Skip to main content

Part of the book series: Progress in Gene Expression ((PRGE))

Abstract

Functional analysis of Myc continues to strengthen connections to trans-criptional regulation. CTD interactions are growing in complexity, but, at a broad level of understanding, the new results reaffirm the role of this region in controlling DNA recognition. One should expect additional progress in defining b/HLH/LZ partners for both Myc and Max, as well as a dissection of higher order interactions between partner complexes and other transcription factors. The NTD has only begun to be examined mechanistically. Transactivation and repression domains have been roughly parsed, with repression turning out to play a critical role (perhaps the most important one) in cancer cells. Mechanisms should begin to emerge as several new NTD binding proteins are analyzed. These directions are exciting because they may also shed light on the persistent issues concerning nontranscriptional roles. Long a “citadel of incomprehensibility” (Lüscher et al, 1990), Myc is finally yielding answers to long-standing questions. For those interested in basic mechanisms and cancer, answers to current questions are likely to be both interesting and important.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Adane J, Robbins PD (1995): The retinoblastoma susceptibility gene product regulates Myc-mediated transcription. Oncogene 10: 381–387

    Google Scholar 

  • Albert T, Urlbauer B, Kohlhuber F, Hammersen B, Eick D (1994): Ongoing mutations in the N-terminal domain of c-Myc affect transactivation in Burkitt’s lymphoma cell lines. Oncogene 9: 759–763

    PubMed  CAS  Google Scholar 

  • Amati B, Dalton S, Brooks MW, Littlewood TD, Evan GI, Land H (1992): Transcriptional activation by the human c-Myc oncoprotein in yeast requires interaction with Max. Nature 359: 423–426

    Article  PubMed  CAS  Google Scholar 

  • Amati B, Brooks MW, Levy N, Littlewood TD, Evan GI, Land H (1993a): Oncogenic activity of the c-Myc protein requires dimerization with Max. Cell 72: 233–245

    Article  PubMed  CAS  Google Scholar 

  • Amati B, Littlewood TD, Evan GI, Land H (1993b): The c-Myc protein induces cell cycle progression and apoptosis through dimerization with Max. EMBO J 12: 5083–5087

    PubMed  CAS  Google Scholar 

  • Ariga H, Imamura Y, Iguchi-Ariga SMM (1989): DNA replication origin and transcriptional enhancer in c-myc gene share the c-myc protein binding sequences. EMBO J 8: 4273–4279

    PubMed  CAS  Google Scholar 

  • Askew DS, Ashmun RA, Simmons BC, Cleveland JL (1991): Constitutive c-myc expression in an IL-3-dependent myeloid cell line suppresses cell cycle arrest and accelerates apoptosis. Oncogene 6: 1915–1922

    PubMed  CAS  Google Scholar 

  • Auvinen M, Passinen A, Andersson LC, Holtta E (1992): Ornithine decarboxylase activity is critical for cell transformation. Nature 360: 355–358

    Article  PubMed  CAS  Google Scholar 

  • Ayer DE, Eisenman RN (1993): A switch from myc-max to mad-max heterocomplexes accompanies monocyte/macrophage differentiation. Genes Dev 7: 2110–2119

    Article  PubMed  CAS  Google Scholar 

  • Ayer DE, Kretzner L, Eisenman RN (1993): Mad: A heterodimeric partner for Max that antagonizes Myc transcriptional activity. Cell 72: 211–222

    Article  PubMed  CAS  Google Scholar 

  • Ayer DE, Lawrence QA, Eisenman RN (1995): Mad-Max transcriptional repression is mediated by ternary complex formation with mammalian homologs of the yeast repressor Sin3. Cell 80: 767–776

    Article  PubMed  CAS  Google Scholar 

  • Barone MV, Courtneidge SA (1995): Myc but not Fos rescue of PDGF signalling block caused by kinase-inactive Src. Nature 378: 509–512

    Article  PubMed  CAS  Google Scholar 

  • Barrett J, Birrer MJ, Kato GJ, Dosaka AH, Dang CV (1992): Activation domains of L-Myc and c-Myc determine their transforming potencies in rat embryo cells. Mol Cell Biol 12: 3130–3137

    PubMed  CAS  Google Scholar 

  • Beckmann H, Su L-K, Kadesch T (1990): TFE3: A helix-loop-helix protein that activates transcription through the immunoglobulin enhancer mE3 motif. Genes Dev 4: 167–179

    Article  PubMed  CAS  Google Scholar 

  • Beijersbergen RL, Hijmans EM, Zhu L, Bernards R (1994): Interaction of c-Myc with the pRb-related protein p107 results in inhibition of c-Myc-mediated transactivation. EMBO J 13: 4080–4086

    PubMed  CAS  Google Scholar 

  • Bello-Fernandes C, Packham G, Cleveland JL (1993): The ornithine decarboxylase gene is a transcriptional target of c-Myc. Proc Natl Acad Sci USA 90: 7804–7808

