 93–103.

    PubMed  CAS  Google Scholar 

  229. A.D. Loewy and W.B. Sawyer: Substance P antagonist inhibit vasomotor responses elicited from ventral medulla in rat. Brain Res. 1982; 245: 379–383.

    PubMed  CAS  Google Scholar 

  230. Y. Takano, J.E. Martin, S.E. Leeman and A.D. Loewy: Substance P immunoreactiv-ity released from spinal cord after kainic acid excitation of the ventral medulla oblongata: a correlation with increases in blood pressure. Brain Res. 1984; 291: 168–172.

    PubMed  CAS  Google Scholar 

  231. J.R. Keeler and C.J. Helke: Spinal cord substance P mediates bicuculline-induced activation of cardiovascular responses from the ventral medulla. J. Auton. Nerv. Syst. 1985; 13: 19–33.

    PubMed  CAS  Google Scholar 

  232. T. Hokfelt, S. Vincent, L. Hellsten, et al.: Immunohistochemical evidence for a “neurotoxic” action of (D-Pro2,D-Trp7.9) substance P, an analogue with substance P antagonistic activity. Acta Physiol. Scand. 9181; 113: 571–573.

    Google Scholar 

  233. C. Post, J.-A. Karlsson, F.G. Butterworth, C.G.A. Persson and G.R. Strichartz: Local anaesthetic effects of substance P (SP) analogues in vitro. In: C.C. Jordan and P. Oehme (Eds.): Substance P: metabolism and biological activity. London, Taylor and Francis, 1985; 227–241.

    Google Scholar 

  234. B.F. Cox, R.L. Schelper, F.M. Faraci and M.J. Brody: Autonomic, sensory, and motor dysfunction following intrathecal administration of three substance P antagonists. Exp. Brain Res. 1988; 70: 61–72.

    PubMed  CAS  Google Scholar 

  235. C.J. Helke and E.T. Phillips: Substance P antagonist-induced spinal cord vasoconstriction: effects of thyrotropin-releasing hormone and substance P agonists. Peptides 1988; 9: 1307–1315.

    Google Scholar 

  236. D.N. Franz, B.D. Hare and K.L. McCloskey: Spinal sympathetic neurons: possible sites of opiate-withdrawal suppression by Clonidine. Science 1982; 215: 11643–11645.

    Google Scholar 

  237. C.W. Xie, J. Tang and J.S. Han: Clonidine stimulates the release of dynorphin in the spinal cord of the rat: a possible mechanism for its depressor effects. Neurosci Lett. 1986; 65: 224–228.

    PubMed  CAS  Google Scholar 

  238. K.E. McKenna and L.P. Schramm: Mechanisms mediating the silent period. Studies in the isolated spinal cord of the neonatal rat. Brain Res. 1985; 329: 233–240.

    PubMed  CAS  Google Scholar 

  239. K. Amendt, J. Czachurski, K. Dembowsky and H. Seller: Bulbospinal projections to the intermediolateral cell column: a neuroanatomical study. J. Auton. Nerv. Syst. 1979; 1:103–117.

    PubMed  CAS  Google Scholar 

  240. S.C. Wang and S.W. Ranson: Autonomic responses to electrical stimulation of the lower brain stem. J Comp Neurol. 1939; 71: 437–455.

    Google Scholar 

  241. R.B. McCall and L.T. Harris: Role of serotonin and serotonin receptor subtypes in the central regulation of blood pressure. In: R.H. Rech and G.A. Gudelsky (Eds.): 5-HT agonists as psychoactive drugs, Ann Arbor: NPP Books, 1988; 1433–1162.

    Google Scholar 

  242. R.B. McCall: Role of serotonin in the regulation of sympathetic nerve discharge. In P. Saxena, D.I. Wallis, W. Wouters and P. Bevan (Eds.): Cardiovascular Pharmacology of 5-hydroxytryptamine: prospective therapeutic applications. Dordrecht: Kluwer Academic Publishers, 1990, 271–283.

    Google Scholar 

  243. J.R. Adair, B.L. Hamilton, K.A. Scappaticci, C.J. Helke and R.A. Gills: Cardiovascular responses to electrical stimulation of the medullary raphe area of the cat. Brain Res. 1977; 128: 141–145.

    PubMed  CAS  Google Scholar 

  244. R.B. McCall: Evidence for a serotonergically mediated sympathoexcitatory response to stimulation of medullary raphe nuclei. Brain Res. 1984; 311: 131–139.

    PubMed  CAS  Google Scholar 

  245. S.E. Morrison and G.L. Gebber: Classification of raphe neurons with cardiac-related activity. Am. J. Physiol. 1982; 243: R49–R59.

    PubMed  CAS  Google Scholar 

  246. S.F. Morrison and G.L. Gebber: Raphe neurons with sympathetic-related activity: baroreceptor responses and spinal connections. Am. J. Physiol. 1984; 246: R338–R348.

    PubMed  CAS  Google Scholar 

  247. M.D. Hirsch and C.J. Helke: Bulbospinal thyrotropin-releasing hormone projections to the intermediolateral cell column: a double fluorescence immunohistochemical-retrograde tracing study in the rat. Neuroscience 1988; 25: 625–638.

    Google Scholar 

  248. R.B. Lynn, M.S. Kreider and R.R. Miselis: Thyrotropin-releasing hormone-immu-noreactive projections to the dorsal motor nucleus and the nucleus of the solitary tract of the rat. J. Comp. Neurol. 1991; 311: 271–288.

    PubMed  CAS  Google Scholar 

  249. S.F. Morrison: Raphe pallidus excites a unique class of sympathetic preganglionic neurons. Am. J. Physiol. 1993; 265: R82–R89.

    PubMed  CAS  Google Scholar 

  250. G.K. Aghajanian and R.Y. Wang: Physiology and pharmacology of central serotonergic neurons. In: M.A. Lipton, A. DiMascio and K.F. Killam (Eds.): Psychophar-macology: A generation of progress, Raven Press, New York, 1978; 171–183.

    Google Scholar 

  251. W.C. DeGroat and R.W. Ryall: An excitatory action of 5-hydroxytryptamine on sympathetic preganglionic neurons. Exp Brain Research 1967; 3: 299–305.

    Google Scholar 

  252. D.I. Lewis, E. Sermasi and J.H. Coote: Excitatory and indirect inhibitory actions of 5-hydroxytryptamine on sympathetic preganglionic neurones in the neonate rat spinal cord in vitro. Brain Res. 1993; 610: 267–275.

    PubMed  CAS  Google Scholar 

  253. K.B. Thor, S. Mickolaus and C.J. Helke: Autoradiographic localization of 5-hydroxytryptamine1A, 5-hydroxytryptamine1B, and 5-hydroxytryptaminelC/2 binding sites in the rat spinal cord. Neuroscience 1993; 55: 235–252.

    Google Scholar 

  254. A.P.M. Yusoff and J.H. Coote: Excitatory and inhibitory actions of intrathecally administered 5-hydroxytryptamine on sympathetic nerve activity in the rat. J. Auton. Nerv. Syst. 1988; 222: 229–236.

    Google Scholar 

  255. R.B. McCall and S.J. Humphrey: Involvement of serotonin in the central regulation of blood pressure: evidence for a facilitating effect on sympathetic nerve activity. J. Pharmacol. Exp.Therap. 1982; 222: 94–102.

    CAS  Google Scholar 

  256. R.B. McCall and L.T. Harris: Characterization of the central sympathoinhibitory action of ketanserin. J. Pharmacol. Exp.Therap. 1987; 241: 736–740.

    CAS  Google Scholar 

  257. A.G. Ramage: The effects of ketanserin, methysergide and LY 53857 on sympathetic nerve activity. Eur. J. Pharmacol. 1985; 113: 295–303.

    PubMed  CAS  Google Scholar 

  258. A.G. Ramage: Are drugs that act both on serotonin receptors and α1-adrenoceptors more potent hypotensive agents than those that act only on α1adrenoceptors? J. Cardiovasc. Pharmacol. 1988; 11: S30–S34.

    PubMed  Google Scholar 

  259. R.B. McCall, M.E. Clement and L.T. Harris: Studies on the mechanism of the sympatholytic effect of 8-OH DPAT: lack of correlation between inhibition of serotonin neuronal firing and sympathetic activity. Brain Res. 1989; 501: 73–83.

    PubMed  CAS  Google Scholar 

  260. K.B. Thor, A. Blitz-Siebert and C.J. Helke: Autoradiographic localization of 5-HT1 binding sites in the medulla oblongata of the rat. Synapse 1992; 10: 185–205.