    Article  Google Scholar 

  • Benvenisty N, Leder A, Kuo A, Leder P (1993): An embryonically expressed gene is a target for c-Myc regulation via the c-Myc-binding sequence. Genes Dev 6: 2513–2523

    Article  Google Scholar 

  • Berberich SJ, Cole MD (1992): Casein kinase II inhibits the DNA binding activity of Max homodimers but not Myc/Max heterodimers. Genes Dev 6: 166–176

    Article  PubMed  CAS  Google Scholar 

  • Berberich S, Hyde-deRuyscher N, Espenshade P, Cole M (1992): Max encodes a sequence-specific DNA binding protein and is not regulated by serum growth factors. Oncogene 7: 775–779

    PubMed  CAS  Google Scholar 

  • Bernards R (1995): Transcriptional regulation: flipping the Myc switch. Curr Biol 5: 859–861

    Article  PubMed  CAS  Google Scholar 

  • Bestor TH (1990): DNA methylation: evolution of a bacterial immune function into a regulator of gene expression and genome structure in higher eukaryotes. Phil Trans R Soc Lond B 326: 179–187

    Article  CAS  Google Scholar 

  • Bhatia K, Huppi K, Spangler G, Siwarski D, Iyer R, Magrath I (1993): Point mutations in the c-Myc transactivation domain are common in Burkitt’s lymphoma and mouse plasmacytomas. Nat Genet 5: 56–61

    Article  PubMed  CAS  Google Scholar 

  • Bhatia K, Spangler G, Gaidano G, Hamdy N, Dalla-Favera R, Magrath I (1994): Mutations in the coding region of c-myc occur frequently in acquired immunodeficiency syndrome-associated lymphomas. Blood 84: 883–888

    PubMed  CAS  Google Scholar 

  • Birrer MJ, Segal S, DeGreve JS, Kaye F, Sausville EA, Minna JD (1988): L-myc cooperates with ras to transform primary rat embryo fibroblasts. Mol Cell Biol 8: 2668–2673

    PubMed  CAS  Google Scholar 

  • Blackwell TK, Weintraub H (1990): A new binding-site selection technique reveals differences and similarities between MyoD and E2A DNA-binding specificities. Science 250: 1104–1110

    Article  PubMed  CAS  Google Scholar 

  • Blackwell TK, Huang J, Ma A, Kretzner L, Alt FW, Eisenman RN, Weintraub H (1993): Binding of myc proteins to canonical and noncanonical DNA sequences. Mol Cell Biol 13: 5216–5224

    PubMed  CAS  Google Scholar 

  • Blackwood E, Eisenman RN (1991): Max: A helix-loop-helix zipper protein that forms a sequence-specific DNA-binding complex with Myc. Science 251: 1211–1217

    Article  PubMed  CAS  Google Scholar 

  • Blackwood E, Lüscher B, Eisenman RN (1992): Myc and Max associate in vivo. Genes Dev 6: 71–80

    Article  PubMed  CAS  Google Scholar 

  • Born T, Frost J, Schönthal A, Prendergast GC, Feramisco J (1994): c-Myc and oncogenic ras induce the cdc2 promoter. Mol Cell Biol 14: 5741–5747

    Article  Google Scholar 

  • Bousset K, Henriksson M, Lüschner-Firzlaff JM, Litchfield DW, Lüscher B (1993): Oncogene 8: 3211–3220

    PubMed  CAS  Google Scholar 

  • Boyd JM, Subramanian T, Schaeper U, LaRegina M, Bayley S, Chinnadurai G (1993): A region in the C-terminus of adenovirus 2/5 Ela protein is required for association with a cellular phosphoprotein and important for the negative modulation of T24-ras mediated transformation, tumorigenesis, and metastasis. EMBO J 12: 469–478

    PubMed  CAS  Google Scholar 

  • Brough DE, Hofrnan TJ, Ellwood KB, Townley RA, Cole MD (1995): An essential domain of the c-Myc protein interacts with a nuclear factor that is also required for ElA-mediated transformation. Mol Cell Biol 15: 1536–1544

    PubMed  CAS  Google Scholar 

  • Cedar H (1988): DNA methylation and gene activity. Cell 53: 3–4

    Article  PubMed  CAS  Google Scholar 

  • Cerni C, Mougneau E, Cuzin F (1987): Transfer of “immortalizing” oncogenes in rat fibroblasts induces both high rates of sister chromatid exchange and appearance of abnormal karotypes. Exp Cell Res 168: 439–446

    Article  PubMed  CAS  Google Scholar 

  • Cerni C, Bousset K, Seelos C, Burkhardt H, Henriksson M, Luscher B (1995): Differential effects by Mad and Max on transformation by cellular and viral oncoproteins. Oncogene 11: 587–596