    Google Scholar 

  261. B. Valenta and E. Singer: Hypotensive effects of 8-hydroxy-2-(di-n-propyl-amino) tetralin and 5-methylurapidil following stereotaxic microinjection into the ventral medulla of the rat. Br. J. Pharmacol. 1990; 99: 713–720.

    PubMed  CAS  Google Scholar 

  262. C.I. Helke, C.H. McDonald and E.T. Philips: Hypotensive effects of 5-HT(1A) receptor activation-ventral medullary sites and mechanisms of action in the rat. J. Auton. Nerv. Syst. 1993; 42: 177–188.

    PubMed  CAS  Google Scholar 

  263. A.G. Ramage and S.J. Wilkinson: Evidence that different regional sympathetic outflows vary in their sensitivity to the sympathoinhibitory actions of putative 5-HT1A and α2 adrenoceptor agonists in anaesthetized cats. Br. J. Pharmacol. 1989; 98: 1157–1164.

    PubMed  CAS  Google Scholar 

  264. A.G. Ramage, M.E. Clement and R.B. McCall: 8-OH DPAT-induced inhibition of renal sympathetic nerve activity and serotonin neuronal firing. Eur. J. Pharmacol. 1992; 219:165–167.

    PubMed  CAS  Google Scholar 

  265. H.S. Orer, M.E. Clement, S.M. Barman, S. Zhong, G.L. Gebber and R.B. McCall: The role of serotonergic neurons in the maintenance of the 10-Hz rhythm in sympathetic nerve discharge. Am. J. Physiol. 1995; in press.

    Google Scholar 

  266. C.E. Byrum, R. Stornetta and P.G. Guyenet: Electrophysiological properties of spi-nally-projecting A5 noradrenergic neurons. Brain Res. 1984; 303: 15–29.

    PubMed  CAS  Google Scholar 

  267. C.E. Byrum and P.G. Guyenet: Afferent and efferent connections of the A5 noradrenergic cell group in the rat. J. Comp. Neurol. 1987; 261: 529–542.

    PubMed  CAS  Google Scholar 

  268. P.G. Guyenet: Central noradrenergic neurons: the autonomic connection. Prog. Brain Res. 1991; 88: 365–380.

    PubMed  CAS  Google Scholar 

  269. M.L. Woodruff, R.H. Baisden, D.L. Whittington and J.E. Kelly. Inputs to the pontine A5 noradrenergic cell group: a horseradish peroxidase study. Exp. Neurol. 1986; 94: 762–778.

    Google Scholar 

  270. D. Huangfu, N. Koshiya and P.G. Guyenet: A5 noradrenergic unit activity and sympathetic nerve discharge in rats. Am J. Physiol. 1991; 267: R393–R402.

    Google Scholar 

  271. D.L. Rosin, D. Zheng, R.L. Stornetta, F.R. Norton, T. Riley, M.D. Okusa, P.G. Guyenet and K.R. Lynch: Immunohistochemical localization of alpha 2A-adrenergic receptors in catecholaminergic and other brainstem neurons in the rat. Neuroscience 1993; 56: 139–155.

    Google Scholar 

  272. P.G. Guyenet, R.L. Stornetta, T. Riley, F.R. Norton, D.L. Rosin and K.R. Lynch: Alpha 2A-adrenergic receptors are present in lower brainstem catecholaminergic and serotonergic neurons innervating spinal cord. Brain Res. 1994; 638: 285–294.

    PubMed  CAS  Google Scholar 

  273. G.K. Aghajanian, J.M. Cedarbaum and R.Y. Wang: Evidence for norepinephrine-mediated collateral inhibition of locus coeruleus neurons. Brain Res. 1977; 136: 570–577.

    PubMed  CAS  Google Scholar 

  274. B. Astier and G. Aston-Jones: Electrophysiological evidence for medullary adrenergic inhibition of rat locus coeruleus neurons. Soc. Neurosci. Abstr. 1989, 15: 1012.

    Google Scholar 

  275. R. Andrade and G.K. Aghajanian: Single cell activity in the noradrenergic A5 region: Response to drugs and peripheral manipulations of blood pressure. Brain Res. 1982; 242: 125–135.

    PubMed  CAS  Google Scholar 

  276. P.G. Guyenet: Baroreceptor-mediated inhibition of A5 noradrenergic neurons. Brain Res. 1984; 303: 31–40.

    PubMed  CAS  Google Scholar 

  277. N. Koshiya and P.G. Guyenet: A5 noradrenergic neurons and the carotid sympathetic chemoreflex. Am. J. Physiol. 1994; 267: R519–R526.

    PubMed  CAS  Google Scholar 

  278. A.D. Loewy et al.: Electrophysiological evidence that the A5 cateeholaminergie cell group is a vasomotor center. Brain Res. 1979; 178: 196–200.

    PubMed  CAS  Google Scholar 

  279. J.J. Neil and A.D. Loewy: Decreases in blood pressure in response to L-glutamate microinjections in the A5 catecholamine cell group. Brain Res. 1982; 241: 271–278.

    PubMed  CAS  Google Scholar 

  280. A.D. Loewy, L. Marson, D. Parkinson, M.A. Perry and W.B. Sawyer: Descending noradrenergic pathways involved in the A5 depressor response. Brain Res. 1986; 386: 313–324.

    PubMed  CAS  Google Scholar 

  281. M.L. Woodruff, R.H. Baisden and D.L. Whittington: Effects of electrical stimulation of the pontine A5 cell group on blood pressure and heart rate in the rabbit. Brain Res. 1986; 379: 10–23.

    PubMed  CAS  Google Scholar 

  282. K.A. Stanek, J.J. Neil, W.B. Sawyer and A.D. Loewy: Changes in regional blood flow and cardiac output after L-glutamate stimulation of A5 cell group. Am. J. Physiol. 1984; 246: H44–H51.

    PubMed  CAS  Google Scholar 

  283. D. Huangfu, L.J. Hwang, T.A. Riley and P.G. Guyenet: Splanchnic nerve response to A5 area stimulation in rats. Am. J. Physiol. 1992; 263: R437–R446.

    PubMed  CAS  Google Scholar 

  284. R.L. Stornetta, P.G. Guyenet and R. McCarty: Modulation of autonomic outflow by pontine A5 noradrenergic neurons. In: K. Nakamura (Ed.): Brain and blood pressure control, Utrecht, Elsevier Science Publishers, 1986; 23–28.

    Google Scholar 

  285. J.H. Coote, V.H. Macleod, S. Fleetwood-Walker and M.P. Gilbey: The response of individual sympathetic preganglionic neurones of microelectrophoretically applied endogenous monoamines. Brain Res. 1981; 215: 1135–1145.

    Google Scholar 

  286. R.B. McCall and M.R. Schuette: Evidence for an alpha-1 receptor-mediated central sympathoinhibitory action of ketanserin. J. Pharmacol. Exp.Therap. 1984; 228: 704–710.

    CAS  Google Scholar 

  287. R.B. McCall and S.J. Humphrey: Evidence for a central depressor action of postsynaptic alpha-1 adrenergic antagonists. J. Auton. Nerv. Syst. 1981; 3: 9–23.

    PubMed  CAS  Google Scholar 

  288. G.K. Aghajanian and M.A. Rogawski: The physiological role of a-adrenoceptors in the CNS: new concepts from single-cell studies.Trends in Pharmacol. Sciences 1983; 4: 315–317.

    Google Scholar 

  289. H. Shi, D.I. Lewis and J.H. Coote: Effects of activating spinal alpha-adrenorecep-tors on sympathetic nerve activity in the rat. J. Auton. Nerv. Syst. 1988; 23: 69–78.

    PubMed  CAS  Google Scholar 

  290. B.D. Hare, R.J. Neuymayr and D.N. Franz: Opposite effects of L-dopa and 5-HTP on spinal sympathetic reflexes. Nature 1972; 239: 336–337.

    Google Scholar 

  291. R.C. Ma and N.J. Dun: Norepinephrine depolarizes lateral horn cells of neonatal rat spinal cord in vitro. Neurosci Lett. 1985; 60: 163–168.

    PubMed  CAS  Google Scholar 

  292. M. Yoshimura, C. Polosa and S. Nishi: Noradrenaline modifies sympathetic preganglionic neuron spike and afterpotential. Brain Res. 1986; 362: 370–374.

    PubMed  CAS  Google Scholar 

  293. M. Yoshimura, C. Polosa and S. Nishi: Noradrenaline induces rhythmic bursting in sympathetic preganglionic neurons. Brain Res. 1987; 420: 147–151.

    PubMed  CAS  Google Scholar 

  294. M. Yoshimura, C. Polosa and S. Nishi: Slow IPSP and the noradrenaline-induced inhibition of the cat sympathetic preganglionic neuron in vitro. Brain Res. 1987; 419: 383–386.