    PubMed  CAS  Google Scholar 

  • Chen J, Willingham T, Margraf LR, Schreiber-Agus N, De Pinho RA, Nisen PD (1995): Effects of the MYC oncogene antagonist, MAD, on proliferation, cell cycling and the malignant phenotype of human brain tumour cells. Nat Med 1: 638–643

    Article  PubMed  CAS  Google Scholar 

  • Chin L, Schreiber-Agus N, Pellicer I, Chen K, Lee HW, Dudast M, Cordon-Cardo C, De Pinho RA (1995): Contrasting roles for Myc and Mad proteins in cellular growth and differentiation. Proc Natl Acad Sci USA 92: 8488–8492

    Article  PubMed  CAS  Google Scholar 

  • Chou TY, Dang CV, Hart GW (1995): Glycosylation of the c-Myc transactivation domain. Proc Natl Acad Sci USA 92: 4417–4421

    Article  PubMed  CAS  Google Scholar 

  • Cole MD (1986): The myc oncogene: Its role in transformation and differentiation. Ann Rev Genet 20: 361–384

    Article  PubMed  CAS  Google Scholar 

  • Dang C, McGuire M, Buckmire M, Lee WMF (1989): Involvement of the “leucine zipper” region in the oligomerization and transforming activity of human c-myc protein. Nature 337: 664–666

    Article  PubMed  CAS  Google Scholar 

  • Dang CV, Lee WMF (1989): Nuclear and nucleolar targeting sequences of c-erbA, c-myb, N-myc, p53, HSP70, and HIV tat proteins. J Biol Chem 264: 18019–18023

    PubMed  CAS  Google Scholar 

  • Dang CV, v. Dam H, Buckmire M, Lee WMF (1989): DNA-binding domain of human c-Myc produced in Escherichia coll Mol Cell Biol 9: 2477–2486

    CAS  Google Scholar 

  • Dang CV, Barrett J, Villa-Garcia M, Resar LMS, Kato GJ, Fearon ER (1991): Intracellular leucine zipper interactions suggest c-Myc hetero-oligomerization. Mol Cell Biol 11: 954–962

    PubMed  CAS  Google Scholar 

  • De Pinho RA, Schreiber-Agus N, Alt FW (1991): myc family oncogenes in the development of normal and neoplastic cells. Adv Cane Res 57: 1–46

    Article  Google Scholar 

  • Eagle LR, Yin X, Brothman AR, Williams BJ, Atkin NB, Prochownik EV (1995): Mutation of the MXI1 gene in prostate cancer. Nat Genet 9: 249–255

    Article  PubMed  CAS  Google Scholar 

  • Evan G, Harrington E, Fanidi A, Land H, Amati B, Bennett M (1994): Integrated control of cell proliferation and cell death by the c-myc oncogene. Philos Trans R Soc Lond B Biol Sci 345: 215–269

    Google Scholar 

  • Evan GI, Littlewood TD (1993): The role of c-myc in cell growth. Curr Opin Genet Dev 3: 44–49

    Article  PubMed  CAS  Google Scholar 

  • Evan GI, Wyllie AH, Gilbert CS, Littlewood TD, Land H, Brooks M, Waters CM, Perm LZ, Hancock DC (1992): Induction of apoptosis in fibroblasts by c-myc protein. Cell 69: 119–128

    Article  PubMed  CAS  Google Scholar 

  • Evan GI, Brown L, Whyte M, Harrington E (1995): Apoptosis and the cell cycle. Curr Biol 7: 825–834

    CAS  Google Scholar 

  • Ferre-D’Amare A, Prendergast GC, Ziff EB, Burley SK (1993): Recognition by Max of its cognate DNA through a dimeric b/HLH/Z domain. Nature 363: 38–45

    Article  CAS  Google Scholar 

  • Fiol CJ, Wang A, Roeske RW, Roach PJ (1990): Ordered multisite protein phosphoryla-tion: Analysis of glycogen synthase kinase 3 action using model peptide substrates. J Biol Chem 265: 6061–6065

    PubMed  CAS  Google Scholar 

  • Fisher DE, Parent LA, Sharp PA (1992): Myc/Max and other helix-loop-helix/leucine zipper proteins bend DNA toward the minor groove. Proc Natl Acad Sci USA 89: 11779–11783

    Article  PubMed  CAS  Google Scholar 

  • Fisher F, Jayaraman P-S, Goding CR (1991): C-Myc and the yeast transcription factor PHO4 share a common CACGTG binding motif. Oncogene 6: 1099–1104

    PubMed  CAS  Google Scholar 

  • Frykberg L, Graf T, Vennström B (1987): The transforming activity of the chicken c-myc gene can be potentiated by mutations. Oncogene 1: 415–421

    PubMed  CAS  Google Scholar 

  • Gaubatz S, Meichle A, Eilers M (1994): An E-box element localized in the first intron mediates regulation of the prothymosin α gene by c-myc. Mol Cell Biol 14: 3853–3862