    PubMed  CAS  Google Scholar 

  295. H.S. Orer, S. Zhong, S.M. Barman and G.L. Gebber: Differential control of 10-Hz and 2-to 6-Hz sympathetic nerve discharge by central adrenergic neurons. Am. J. Physiol., 1995; in press.

    Google Scholar 

  296. L.W. Swanson: Immunohistochemical evidence for a neurophysin-containing autonomic pathway arising in the paraventricular nucleus of hypothalamus. Brain Res. 1977; 128: 346–353.

    PubMed  CAS  Google Scholar 

  297. L.W. Swanson and S. McKellar: The distribution of oxytocin-and neurophysin-stained fibers in the spinal cord of the rat and monkey. J. Comp. Neurol. 1979; 188: 87–106.

    PubMed  CAS  Google Scholar 

  298. W.E. Armstrong, S. Warach, G.I. Hatton and T.H. McNeil: Subnuclei in the rat hypothalamic paraventricular nucleus: a cytoarchitectural, horseradish peroxidase and immunocytochemical analysis. Neuroscience 1980; 5: 1931–1958.

    Google Scholar 

  299. Y. Hosoya, Y. Sugiura, N. Okado, A.D. Loewy and K. Kohno: Descending input from the hypothalamic paraventricular nucleus to sympathetic preganglionic neurons in the rat. Exp. Brain Res. 1991; 85: 10–20.

    PubMed  CAS  Google Scholar 

  300. L.W. Swanson and H.G.J.M. Kuypers: The paraventricular nucleus of the hypothalamus: cytoarchitectonic subdivisions and organization of projections to the pituitary, dorsal vagal complex, and spinal cord as demonstrated by retrograde fluorescence double-labeling methods. J. Comp. Neurol. 1980; 194: 555–570.

    PubMed  CAS  Google Scholar 

  301. M.V. Sofroniew: Vasopressin and oxytocin in the mammalian brain and spinal cord. Trends in Neurosci. 1983; 5: 467–472.

    Google Scholar 

  302. M.J. Brody, T.P. O’Neill and J.P. Porter: Role of paraventricular and arcuate nuclei in cardiovascular regulation. In: Magro A., Oswald W., Reis D., Vanhoutte P. (Eds.): Central and peripheral mechanisms of cardiovascular regulation, New York: Plenum Press, 1986; 443–464.

    Google Scholar 

  303. H. Kannan and H. Yamashita: Connections of neurons in the region of the nucleus tractus solitarius with the hypothalamic paraventricular nucleus: their possible involvement in neural control of the cardiovascular system. Brain Res. 1985; 329: 205–212.

    PubMed  CAS  Google Scholar 

  304. M.M. Caverson, J. Ciriello and F.R. Calaresu: Paraventricular nucleus of the hypothalamus: an electrophysiological investigation of neurons projecting directly to inter-mediolateral nucleus in the cat. Brain Res. 1984; 305: 380–383.

    PubMed  CAS  Google Scholar 

  305. T.A. Lovick and J.H. Coote: Electrophysiological properties of paraventriculo-spi-nal neurones in the rat. Brain Res. 1988; 454: 123–130.

    PubMed  CAS  Google Scholar 

  306. H. Yamashita, K. Inenaga and K. Koizumi: Possible projections from regions of paraventricular and supraoptic nuclei to the spinal cord: electrophysiological studies. Brain Research 1984; 296: 373–378.

    Google Scholar 

  307. T. Segura, E.M. Hasser, R.E. Shade and J.R. Haywood: Evidence of an endogenous forebrain GABAergic system capable of inhibiting baroreceptor-mediated vasopressin release. Brain Res. 1989; 499: 53–62.

    PubMed  CAS  Google Scholar 

  308. D.S. Martin, T. Segura and J.R. Haywood: Cardiovascular responses to bicuculline in the paraventricular nucleus of the rat. Hypertension 1991; 18: 48–55.

    Google Scholar 

  309. D.S. Martin and J.R. Haywood: Hemodynamic responses to paraventricular nucleus disinhibition with bicuculline in conscious rats. Am J. Physiol. 1993; 265: H1727–H1733.

    PubMed  CAS  Google Scholar 

  310. M.P. Gilbey, J.H. Coote, S. Fleetwood-Walker and D.F. Peterson: The influence of the paraventriculo-spinal pathway, and oxytocin and vasopressin on sympathetic preganglionic neurones. Brain Res. 1982: 251: 283–290.

    Google Scholar 

  311. J.P. Porter and M.J. Brody: Neural projections from paraventricular nucleus that subserve vasomotor functions. Am. J. Physiol. 1985; 248: R271–R281.

    PubMed  CAS  Google Scholar 

  312. H. Yamashita, H. Kannan, M. Kasal and T. Osaka: Decrease in blood pressure by stimulation of the rat hypothalamic paraventricular nucleus with L-glutamate or weak current. J. Auton. Nerv. Syst. 1987; 19: 229–234.

    PubMed  CAS  Google Scholar 

  313. A.J. Gelsema, M.J. Roe and F.R. Calaresu: Neurally mediated cardiovascular responses to stimulation of cell bodies in the hypothalamus of the rat. Brain Res. 1989; 482: 67–77.

    PubMed  CAS  Google Scholar 

  314. H. Kannan, Y. Hayashida and H. Yamashita: Increase in sympathetic outflow by paraventricular nucleus stimulation in awake rats. Am J. Physiol. 1989; 256: R1325–R1330.

    PubMed  CAS  Google Scholar 

  315. T. Katafuchi, Y. Omura and M. Kurosawa: Effects of chemical stimulation of paraventricular nucleus on adrenal and renal nerve activity in rats. Neurosci. Lett. 1988; 86: 195–200.

    PubMed  CAS  Google Scholar 

  316. V. Holets and R. Elde: The differential distribution and relationship of serotonergic and peptidergic fibers to sympathoadrenal neurons in the intermediolateral cell column of the rat: a combined retrograde axonal transport and immunofluorescence study. Neuroscience 1982; 7: 1155–1174.

    Google Scholar 

  317. J. Ciriello and F.R. Calaresu: Role of paraventricular and supraoptic nuclei in central cardiovascular regulation in the cat. Am. J. Physiol. 1980; 239: R137–R142.

    PubMed  CAS  Google Scholar 

  318. S.B. Backman and J.L. Henry: Effects of oxytocin and vasopressin on thoracic sympathetic preganglionic neurons in the cat. Brain Res. Bull. 1984; 13: 679–684.

    PubMed  CAS  Google Scholar 

  319. R.C. Ma and N.J. Dun: Vasopressin depolarizes lateral horn cells of the neonatal rat spinal cord in vitro. Brain Res. 1985; 348: 36–43.

    PubMed  CAS  Google Scholar 

  320. J.P. Porter and M.J. Brody: The paraventricular nucleus and cardiovascular regulation: role of spinal vasopressinergic mechanisms. J. Hyperten. 1986; 4(suppl. 3): S181–S184.

    CAS  Google Scholar 

  321. K.M. Spyer: Central nervous mechanisms contributing to cardiovascular control. J. Physiol. 1994; 474: 1–19.

    PubMed  CAS  Google Scholar 

  322. M.J. Brody: Central nervous system mechanisms of arterial pressure regulation. Federation Proc. 1986; 45: 2700–2706.

    CAS  Google Scholar 

  323. P. Sleight: Arterial baroreceptors and hypertension, Oxford: Oxford Univ. Press, 1980.

    Google Scholar 

  324. A. Malliani: Cardiovascular sympathetic afferent fibres. Rev. Physiol. Biochem. Pharmacol. 1982; 94: 11–75.

    Google Scholar 

  325. A. Sato and R.F. Schmidt: Somatosympathetic reflexes: afferent fibres, central pathways, discharge characteristics. Physiol. Rev. 1973; 53: 916–947.

    Google Scholar 

  326. J. Ciriello: Brainstem projections of aortic baroreceptor afferent fibers in the rat. Neurosci. Lett. 1983; 36: 37–42.

    PubMed  CAS  Google Scholar 

  327. S. Donoghue, R.B. Fielder, D. Jordan and K.M. Spyer: The central projections of carotid baroreceptors and chemoreceptors in the cat: a neurophysiological study. J. Physiol. 1984; 347: 391–411.

    Google Scholar 

  328. S. Donoghue, M. Garcia, D. Jordan and K.M. Spyer: Identification and brainstem projections of aortic baroreceptor afferent neurones in nodose ganglia of cats and rabbits. J. Physiol. 1982; 322: 337–352.