    PubMed  CAS  Google Scholar 

  • Gaubatz S, Imhof A, Dosch R, Werner O, Mitchell P, Buettner R, Eilers M (1995): Transcriptional activation by Myc is under negative control by the transcription factorAP-2. EMBO J 14: 1508–1519

    PubMed  CAS  Google Scholar 

  • Gibson AW, Ye R, Johnston RN, Browder LW (1992): A possible role for c-Myc onco-proteins in post-transcriptional regulation if ribosomal RNA. Oncogene 7: 2363–2367

    PubMed  CAS  Google Scholar 

  • Gregor PD, Sawadogo M, Roeder RG (1990): The adenovirus major late transcription factor USF is a member of the helix-loop-helix group of regulatory proteins and binds to DNA as a dimer. Genes Dev 4: 1730–1740

    Article  PubMed  CAS  Google Scholar 

  • Gu W, Cechova K, Tassi V, Dalla FR (1993): Opposite regulation of gene transcription and cell proliferation by c-Myc and Max. Proc Natl Acad Sci USA 90: 2935–2939

    Article  PubMed  CAS  Google Scholar 

  • Gu W, Bhatia K, Magrath IT, Dang CV, DallaFavera R (1994): Binding and suppresion of the myc transcriptional activation domain by p107. Science 264: 251–254

    Article  PubMed  CAS  Google Scholar 

  • Gupta S, Seth A, Davis RJ (1993): Transactivation of gene expression by Myc is inhibited by mutation at the phosphorylation sites Thr-58 and Ser-62. Proc Natl Acad Sci USA 90: 3216–3220

    Article  PubMed  CAS  Google Scholar 

  • Gusse M, Ghysdael J, Evan G, Soussi T, Mechali M (1989): Translocation of a store of maternal cytoplasmic c-myc protein into nuclei during early development. Mol Cell Biol 9: 5395–5403

    PubMed  CAS  Google Scholar 

  • Halazonetis TD, Kandil AN (1991): Determination of the c-Myc DNA binding site. Proc Natl Acad Sci USA 6162–6166

    Google Scholar 

  • Hann SR, King MW, Bentley DL, Anderson CW, Eisenman RN (1988): A non-AUG translational initiation in c-myc exon 1 generates an N-terminally distinct protein whose synthesis is disrupted in Burkitt’s lymphomas. Cell 52: 185–195

    Article  PubMed  CAS  Google Scholar 

  • Hann SR, Dixit M, Sears RC, Sealy L (1994): The alternatively initiated c-Myc proteins differentially regulate transcription through a noncanonical DNA-binding site. Genes Dev 8: 2441–2452

    Article  PubMed  CAS  Google Scholar 

  • Hanson KD, Shichiri M, Follansbee MR, Sedivy JM (1994): Effects of c-myc expression on cell cycle progression. Mol Cell Biol 14: 5748–5755

    Article  PubMed  CAS  Google Scholar 

  • Hateboer G, Timmers H, Rustgi AK, Billaud M, Van’tVeer LJ, Bernards R (1993): TATA-binding protein and the retinoblastoma gene product bind to overlapping epitopes on c-Myc and adenovirus ElA protein. Proc Nail Acad Sci USA 90: 8489–8493

    Article  CAS  Google Scholar 

  • Heaney ML, Pierce J, Parsons JT (1986): Site-directed mutagenesis of the gag-myc gene of avian myelocytomatosis virus 29: biological activity and intracellular localization of structurally altered proteins. J Virol 60: 167–176

    PubMed  CAS  Google Scholar 

  • Henriksson M, Lüscher B (1996): Proteins of the Myc network: essential regulators of cell growth and differentiation. Adv Canc Res 68: 109–182

    Article  CAS  Google Scholar 

  • Henriksson M, Classon M, Ingvarsson S, Koskinen P, Sumegi J, Klein G, Thyberg J (1988): Elevated expression of c-myc and N-myc produces distinct changes in nuclear fine structure and chromatin organization. Oncogene 3: 587–591

    PubMed  CAS  Google Scholar 

  • Henriksson M, Bakardjiev A, Klein G, Lüscher B (1993): Phosphorylation sites mapping in the N-terminal domain of c-myc modulate its transforming potential. Oncogene 8: 3199–3209

    PubMed  CAS  Google Scholar 

  • Hermeking H, Eick D (1994): Mediation of c-Myc-induced apoptosis by p53. Science 265: 2091–2093

    Article  PubMed  CAS  Google Scholar 

  • Hermeking H, Wolf DA, Kohlhuber F, Dickmanns A, Biollaud M, Fanning E, Eick D (1994): Role of c-myc in simian virus 40 large tumor antigen-induced DNA synthesis in quiescent 3T3-L1 mouse fibroblasts. Proc Natl Acad Sci USA 91: 10412–10416