    PubMed  CAS  Google Scholar 

  329. J.H. Wallach and A.D. Loewy: Projections of the aortic nerve to the nucleus tractus solitarius in the rabbit. Brain Res. 1980; 188: 247–251.

    PubMed  CAS  Google Scholar 

  330. J.C.W. Finley and D.M. Katz: The central organization of carotid body afferent projections to the brainstem of the rat. Brain Res. 1992; 572: 108–116.

    PubMed  CAS  Google Scholar 

  331. J. Ciriello, A.W. Hrycyshyn and F.R. Calaresu: Horseradish peroxidase study of brain stem projections of carotid sinus and aortic depressor nerves in the cat. J. Auton. Nerv. Syst. 1981; 4: 43–61.

    PubMed  CAS  Google Scholar 

  332. G.D. Housley, R.L. Martin-Body, N.J. Dawson and J.D. Sinclair: Brain stem projections of the glossopharyngeal nerve and its carotid sinus branch in the rat. Neuroscience 1987; 22: 237–250.

    Google Scholar 

  333. S. Donoghue, R.B. Felder, M.P. Gilbey, D. Jordan and K.M. Spyer: Post-synaptic activity evoked in the nucleus tractus solitarius by carotid sinus and aortic nerve afferents in the cat. J. Physiol. 1985; 360: 261–273.

    PubMed  CAS  Google Scholar 

  334. H. Ichikawa, A. Rabchevsky and C.J. Helke: Presence and coexistence of putative neurotransmitters in carotid sinus baro-and chemoreceptor afferent neurons. Brain Res. 1993; 611: 67–74.

    PubMed  CAS  Google Scholar 

  335. R.M. Sykes, K.M. Spyer and P. N. Izzo: Central distribution of substance P, calcitonin gene-related peptide and 5-hydroxytryptamine in vagal sensory afferents in the rat dorsal medulla. Neuroscience 1994; 59: 195–210.

    Google Scholar 

  336. W.T. Taiman, M.H. Perrone and D.J. Reis: Evidence for L-glutamate as the neurotransmitter of baroreceptor afferent nerve fibers. Science 1980; 209: 813–815.

    Google Scholar 

  337. W.T. Taiman, A.R. Granata and D.J. Reis: Glutamatergic mechanisms in the nucleus tractus solitarius in blood pressure control. Fed Proc. 1984; 43: 39–44.

    Google Scholar 

  338. A.R. Granata and D.J. Reis: Release of [3H]L-glutamine acid (L-Glu) and [3H]D-aspartic acid (D-Asp) in the area of nucleus tractus solitarius in vivo produced by stimulation of the vagus nerve. Brain Res. 1983; 259: 77–93.

    PubMed  CAS  Google Scholar 

  339. M.P. Meeley, M.D. Underwood, W.T. Taiman and D.J. Reis: Content and in vitro release of endogenous amino acids in the area of the nucleus of the solitary tract of the rat. J. Neurochem. 1989; 53: 1807–1817.

    PubMed  CAS  Google Scholar 

  340. W.T. Taiman, M.H. Perrone, P. Scher, S. Kwo and D.J. Reis: Antagonism of the baroreceptor reflex by glutamate diethyl ester, an antagonist to L-glutamate. Brain Res. 1981; 217: 186–191.

    Google Scholar 

  341. S.J. Humphrey and R.B. McCall: Evidence that L-glutamic acid mediates baroreceptor function in the cat. Clin exp Hyperten. 1984; 6: 1311–1329.

    CAS  Google Scholar 

  342. B.D. Miller and R.B. Felder: Excitatory amino acid receptors intrinsic to synaptic transmission in nucleus tractus solitarii. Brain Res. 1988; 456: 333–343.

    PubMed  CAS  Google Scholar 

  343. F.J. Gordon and C. Leone: Non-NMDA receptors in the nucleus of the tractus solitarius play the predominant role in mediating aortic baroreceptor reflexes. Brain Res. 1991; 568: 319–322.

    PubMed  CAS  Google Scholar 

  344. M.C. Andersen and M.Y. Yang: Non-NMDA receptors mediate sensory afferent synaptic transmission in medial nucleus tractus solitarius. Am. J. Physiol. 1990; 259: H1307–H1311.

    Google Scholar 

  345. H. Ohta and W.T. Taiman: Both NMDA and non-NMDA receptors in the NTS participate in the baroreceptor reflex in rats. Am. J. Physiol. 1994; 267: R1065–R1070.

    PubMed  CAS  Google Scholar 

  346. A. Vardhan, A. Kachroo and H.N. Sapru: Excitatory amino acid receptors in the nucleus tractus solitarius mediate the responses to the stimulation of cardio-pulmonary vagal afferent C fiber endings. Brain Res. 1993; 618: 23–31.

    PubMed  CAS  Google Scholar 

  347. A. Vardhan, A. Kachroo and H.N. Sapru: Excitatory amino acid receptors in commissural nucleus of the NTS mediate carotid chemoreceptor responses. Am J. Physiol. 1993; 264: R41–R50.

    PubMed  CAS  Google Scholar 

  348. W.T. Taiman: Kynurenic acid microinjected into the nucleus tractus solitarius of rat blocks the arterial baroreflex but not responses to glutamate. Neurosci. Lett. 1989; 102: 247–252.

    Google Scholar 

  349. A.F. Sved and M.G. Backes: Neuroanatomical evidence that vagal afferent nerves do not possess a high affinity uptake system for glutamate. J. Auton. Nerv. Syst. 1992; 38: 219–229.

    PubMed  CAS  Google Scholar 

  350. A.F. Sved and J.T. Curtis: Amino acid neurotransmitters in nucleus tractus solitarius: an in vivo microdialysis study. J. Neurochem. 1993; 61: 2089–2098.

    PubMed  CAS  Google Scholar 

  351. V.M. Pickel, J. Chan and T.A. Milner: Cellular substrates for interactions between neurons containing phenylethanolamine N-methyltransferase and GABA in the nuclei of the solitary tracts. J. Comp. Neurol. 1989; 286: 243–259.

    PubMed  CAS  Google Scholar 

  352. W.W. Blessing: Distribution of glutamate decarboxylase-containing neurons in rabbit medulla oblongata with attention to intramedullary and spinal projections. Neuroscience 1990; 37: 171–185.

    PubMed  CAS  Google Scholar 

  353. P.N. Izzo, R.M. Sykes and K.M. Spyer: gamma-Aminobutyric acid immunoreactive structures in the nucleus tractus solitarius: a light and electron microscopic study. Brain Res. 1992; 591: 69–78.

    PubMed  CAS  Google Scholar 

  354. J.M. Catelli, W.J. Giakas and A.F. Sved: GABAergic mechanisms in nucleus tractus solitarius alter blood pressure and vasopressin release. Brain Res. 1987; 403: 279–289.

    PubMed  CAS  Google Scholar 

  355. T. Kubo and M. Kihara: Evidence for gamma-aminobutyric acid receptor-mediated modulation of the aortic baroreceptor reflex in the nucleus tractus solitarii of the rat. Neurosci Lett. 1988; 89: 156–160.

    PubMed  CAS  Google Scholar 

  356. J.C. Sved and A.E. Sved: Cardiovascular responses elicited by gamma-aminobutyric acid in the nucleus tractus solitarius: evidence for action at the GABAB receptor. Neuropharmacol. 1989; 28: 515–520.

    CAS  Google Scholar 

  357. P.A. Brooks, S.R. Glaum, R.J. Miller and K.M. Spyer: The actions of baclofen on neurones and synaptic transmission in the nucleus tractus solitarii of the rat in vitro. J. Physiol. 1992; 457: 115–129.

    PubMed  CAS  Google Scholar 

  358. A.E. Sved and J.C. Sved: Endogenous GABA acts on GABAB receptors in nucleus tractus solitarius to increase blood pressure. Brain Res. 1990; 526: 235–240

    PubMed  CAS  Google Scholar 

  359. A.E. Sved and K. Tsukamoto: Tonic stimulation of GABAB receptors in the nucleus tractus solitarius modulates the baroreceptor reflex. Brain Res. 1992; 592: 37–43.

    PubMed  CAS  Google Scholar 

  360. P.N. McWilliam and S.L. Shepheard: A GABA-mediated inhibition of neurones in the nucleus tractus solitarius of the cat that respond to electrical stimulation of the carotid sinus nerve. Neurosci. Lett. 1988; 94: 321–326.

    PubMed  CAS  Google Scholar 

  361. T. Kubo and M. Kihara: Evidence for the presence of GABAergic and glycine-like systems responsible for cardiovascular control in the nucleus tractus solitarii of the rat. Neurosci Lett. 1987; 74: 331–336.