    Article  PubMed  CAS  Google Scholar 

  • Hoang AT, Cohen KJ, Barrett JF, Bergstrom DA, Dang CV (1994): Participation of cy-clin A in Myc-induced apoptosis. Proc Natl Acad Sci USA 91: 6875–6879

    Article  PubMed  CAS  Google Scholar 

  • Hoang AT, Lutterbach B, Lewis BC, Yano T, Chou T-Y, Barrett JF, Raffeld M, Hann SR, Dang CV (1995): A link between increase transforming activity of lymphoma-derived MYC mutant alleles, their defective regulation by p107, and altered phosphorylation of the c-Myc transactivation domain. Mol Cell Biol 15: 4031–4042

    PubMed  CAS  Google Scholar 

  • Hopewell R, Ziff EB (1995): The nerve growth factor-responsive PC12 cell line does not express the Myc dimerization partner Max. Mol Cell Biol 15: 3470–3478

    PubMed  CAS  Google Scholar 

  • Hu Y-F, Lüscher B, Admon A, Mermod N, Tjian R (1990): Transcription factor AP-4 contains multiple dimerization domains that regulate dimer specificity. Genes Dev 4: 1741–1752

    Article  PubMed  CAS  Google Scholar 

  • Huriin PJ, Ayer DE, Grandori C, Eisenman RN (1994): The Max transcription factor network: involvement of Mad in differentiation and an approach to identification of target genes. Cold Spring Harb. Symp Quant Biol 59: 109–116

    Article  Google Scholar 

  • Hurlin PJ, Queva C, Koskinen PJ, Steingrimsson E, Ayer DE, Dopeland NG, Jenkins NA, Eisenman RN (1995): Mad3 and Mad4: novel Max-interacting transcriptional repressors that suppress c-myc dependent transformation and are expressed during neural and epidermal differentiation. EMBO J 14: 5646–5659

    PubMed  CAS  Google Scholar 

  • Iguchi-Ariga SMM, Okazaki T, Itani T, Ogata M, Sato Y, Ariga H (1988): An initiation site of DNA replication with transcriptional enhancer activity present in the c-myc gene. EMBO J 7: 3135–3142

    PubMed  CAS  Google Scholar 

  • Inghirami G, Grignani F, Sternas L, Lombardi L, Knowles DM, Dalla-Favera R (1990): Down-regulation of LFA-1 adhesion receptors by c-Myc oncogene in human B lymphoblastoid cells. Science 250: 682–686

    Article  PubMed  CAS  Google Scholar 

  • Jansen-Durr P, Meichle A, Steiner P, Pagano M, Finke K, Botz J, Wessbecher J, Draetta G, Eilers M (1993): Differential modulation of cyclin gene expression by MYC. ProcNatl Acad Sci USA 90: 3685–3689

    Article  CAS  Google Scholar 

  • Jones PA (1986): DNA methylation and cancer. Cancer Res 46: 461–466

    PubMed  CAS  Google Scholar 

  • Jones PA, Buckley JD (1990): The role of DNA methylation in cancer. Adv Canc Res 54: 1–23

    Article  CAS  Google Scholar 

  • Kato G, Lee WMF, Chen L, Dang C (1992): Max: Functional domains and interaction with c-Myc. Genes Dev 6: 81–92

    Article  PubMed  CAS  Google Scholar 

  • Kato GJ, Barrett J, Villa-Garcia M, Dang CV (1990): An amino-terminal c-Myc domain required for neoplastic transformation activates transcription. Mol Cell Biol 10: 5914–5920

    PubMed  CAS  Google Scholar 

  • Kelly K, Siebenlist U (1986): The regulation and expression of c-myc in normal and malignant cells. Ann Rev Immunol 4: 317–338

    Article  CAS  Google Scholar 

  • Kerkhoff E, Bister K, Klempnauer K-H (1991): Sequence-specific DNA-binding by Myc proteins. Proc Natl Acad Sci USA 88: 4323–4327

    Article  PubMed  CAS  Google Scholar 

  • Kim YH, Buchholz MA, Chrest FJ, Nordin AA (1994): Up-regulation of c-myc induces the gene expression of the murine homologues of p34cdc2 and cyclin-dependent kinase-2 in T lymphocytes. J Immunol 152: 4328–4335

    PubMed  CAS  Google Scholar 

  • Koskinen PJ, Sistonen L, Evan G, Morimoto M, Alitalo K (1991): Nuclear colocalization of cellular and viral myc proteins with HSP70 in myooverexpressing cells. J Virol 65: 842–851

    PubMed  CAS  Google Scholar 

  • Koskinen PJ, Vastrik I, Makela TP, Eisenman RN, Alitalo K (1994): Cell Growth Diff 5: 313–320

    PubMed  CAS  Google Scholar 

  • Koskinen PJ, Ayer DE, Eisenman RN (1995): Repression of Myc-Ras cotransformation by Mad is mediated by multiple protein-protein interactions. Cell Growth Diff 6: 623–629

    PubMed  CAS  Google Scholar 

  • Kretzner L, Blackwood EM, Eisenman RN (1992): Myc and Max proteins possess distinct transcriptional activities. Nature 359: 426–429

    Article  PubMed  CAS  Google Scholar 

  • Land H, Parada LF, Weinberg RA (1983): Tumorigenic conversion of primary embryo fibroblasts requires at least two cooperating oncogenes. Nature 304: 596–602

    Article  PubMed  CAS  Google Scholar 

  • Lapdschultz WH, Johnson PF, McKnight SL (1987): The leucine zipper: a hypothetical structure common to a new class of DNA binding proteins. Science 240: 1759–1764

    Google Scholar 

  • Lane DP (1992): p53, guardian of the genome. Nature 358: 15–16

    Article  PubMed  CAS  Google Scholar 

  • Lane DP, Lu X, Hupp T, Hall PA (1994): The role of the p53 protein in the apoptotic response. Philos Trans R Soc Lond B Biol Sci 345: 277–280

    Article  PubMed  CAS  Google Scholar 

  • Lane DP, Midgley CA, Hupp TR, Lu X, Vojtesek B, Picksley SM (1995): On the regulation of the p53 tumour suppressor, and its role in the cellular response to DNA damage. Philos Trans R Soc Lond B Biol Sci 347: 83–87

    Article  PubMed  CAS  Google Scholar 

  • Lee LA, Dolde C, Barrett J, Wu CS, Dang CV (1996): A link between c-Myc-mediated transcriptional repression and neoplastic transformation. J Clin Invest 97: 1687–1695

    Article  PubMed  CAS  Google Scholar 

  • Lemaitre JM, Bocquet S, Buckle R, Mechali M (1995): Selective and rapid nuclear trans-location of a c-Myc-containing complex after fertilization of Xenopus laevis eggs. Mol Cell Biol 15: 5054–5062

    PubMed  CAS  Google Scholar 

  • Li L, Nerlov C, Prendergast G, MacGregor D, Ziff EB (1994): c-Myc activates and represses target gene through the E-box Myc binding site and the core promoter region respectively. EMBO J 13: 4070–4079

    PubMed  CAS  Google Scholar 

  • Lüscher B, Eisenman RN (1990): New light on Myc and Myb. Part I. Myc. Genes Dev 4: 2025–2035

    Article  Google Scholar 

  • Lüscher B, Kuenzel EA, Krebs EG, Eisenman RN (1989): Myc oncoproteins are phos-phorylated by casein kinase II. EMBO J 8: 1111–1119

    PubMed  Google Scholar 

  • Lutterbach B, Hann SR (1994): Hierarchical phosphorylation at N-terminal transformation-sensitive sites in c-Myc protein is regulated by mitogens and in mitosis. Mol Cell Biol 14: 5510–5522

    PubMed  CAS  Google Scholar 

  • Mäkelä TP, Koskinen PJ, Västrik I, Alitalo K (1992): Alternative forms of Max as enhancers or suppressors of Myc-Ras cotransformation. Science 256: 373–377

    Article  PubMed  Google Scholar 

  • Marcu KB, Bossone SA, Patel AJ (1992): Myc function and regulation. Ann Rev Biochem 61: 809–860

    Article  PubMed  CAS  Google Scholar 

  • Martel C, Lallemand D, Cremisi C (1995): Specific c-myc and max regulation in epithelial cells. Oncogene 10: 2195–2205

    PubMed  CAS  Google Scholar 

  • Martin SJ, Green DR (1995): Protease activation during apoptosis: death by a thousand cuts. Cell 82: 349–352

    Article  PubMed  CAS  Google Scholar 

  • Miltenberger RJ, Sukow KA, Farnham PJ (1995): An E-box-mediated increase in cad transcription at the Gl/S-phase boundary is suppressed by inhibitory c-Myc mutants. Mol Cell Biol 15: 2527–2535

    PubMed  CAS  Google Scholar 

  • Moshier JA, Dosescu J, Skunca M, Luk GD (1993): Transformation of NIHβT3 cells by ornithine decarboxylase overexpression. Cane Res 53: 2618–2622

    CAS  Google Scholar 

  • Muhle-Goll C, Nilges M, Pastore A (1995): The leucine zippers of the HLH-LZ proteins Max and c-Myc preferentially form heterodimers. Biochemistry 34: 13554–13564

    Article  PubMed  CAS  Google Scholar 

  • Mukherjee B, Morgenbesser SD, De PR (1992): Myc family oncoproteins function through a common pathway to transform normal cells in culture: cross-interference by Max and transacting dominant mutants. Genes Dev 6: 1480–1492

    Article  PubMed  CAS  Google Scholar 

  • Murre C, McCaw PS, Baltimore D (1989): A new DNA-binding and dimerization motif in immunoglublin enhancer binding, daughterless, MyoD, and Myc proteins. Cell 56: 777–783