    PubMed  CAS  Google Scholar 

  362. J.H. Coote, S.M. Hilton and A.W. Zbrozyna: The pontomedullary area integrating the defence reaction in the cat and its influence on muscle blood flow. J. Physiol. 1973; 229: 257–274.

    PubMed  CAS  Google Scholar 

  363. S.W. Mifflin, K.M. Spyer and D.J. Withington-Wray: Baroreceptor inputs to the nucleus tractus solitarius in the cat; modulation by the hypothalamus. J. Physiol. 1988; 399: 369–387.

    PubMed  CAS  Google Scholar 

  364. P.N. Izzo, R.M. Sykes and K.M. Spyer: γ-aminobutyric acid immunoreactive structures in the nucleus tractus solitarius: A light and electron microscopic study. Brain Res. 1992; 591: 69–79.

    PubMed  CAS  Google Scholar 

  365. J.F.R. Paton and K.M. Spyer: Cerebellar cortical regulation of circulation. News in Physiol. Sci. 1992; 7: 124–129.

    Google Scholar 

  366. P.M. McWilliam, T. Yang and L.X. Chen: Changes in the baroreceptor reflex at the start of muscle contraction in the decerebrate cat. J. Physiol. 1991; 436: 549–558.

    PubMed  CAS  Google Scholar 

  367. D. Riche, J. De Pommery and D. Menetrey: Neuropeptides and catecholamines in efferent projections of the nuclei of the solitary tract in the rat. J. Comp. Neurol. 1990; 293: 399–424.

    PubMed  CAS  Google Scholar 

  368. P.R.C. Howe: Blood pressure control by neurotransmitters in the medulla oblongata and spinal corD. J. Auton. Nerv. Syst. 1985; 12: 95–115.

    PubMed  CAS  Google Scholar 

  369. P.D. Feldman and H.C. Moises: Adrenergic responses of baroreceptive cells in the nucleus tractus solitarii of the rat: a microiontophoretic study. Brain Res. 1987; 420: 351–361.

    PubMed  CAS  Google Scholar 

  370. P.D. Feldman and H.C. Moises: Electrophysiological evidence for alpha 1-and alpha 2-adrenoceptors in solitary tract nucleus. Am. J. Physiol. 1988; 254: H756–H762.

    PubMed  CAS  Google Scholar 

  371. A.F. Sved, K. Tsukamoto and A.M. Schreihofer: Stimulation of alpha 2-adrenergic receptors in nucleus tractus solitarius is required for the baroreceptor reflex. Brain Res. 1992; 576: 297–303.

    PubMed  CAS  Google Scholar 

  372. D.J. Reis, T.H. Joh, M.A. Nathan, B. Renaud, D.W. Snyder and W.T. Taiman: Nucleus traetus solitarii: catecholaminergic innervation in normal and abnormal control of arterial pressure. In: P. Myer and H. Schmitt (Eds.): Nervous system and hypertension, Toronto: Wiley-Flammarion, 1979; 147–164.

    Google Scholar 

  373. K.B. Thor and C.J. Helke: Serotonin and substance P colocalization in medullary projections to the nucleus tractus solitarius: dual color immunohistochemistry combined with retrograde tracing. J. Chem. Neuroanat. 1989; 2: 139–148.

    PubMed  CAS  Google Scholar 

  374. W. A. Wolf, D.M. Kuhn and W. Lovenberg: Blood pressure responses to local application of serotonergic agents in the nucleus tractus solitarii. Europ. J. Pharmacol. 1981; 69:291–299.

    CAS  Google Scholar 

  375. D.A. Carter and S.L. Lightman: Cardio-respiratory actions of substance P, TRH and 5-HT in the nucleus tractus solitarius of rats: evidence for functional interactions of neuropeptides and amine neurotransmitters. Neuropeptides 1985; 6: 425–436.

    Google Scholar 

  376. R. Laguzzi, D.J. Reis and W.T. Taiman: Modulation of cardiovascular and electro-cortical activity through serotonergic mechanisms in the nucleus tractus solitarius of the rat. Brain Research 1984; 304: 321–328.

    Google Scholar 

  377. A. Shvaloff and R. Laguzzi: Serotonin receptors in the rat nucleus tractus solitarii and cardiovascular regulation. Eur. J. Pharmacol. 1986; 132: 283–288.

    PubMed  CAS  Google Scholar 

  378. K.B. Thor, A. Blitz-Siebert and C.J. Helke: Autoradiographic localization of 5HT1 binding sites in autonomic areas of the rat dorsomedial medulla oblongata. Synapse 192; 10: 217–227.

    Google Scholar 

  379. S.R. Glaum, P.A. Brooks, K.M. Spyer and R.J. Miller: 5-Hydroxytryptamine-3 receptors modulate synaptic activity in the rat nucleus tractus solitarius in vitro. Brain Res. 1992; 589: 62–68.

    PubMed  CAS  Google Scholar 

  380. W.T. Taiman and S.J. Lewis: Altered cardiovascular responses to glutamate and acetylcholine microinjected into the nucleus tractus solitarii of the SHR. Clin. Exp. Hyperten. 1991; 13: 661–668.

    Google Scholar 

  381. H.N. Sapru: Cholinergic mechanisms subserving cardiovascular function in the medulla and spinal cord. Prog. Brain Res. 1989; 81: 171–179.

    PubMed  CAS  Google Scholar 

  382. K. Tsukamoto, M. Yin and A.F. Sved: Effect of atropine injected into the nucleus tractus solitarius on the regulation of blood pressure. Brain Res. 1994; 648: 915.

    Google Scholar 

  383. W.T. Taiman and S.C. Robertson: Glycine, like glutamate, microinjected into the nucleus tractus solitarii of rat decreases arterial pressure and heart rate. Brain Res. 1989; 477: 7–13.

    Google Scholar 

  384. M.D. Cassell, L. Roberts and W.T. Taiman: Glycine-containing terminals in the rat dorsal vagal complex. Neuroscience 1992; 50: 907–920.

    Google Scholar 

  385. W.T. Taiman, J.M. Colling and S.C. Robertson: Glycine microinjected into nucleus tractus solitarii of rat acts through cholinergic mechanisms. Am. J. Physiol. 1991; 260: H1326–H1331.

    Google Scholar 

  386. H. Matsuguchi, F.M. Sharabi, F.J. Gordon, A.K. Johnson and P.G. Schmid: Blood pressure and heart rate responses to microinjection of vasopressin into the nucleus tractus solitarius region of the rat. Neuropharmacol. 1982; 21: 687–693.

    CAS  Google Scholar 

  387. K.A. King and C.C. Pang: Cardiovascular effects of injections of vasopressin into the nucleus tractus solitarius in conscious rats. Brit. J. Pharmacol. 1987; 90: 531–536.

    CAS  Google Scholar 

  388. Q.J. Pittman and L.G. Franklin: Vasopressin antagonist in nucleus tractus solitar-ius/vagal area reduces pressor and tachycardia responses to paraventricular nucleus stimulation in rats. Neurosci. Lett. 1985; 56: 155–160.

    PubMed  CAS  Google Scholar 

  389. V.J. Massari, P.J. Hornby, E.K. Friedman, T.A. Milner, R.A. Gills and P.J. Gad: Distribution of neuropeptide Y-like immunoreactive perikarya and processes in the medulla of the cat. Neurosci. Lett. 1990; 115: 37–42.

    PubMed  CAS  Google Scholar 

  390. V.M. Pickel, J. Chan and V.J. Massari: Neuropeptide Y-like immunoreactivity in neurons of the solitary tract nuclei: vesicular localization and synaptic input from GABAergic terminals. Brain Res. 1989; 476: 265–278.

    PubMed  CAS  Google Scholar 

  391. C.J. Tseng, R. Mosqueda-Garcia, M. Appalsamy and D. Robertson: Cardiovascular effects of neuropeptide Y in rat brainstem nuclei. Circ. Res. 1989; 64: 55–61.

    PubMed  CAS  Google Scholar 

  392. L. Grundemar, C. Wahlestedt and D.J. Reis: Long-lasting inhibition of the cardiovascular responses to glutamate and the baroreceptor reflex elicited by neuropeptide Y injected into the nucleus tractus solitarius of the rat. Neurosci. Lett. 1991; 122: 135–139.

    PubMed  CAS  Google Scholar 

  393. L. Grundemar, C. Wahlestedt and D.J. Reis: Neuropeptide Y acts at an atypical receptor to evoke cardiovascular depression and to inhibit glutamate responsiveness in the brainstem J. Pharmacol. Exp.Therap. 1991; 258: 633–638.