    Article  PubMed  CAS  Google Scholar 

  • Negishi Y, Iguchi-Agriga SMM, Ariga H (1992): Protein complexes bearing myc-like antigenicity recognize two distinct DNA sequences. Oncogene 7: 543–548

    PubMed  CAS  Google Scholar 

  • O’Shea EK, Rutkowski RH, Kim PS (1989): Evidence that the leucine zipper is a coiled coil. Science 245: 538–541

    Article  Google Scholar 

  • Packham G, Cleveland JL (1994): Ornithine decarboxylase is a mediator of c-Myc-induced apoptosis. Mol Cell Biol 14: 5741–5747

    Article  PubMed  CAS  Google Scholar 

  • Packham G, Cleveland J (1995): c-Myc and apoptosis. Biochim Biophys Acta 1242: 11–28

    PubMed  Google Scholar 

  • Packham G, Cleveland JL (1996) c-Myc induces apoptosis and cell cycle progression by separable, yet overlapping, pathways. Oncogene 13: 461–469

    PubMed  CAS  Google Scholar 

  • Papas TS, Lautenberger JA (1985): Sequence curiosity in v-myc oncogene. Nature 318: 237

    Article  PubMed  CAS  Google Scholar 

  • Perry ME, Levine AJ (1993): Tumor-suppressor p53 and the cell cycle. Curr Opin Genet Dev 3: 50–54

    Article  PubMed  CAS  Google Scholar 

  • Persson H, Gray HE, Godeau F, Braunhut S, Bellvé AR (1986): Multiple growth-associated nuclear proteins immunoprecipitated by antisera raised against human c-myc peptide antigens. Mol Cell Biol 6: 942–949

    PubMed  CAS  Google Scholar 

  • Philipp A, Schneider A, Väsrik I, Finke K, Xiong Y, Beach D, Alitalo K, Eilers M (1994): Repression of cyclin Dl: a novel function of Myc. Mol Cell Biol 14: 4032–4043

    Article  PubMed  CAS  Google Scholar 

  • Prendergast GC, Cole MD (1989): Posttranscriptional regulation of cellular gene expression by the c-myc oncogene. Mol Cell Biol 9: 124–134

    PubMed  CAS  Google Scholar 

  • Prendergast GC, Ziff EB (1989): DNA binding motif. Nature 341: 392

    Article  PubMed  CAS  Google Scholar 

  • Prendergast GC, Ziff EB (1991): Methylation-sensitive sequence-specific DNA binding by the c-Myc basic region. Science 251: 186–189

    Article  PubMed  CAS  Google Scholar 

  • Prendergast GC, Lawe D, Ziff EB (1991): Association of Myn, the murine homolog of Max, with c-Myc stimulates methylation-sensitive DNA binding and Ras cotrans-formation. Cell 65: 395–407

    Article  PubMed  CAS  Google Scholar 

  • Prendergast GC, Hopewell R, Gorham B, Ziff EB (1992): Biphasic effect of Max on Myc transformation activity and dependence on N-and C-terminal Max functions. Genes Dev 6: 2429–2439

    Article  PubMed  CAS  Google Scholar 

  • Prochownik EV, Van Antwerp ME (1993): Differential patterns of DNA binding by myc and max proteins. Proc Natl Acad Sci USA 90: 960–964

    Article  PubMed  CAS  Google Scholar 

  • Pulverer BJ, Fisher C, Vousden K, Littlewood T, Evan G, Woodgett JR (1994): Site-specific modulation of c-Myc cotransformation by residues phosphorylated in vivo. Oncogene 9: 59–70

    PubMed  CAS  Google Scholar 

  • Ralston R (1991): Complementation of transforming domains in E1A/myc chimaeras. Nature 353: 866–869

    Article  PubMed  CAS  Google Scholar 

  • Reddy CD, Dasgupta P, Saikumar P, Du Jek H, Rauscher FJ, Reddy EP (1992): Mutational analysis of Max: role of basic, helix-loop-helix/leucine zipper domains in DNA binding, dimerization and regulation of Myc-mediated transcriptional activation. Oncogene 7: 2085–2092

    PubMed  CAS  Google Scholar 

  • Reisman D, Elkind NB, Roy B, Beamon J, Rotter V (1993): c-Myc transactivates the p53 promoter through a required downstream CACGTG motif. Cell Growth Diff 4: 57–65

    PubMed  CAS  Google Scholar 

  • Roy A, Carruthers C, Gutjahr T, Roeder RG (1993a): Direct role for Myc in transcription.initiation mediated by interactions with TFII-I. Nature 365: 359–361

    Article  PubMed  CAS  Google Scholar 

  • Roy AL, Malik S, Meisterernst M, Roeder RG (1993b): An alternative pathway for transcription initiation involving TFII-I. Nature 365: 355–359

    Article  PubMed  CAS  Google Scholar 

  • Rustgi AK, Dyson N, Bernards R (1991): Amino-terminal domains of c-myc and N-myc proteins, mediate binding to the retinoblastoma gene product. Nature 352: 541–544