    CAS  Google Scholar 

  394. D.B. Averil, D.I. Diz, K.L. Barnes and C.M. Ferrano: Pressor responses of angiotensin II microinjected into the dorsomedial medulla of the dog. Brain Res. 1987; 414: 294–300.

    Google Scholar 

  395. R. Casto and M.I. Phillips: Neuropeptide action in nucleus tractus solitarius: angiotensin specificity and hypertensive rats. Am. J. Physiol. 1985; 249: R341–R347.

    PubMed  CAS  Google Scholar 

  396. R. Rettig, D.P. Healy and M.P. Printz: Cardiovascular effects of microinjections of angiotensin II into the nucleus tractus solitarii. Brain Res.l986; 364: 233–240.

    Google Scholar 

  397. M.J. Campagnole-Santos, D.I. Diz and C.M. Ferrano: Baroreceptor reflex modulation by angiotensin II at the nucleus tractus solitarii. Hypertension 1988; 11: 167–171.

    Google Scholar 

  398. M. A. Petty and W. de-Jong: Enkephalins induce a centrally mediated rise in blood pressure in rats. Brain Res. 1983; 260: 322–325.

    PubMed  CAS  Google Scholar 

  399. M. A. Petty and W. de-Jong: Cardiovascular effects of β-endorphin after microinjection into the nucleus tractus solitarii of the anaesthetized rat. Europ. J. Pharmacol. 1982; 81: 449–457.

    CAS  Google Scholar 

  400. L.Y. Koda, N. Ling, R. Benoit, S.G. Madamba and C. Bakhit: Blood pressure following microinjection of somatostatin related peptides into the rat nucleus tractus solitarii. Europ. J. Pharmacol. 1985; 113: 425–430.

    CAS  Google Scholar 

  401. M. Vallejo, S. Lightman and I. Marshall: Central cardiovascular effects of calcitonin gene related peptide: interaction with noradrenaline in the nucleus tractus solitarius of rats. Exp. Brain Res. 1988; 70: 221–224.

    PubMed  CAS  Google Scholar 

  402. F.R. Calaresu and C.P. Yardley: Medullary basal sympathetic tone. In: R.M. Berne (Ed.): Annual reviews of physiology, vol 50. Palo Alto: Annual Reviews Inc., 1988; 511–524.

    Google Scholar 

  403. W.W. Blessing and D.J. Reis: Inhibitory cardiovascular function of neurons in the caudal ventrolateral medulla of the rabbit: relationship to the area containing A1 noradrenergic cells. Brain Res. 1982; 253:161–171.

    PubMed  CAS  Google Scholar 

  404. T.A. Day, A. Ro and L.P. Renaud: Depressor area within caudal ventrolateral medulla of the rat does not correspond to the A1 catecholamine cell group. Brain Res. 1983; 279: 299–302.

    Google Scholar 

  405. W.W. Blessing and D.J. Reis: Evidence that GABA-and glycine-like inputs inhibit vasodepressor neurons in the caudal ventrolateral medulla of the rabbit. Neurosci. Lett. 1983; 37: 57–62.

    PubMed  CAS  Google Scholar 

  406. R.N. Willette, A.J. Krieger, P.P. Barcas and H.N. Sapru: Medullary-aminobutyric acid (GABA) receptors and the regulation of blood pressure in the rat. J. Pharmacol. Exp.Therap. 1983; 226: 893–899.

    CAS  Google Scholar 

  407. J.S. Schwaber: Neuroanatomical substrates of cardiovascular and emotional-auto-nomic regulation. In: A. Magro, W. Osswald, DJ. Reis and P. Vanhoutte (Eds.): Central and peripheral mechanisms of cardiovascular regulation, New York: Plenum Press, 1986; 353–384.

    Google Scholar 

  408. S.K. Agarwal, A.J. Gelsema and F.R. Calaresu: Inhibition of rostral VLM by baror-eceptor activation is relayed through caudal VLM. Am. J. Physiol. 1990; 258: R1271–R1278.

    PubMed  CAS  Google Scholar 

  409. F.J. Gordon: Aortic baroreceptor reflexes are mediated by NMDA receptors in caudal ventrolateral medulla. Am. J. Physiol. 1987; 252: R628–R633.

    PubMed  CAS  Google Scholar 

  410. Y.-W. Li and W.W. Blessing: Localization of vasodepressor neurons in the caudal ventrolateral medulla in the rabbit. Brain Res. 1990; 517: 57–63.

    PubMed  CAS  Google Scholar 

  411. Z.J. Gieroba, Y.-W. Li and W.W. Blessing: Characteristics of caudal ventrolateral medullary neurons antidromically activated from rostral ventrolateral medulla in the rabbit. Brain Res. 1992; 582: 196–207.

    PubMed  CAS  Google Scholar 

  412. I. Jeske, S.F. Morrison, S.L. Cravo and D.J. Reis: Identification of baroreceptor reflex interneurons in the caudal ventrolateral medulla. Am. J. Physiol. 1993; 264: R169–R178.

    PubMed  CAS  Google Scholar 

  413. N. Terui, N. Masuda, Y. Saeki and M. Kumada: Activity of barosensitive neurons in the caudal ventrolateral medulla that send axonal projections to the rostral ventrolateral medulla in rabbits. Neurosci. Lett. 1990; 118: 211–214.

    PubMed  CAS  Google Scholar 

  414. S.L. Cravo, S.F. Morrison and D.J. Reis: Differentiation of two cardiovascular regions within caudal ventrolateral medulla: Am. J. Physiol. 1991; 261: R985–R994.

    CAS  Google Scholar 

  415. Y.-W. Li, Z.J. Gieroba, R.M. McAllen and W.W. Blessing: Neurons in rabbit caudal ventrolateral medulla inhibit bulbospinal barosensitive neurons in rostral medulla. Am J. Physiol. 1991; 261: R44–R51.

    PubMed  CAS  Google Scholar 

  416. Y.-W Li, S.L. Wesselingh and W.W. Blessing: Projections from rabbit caudal medulla to C1 and A5 sympathetic premotor neurons, demonstrated with phaseolus leucoag-glutinin and herpes simplex virus. J. Comp. Neurol. 1992; 317: 379–395.

    PubMed  CAS  Google Scholar 

  417. Y.-W. Li and R.A. Dampney: Expression of c-fos protein in the medulla oblongata of conscious rabbits in response to baroreceptor activation. Neurosci. Lett. 1992; 144: 70–74.

    PubMed  CAS  Google Scholar 

  418. K.A. Yamada, R.M. McAllen and A.D. Loewy: GABA antagonists applied to the ventral surface of the medulla oblongata block the baroreceptor reflex. Brain Res. 1984; 297: 175–180.

    PubMed  CAS  Google Scholar 

  419. S.J. Humphrey and R.B. McCall: Evidence for τ-aminobutyric acid mediation of the sympathetic nerve inhibitory response to vagal afferent stimulation. J. Pharmacol. Exp. Therap. 1985; 234: 288–297.

    CAS  Google Scholar 

  420. W.W. Blessing and J.O. Willoughby: Depressor neurons in rabbit caudal medulla do not transmit the baroreceptor-vasomotor reflex. Am. J. Physiol. 1987; 253: H777–H786.

    PubMed  CAS  Google Scholar 

  421. S.L. Cravo and S.F. Morrison: The caudal ventrolateral medulla is a source of tonic sympathoinhibition. Brain Res. 1993; 621: 133–136.

    PubMed  CAS  Google Scholar 

  422. W.W. Blessing and Y.-W. Li: Inhibitory vasomotor neurons in the caudal ventrolateral region of the medulla oblongata. Prog. Brain Res. 1989; 81: 83–97.

    PubMed  CAS  Google Scholar 

  423. A.R. Granata, Y. Numao, M. Kumada and D.J. Reis: A1 noradrenergic neurons ton-ically inhibit sympathoexcitatory neurons of C1 area in rat brainstem. Brain Res. 1986; 377: 127–146.

    PubMed  CAS  Google Scholar 

  424. H. Kaba, H. Saito, K. Otsuka, K. Seto and M. Kawakami: Effects of estrogen on the excitability of neurons projecting from the noradrenergic A1 region to the preoptic and anterior hypothalamic area. Brain Res. 1983; 274: 156–159.

    PubMed  CAS  Google Scholar 

  425. H. Kaba, H. Saito, K. Otsuka and K. Seto: Ventrolateral medullary neurons projecting to the medial preoptic-anterior hypothalamic area through the medial forebrain bundle: An electrophysiological study in the rat. Exp. Brain Res. 1986; 63: 369–374.