    Article  PubMed  CAS  Google Scholar 

  • Sakamuro D, Eviner V, Elliott K, Showe L, White E, Prendergast GC (1995): c-Myc induces apeptosis in epithelial cells by p53-dependent and p53-independent mechanisms. Oncogene 11: 2411–2418

    PubMed  CAS  Google Scholar 

  • Sakamuro D, Elliott K, Wechsler R, Prendergast GC (1996): Binl, a novel Myc-inter-acting protein with features of a tumor suppressor. Nature Genet 14: 17–69

    Article  Google Scholar 

  • Saksela K, Mäkelä TP, Hughes K, Woodgett JR, Alitalo K (1992): Activation of protein kinase C increase phosphorylation of the L-myc trans-activator domain at a GSK-3 target site. Oncogene 7: 347–353

    PubMed  CAS  Google Scholar 

  • Sawyers CL, Callahan W, Witte ON (1992): Dominant negative MYC blocks transformation by ABL oncogenes. Cell 70: 901–1010

    Article  PubMed  CAS  Google Scholar 

  • Schaeper U, Boyd JM, Verma S, Uhlmann E, Subramanian T, Chinnadurai G (1995): Molecular cloning and characterization of cellular phosphoprotein that interacts with a conserved C-terminal domain of adenovirus El A involved in negative modulation of oncogenic transformation. Proc Natl Acad Sci USA 92: 10467–10471

    Article  PubMed  CAS  Google Scholar 

  • Schreiber-Agus N, Chin L, Chen K, Torres R, Rao G, Guida P, Skoultchi AI, De Pinho RA (1995): An amino-terminal domain of Mxil mediates anti-Myc oncogenic activity and interacts with a homolog of the yeast transcriptional repressor SIN3. Cell 80: 777–786

    Article  PubMed  CAS  Google Scholar 

  • Selvakumaran M, Lin HK, Sjin RT, Reed JC, Liebermann DA, Hoffman B (1994): The novel primary response gene MyD118 and the proto-oncogenes myb, myc, and bcl-2 modulate transforming growth factor beta 1-induced apoptosis of myeloid leukemia cells. Mol Cell Biol 14: 2352–2360

    Article  PubMed  CAS  Google Scholar 

  • Seth A, Alvarez E, Gupta S, Davis RJ (1991): A phosphorylation site located in the N-terminal domain of c-Myc increases transactivation of gene expression. J Biol Chem 266: 23521–23524

    PubMed  CAS  Google Scholar 

  • Seth A, Gupta S, Davis RJ (1993): Cell cycle regulation of the c-Myc transcriptional activation domain. Mol Cell Biol 13: 4125–4136

    PubMed  CAS  Google Scholar 

  • Shantz LM, Pegg AE (1994): Overproduction of ornithine decarboxylase caused by relief of translational repression is associated with neoplastic transformation. Cane Res 54: 2313–2316

    CAS  Google Scholar 

  • Shi L, Nishioka WK, Thng J, Bradbury EM, Litchfield DW, Greenberg AH (1994): Premature p34cdc2 activation required for apoptosis. Science 263: 1143–1145

    Article  PubMed  CAS  Google Scholar 

  • Shibuya H, Yoneyama M, Ninomiya-Tsuji J, Matsumoto K, Taniguchi T (1992): IL-2 and EGF receptors stimulate the hematopoietic cell cycle via different signaling pathways: demonstration of a novel role for c-Myc. Cell 70: 57–67

    Article  PubMed  CAS  Google Scholar 

  • Shichiri M, Hanson KD, Sedivy JM (1993): Effects of c-myc expression on proliferation, quiescence, and the GO to G1 transition in nontransformed cells. Cell Growth Diff 4: 93–104

    PubMed  CAS  Google Scholar 

  • Showe LC, Ballantine M, Nishikura K, Erikson J, Kaji H, Croce CM (1985): Cloning and sequencing of a c-myc oncogene in a Burkitt’s lymphoma cell line that is translocated to a germ line alpha switch region. Mol Cell Biol 5: 501–509

    PubMed  CAS  Google Scholar 

  • Shrivastava A, Saleque S, Kalpana GV, Artandi S, Goff SP, Calame K (1993): Inhibition of transcriptional regulator Yin-Yang-1 by association with c-Myc. Science 262: 1889–1892

    Article  PubMed  CAS  Google Scholar 

  • Sklar MD, Thompson E, Welsh MJ, Liebert M, Harney J, Grossman HB, Smith M, Prochownik EV (1991): Depletion of c-myc with specific antisense sequences reverses the transformed phenotype in ras oncogene-transformed NIH 3T3 cells. Mol Cell Biol 11: 3699–3710

    PubMed  CAS  Google Scholar 

  • Smith MJ, Charron-Prochownik DC, Prochownik EV