    PubMed  CAS  Google Scholar 

  426. H. Yamashita, H. Kannan and Y. Ueta: Involvement of caudal ventrolateral medulla in mediating visceroreceptive information to the hypothalamic paraventricular nucleus. In: J. Ciriello, M.M. Caverson and C. Polosa (Eds.): Central Neural Organization of Cardiovascular Control. Progress in Brain Research. Amsterdam: Elsevier, 1989: vol 81, 293–302.

    Google Scholar 

  427. R.M. McAllen and W.W. Blessing: Neurons (presumably A1 cells) projecting from the caudal ventrolateral medulla to the region of the supraoptic nucleus respond to baroreceptor inputs in the rabbit. Neurosci. Lett. 1987; 73: 247–252.

    PubMed  CAS  Google Scholar 

  428. D.A. Thrivikraman, D.A. Bereiter and D.S. Gann: Catecholamine activity in paraventricular hypothalamus after hemorrhage in cats. Am. J. Physiol. 1989; 257: H370–H376.

    Google Scholar 

  429. L. Quitin, J.-Y. Gillon, M. Ghigone, B. Renaud and J.-F. Pujol: Baroreflex-linked variations of catecholamine metabolism in the caudal ventrolateral medulla: An ‘in vivo’ electrochemical study. Brain Res. 1987; 425: 319–336.

    Google Scholar 

  430. M. Elam: On the Physiological Regulation of Brain Norepinephrine Neurons in Rat Locus Coeruleus. Kompendietryckeriet, Kallered, Goteberg, Sweden.

    Google Scholar 

  431. W.W. Blessing, C.B. Jaeger, D.A. Ruggiero and D.J. Reis: Hypothalamic projections of medullary catecholamine neurons in the rabbit: a combined catecholamine fluorescence and HRP transport study. Brain Res.Bull. 1982; 9: 279–286.

    PubMed  CAS  Google Scholar 

  432. P.E. Sawchenko and L.W. Swansom: The organization of noradrenergic pathways from the brainstem to the paraventricular and supraoptic nuclei in the rat. Brain Res. Rev. 1982; 4: 275–325.

    Google Scholar 

  433. E. Mills and S.C. Wang: Liberation of antidiuretic hormone: location of ascending pathways. Am. J. Physiol. 1964; 207: 1399–1404.

    PubMed  CAS  Google Scholar 

  434. W. Feldberg and S.M. Rocha: Vasopressin release produced in anaesthetized cats by antagonists of GABA abd glycine. Brit. J. Pharmacol. 1978; 62: 99–106.

    CAS  Google Scholar 

  435. W.W. Blessing and J.O. Willoughby: Inhibiting the rabbit caudal ventrolateral medulla prevents baroreceptor-initiated secretion of vasopressin. J. Physiol. 1985; 367: 253–265.

    PubMed  CAS  Google Scholar 

  436. Z.J. Gieroba, M.J. Fullerton, J.W. Funder and W.W. Blessing: Medullary pathways for adrenocorticotropic hormone and vasopressin secretion in rabbits. Am. J. Physiol. 1992; 262: R1047–R1056.

    PubMed  CAS  Google Scholar 

  437. W.W. Blessing and J.O. Willoughby: Excitation of neuronal function in rabbit caudal ventrolateral medulla elevates plasma vasopressin. Neurosci Lett. 1985; 58: 189–194.

    PubMed  CAS  Google Scholar 

  438. A. Benetos, I. Gavras and H. Gavras: Norepinephrine applied in the paraventricular hypothalamic nucleus stimulates vasopressin release. Brain Res. 1986; 381: 322–326.

    PubMed  CAS  Google Scholar 

  439. T.A. Day, A.V. Ferguson and L.P. Renaud: Facilitatory influence of noradrenergic afferents on the excitability of rat paraventricular nucleus neurosecretory cells. J. Physiol. 1984; 355: 237–249.

    PubMed  CAS  Google Scholar 

  440. T.A. Day and L.P. Renaud: Electrophysiological evidence that noradrenergic afferents selectively facilitate the activity of supraoptic vasopressin neurons. Brain Res. 1984; 303: 233–240.

    PubMed  CAS  Google Scholar 

  441. B.J. Davis, M.L. Blain, J.R. Sladek and C.D. Sladek: Effects of lesions of hypothalamic catecholamines on blood pressure, fluid balance, vasopressin and renin in the rat. Brain Res. 1987; 405: 1–15.

    PubMed  CAS  Google Scholar 

  442. J. Tanaka, H. Kaba, H. Saito and K. Seto: Inputs from the A1 noradrenergic region to hypothalamic paraventricular neurons in the rat. Brain Res. 1985; 355: 368–371.

    Google Scholar 

  443. J.C.R. Randle, C.W. Bourque and L.R. Renaud: α-Adrenergic activation of rat hypothalamic supraoptic neurons maintained in vitro. Brain Res. 1984; 307: 374–378.

    PubMed  CAS  Google Scholar 

  444. T. Imaizumi, A.R. Granata, E.E. Benarroch, A.F. Sved and D.J. Reis: Contributions of arginine vasopressin and the sympathetic nervous system to fulminating hypertension after destruction of neurons of caudal ventrolateral medulla in the rat. J. Hyperten. 1985; 3: 491–501.

    CAS  Google Scholar 

  445. J. Minson, J. Chalmers, V. Kapoor, M. Cain and A. Caon: Relative importance of sympathetic nerves and of circulating adrenaline and vasopressin in mediating hypertension after lesions of the caudal ventrolateral medulla in the rat. J. Hyperten. 1986; 4: 273–281.

    CAS  Google Scholar 

  446. J. Ciriello, M.M. Caverson and C. Polosa: Function of the ventrolateral medulla in the control of the circulation. Brain Res. Rev. 1986; 111: 359–391.

    Google Scholar 

  447. Y.I. Kim, C.A. Dudley and R.L. Moss: Inhibitory effect of norepinephrine on the single-unit activity of caudally projecting paraventricular neurons. Synapse 1989; 3: 213–224.

    PubMed  CAS  Google Scholar 

  448. H. Yamashita, R.E.J. Dyball, K. Inenaga and K. Kannan: The effects of noradrenaline on supraoptic and paraventricular cells of mice in vitro. In: J. Ciriello, F.R. Calaresu, L.P. Renaud and C. Polosa (Eds.): Organization of the autonomic nervous system: central and peripheral mechanisms. New York: Alan Liss Inc. 1987; 417–423.

    Google Scholar 

  449. A.J. Silverman, Y.A. Hou and B.J. Oldfield: Ultrastructural identification of noradrenergic nerve terminals and vasopressin-containing neurons of the paraventricular nucleus in the same thin section. J. Histochem. Cytochem. 1983; 31: 1151–1156.

    PubMed  CAS  Google Scholar 

  450. S.C. Wang and S.W. Ranson: Autonomic responses to electrical stimulation of the lower brain steM. J. Comp. Neurol. 1939; 71: 437–455.

    Google Scholar 

  451. D.M. Farlow, A.K. Goodchild and R.A. Dampney: Evidence that vasomotor neurons in the rostral ventrolateral medulla project to the spinal sympathetic outflow via the dorsomedial pressor area. Brain Res. 1984; 298: 313–320.

    PubMed  CAS  Google Scholar 

  452. M. Kumada, R.A. Dampney and D.J. Reis: Profound hypotension and abolition of the vasomotor component of the cerebral ischemic response produced by restricted lesions of medulla oblongata: relationship to the so-called tonic vasomotor center. Circ. Res. 1979; 45: 63–70.

    PubMed  CAS  Google Scholar 

  453. M.E. Clement and R.B. McCall: Lateral tegmental field involvement in the central sympathoinhibitory action of 8-OH DPAT. Brain Res. 1993; 612: 78–84.

    PubMed  CAS  Google Scholar 

  454. C. Vayssettes-Courchay, F. Bouysset, T.J. Verbeuren, H. Schmitt and M. Laubie: Cardiovascular effects of microinjections of quipazine into nuclei of the medulla-oblon-gata in anaesthetized cats-comparison with L-glutamate. Eur. J. Pharmacol. 1992; 211:243–250.

    PubMed  CAS  Google Scholar 

  455. M.E. Clement and R.B. McCall: Evidence that the lateral tegmental field plays an important role in the central sympathoinhibitory action of 8-OH-DPAT. Brain Res. 1992; 587: 115–122.

    PubMed  CAS  Google Scholar 

  456. G.L. Gebber and S.M. Barman.: Lateral tegmental field neurons of cat medulla: a potential source of basal sympathetic discharge. J. Neurophysiol. 1985; 54: 1498–1512.

    PubMed  CAS  Google Scholar 

  457. Y. Hirooka, J. W. Poison and R. A. Dampney: Pressor response from rostral dorsomedial medulla is mediated by excitatory amino acid receptors in rostral VLM. Am. J. Physiol. 1994; 267: R309–R315.

    PubMed  CAS  Google Scholar 

  458. P.L. McGeer and E.G. McGeer: Kainic acid: the neurotoxic breakthrough. CRC Crit. Rev. Toxicol. 1982; 10: 1–26.

    CAS  Google Scholar 

  459. C. Vayssettes-Courchay, F. Bouysset, T.J. Verbeuren and M. Laubie: Role of the lateral tegmental field in the central sympatho-inhibitory effect of 8-hydroxy-2-(di-n-propylamino)tetralin in the cat. Europ. J. Pharmacol. 1993; 236: 121–130.

    CAS  Google Scholar 

  460. M.E. Clement and R.B. McCall: Lateral tegmental field involvement in the central sympathoinhibitory action of 8-OH DPAT. Brain Res. 1993; 612: 78–84.

    PubMed  CAS  Google Scholar 

  461. C. Vayssettes-Courchay, F. Bouysset, T.J. Verbeuren and M. Laubie: Role of the nucleus tractus solitarii and the rostral depressive area in the sympatholytic effect of 8-hydroxy-2-(di-n-propylamino)tetralin in the cat. Europ. J. Pharmacol. 1993; 242: 37–45.

    CAS  Google Scholar 

  462. D. Bieger and D. A. Hopkins: Viscerotopic representation of the upper alimentary tract in the medulla oblongata in the rat: the nucleus ambiguus. J. Comp. Neurol. 1987; 262: 546–562.

    PubMed  CAS  Google Scholar 

  463. D.A. Hopkins and J.A. Armour: Medullary cells of origin of physiologically identified cardiac nerves in the dog. Brain Res. Bull. 1982; 8: 359–365.

    PubMed  CAS  Google Scholar 

  464. P.N. Izzo, J. Deuchars and K.M. Spyer: Localization of cardiac vagal preganglionic motoneurones in the rat-immunocytochemical evidence of synaptic inputs containing 5-hydroxytryptamine. J. Comp. Neurol. 1993; 327: 572–583.

    PubMed  CAS  Google Scholar 

  465. S. Nosaka, T. Yamamoto and K. Yasunaga: Localization of vagal cardioinhibitory preganglionic neurons within rat brainstem. J. Comp. Neurol. 1979; 186: 79–92.

    PubMed  CAS  Google Scholar 

  466. D.M. Plecha, W.C. Randall, G.S. Geis and R.D. Wurster: Localization of vagal preganglionic somata controlling sinoatrial and atrioventricular nodes. Am. J. Physiol. 1988; 255: R703–R708.

    PubMed  CAS  Google Scholar 

  467. S.K. Agarwal and F.R. Calaresu: Electrical stimulation of nucleus tractus solitarius excites vagal preganglionic cardiomotor neurons of the nucleus ambiguus in rats. Brain Res. 1992; 574: 320–324.

    PubMed  CAS  Google Scholar 

  468. A.D. Loewy and H. Burton: Nuclei of the solitary tract: efferent projections to the lower brainstem and spinal cord of the cat. J. Comp. Neurol. 1978; 181: 421–450.

    PubMed  CAS  Google Scholar 

  469. S.L. Stuesse and S.E. Fish: Projections to the cardioinhibitory region of the nucleus ambiguus of rat. J. Comp. Neurol. 1984; 229: 271–278.

    PubMed  CAS  Google Scholar 

  470. M.P. Gilbey, D. Jordan, D.W. Richter and K.M. Spyer: Synaptic mechanisms involved in the inspiratory modulation of the vagal cardioinhibitory neurons in the cat. J. Physiol. 1984; 356: 65–78.

    PubMed  CAS  Google Scholar 

  471. A. Pazos and J.M. Palacios: Quantitative autoradiographic mapping of serotonin receptors in the rat brain. I. Serotonin-1 receptors. Brain Res. 1985; 346: 205–230

    PubMed  CAS  Google Scholar 

  472. S. Manaker and H.M. Verderame: Organization of serotonin 1A and 1B receptors in the nucleus of the solitary tract. J. Comp. Neurol. 1990; 301: 535–553.

    PubMed  CAS  Google Scholar 

  473. M.R. Dashwood, M.P. Gilbey, D. Jordan and A.G. Ramage: Autoradiographic localization of 5-HT1A binding sites in the brain stem of the cat. Br. J. Pharmacol. 1988; 94: 386 P.

    Google Scholar 

  474. K. Gradin, A. Pettersson, T. Hedner and B. Persson: Acute administration of 8-hydroxy-2-(di-n-propylamino) tetralin (8-OH-DPAT), a selective 5-HT receptor agonist in Sprague-Dawley rat and the spontaneously hypertensive rat. J. Neural Transm. 1985; 62: 305–319.

    PubMed  CAS  Google Scholar 

  475. A.G. Ramage and J.R. Fozard.: Evidence that the putative 5-HT1A receptor agonists 8-OH DPAT and ipsapirone have a central hypotensive action that differs from that of Clonidine in anaesthetized cats. Europ J Pharmacol. 1987; 138: 179–191.

    CAS  Google Scholar 

  476. A.G. Ramage, W. Wouters and P. Bevan: Evidence that the novel antihypertensive agent, flesinoxan, causes differential sympathoinhibition and also increases vagal tone by a central action, Europ. J. Pharmacol. 1988; 151: 373–379.

    CAS  Google Scholar 

  477. J.H. Coote: The central antihypertensive action of 5-hydroxytryptamine: the location of site of action. In: R.R. Saxena, D.I. Wallis, W. Wouters and P. Bevan (Eds.): Cardiovascular Pharmacology of 5-Hydroxytryptamine. Kluwer Academic Publishers, Dordrecht, 1990, 259–270.

    Google Scholar 

  478. P. N. Izzo, D. Jordan and A.G. Ramage: Anatomical and pharmacological evidence supporting the involvement of serotonin in the central control of cardiac vagal moto-neurones in the anaesthetized cat. J. Physiol. 1988; 406: 19P.

    Google Scholar 

  479. D.W. Dalton, W. Feniuk and P.P.A. Humphrey: An investigation into the mechanisms of the cardiovascular effects of 5-hydroxytryptamine in conscious normotensive and Doca-salt hypertensive rats. J. Auton. Nerv. Syst. 1986; 6: 219–229.

    CAS  Google Scholar 

  480. S.C.E. Sporton, S.L. Shepheard, D. Jordan and A.G. Ramage: Microinjections of 5-HT1A agonists into the dorsal motor vagal nucleus produce a bradycardia in the aten-olol-pretreated anaesthetized rat. Brit. J. Pharmacol. 1991; 104: 466–470.

    CAS  Google Scholar 

  481. R.B. McCall, N. A. Escandon, L.T. Harris and M.E. Clement: Tolerance development to the vagal-mediated bradycardia produced by 5-HT1A receptor agonists. J. Pharmacol. Exp.Therap. 1994; 271: 776–781.

    CAS  Google Scholar 

  482. J.M. De Voogd and G. Prager: Early clinical experience with flesinoxan, a new selective 5-HT1A receptor agonist. In: P.R. Saxena, D.I. Wallis, W. Wouters and P. Bevan (Eds.): Cardiovascular Pharmacology of 5-Hydroxytryptamine. Kluwer Academic Publishers, Dordrecht, 1990, 259–270.

    Google Scholar 

  483. R.G. Bogle, J.G. Pires and A.G. Ramage: Evidence that central 5-HT1A receptors play a role in the von Bezold-Jarisch reflex in the rat. Br. J. Pharmacol. 1990; 100: 757–760.

    PubMed  CAS  Google Scholar 

  484. H.A. Futuro-Neto, J.G. Pires, M.P. Gilbey and A.G. Ramage: Evidence for the ability of central 5-HT1A receptors to modulate the vagal bradycardia induced by stimulating the upper airways of anesthetized rabbits with smoke. Brain Res. 1993; 629: 349–354.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1996 Birkhäuser Verlag Basel (Switzerland)

About this chapter

Cite this chapter

McCall, R.B. (1996). Neurotransmitters involved in the central regulation of the cardiovascular system. In: Jucker, E. (eds) Progress in Drug Research/Fortschritte der Arzneimittelforschung/Progrès des recherches pharmaceutiques. Progress in Drug Research/Fortschritte der Arzneimittelforschung/Progrès des recherches pharmaceutiques, vol 46. Birkhäuser Basel. https://doi.org/10.1007/978-3-0348-8996-4_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-0348-8996-4_2

  • Publisher Name: Birkhäuser Basel

  • Print ISBN: 978-3-0348-9861-4

  • Online ISBN: 978-3-0348-8996-4

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics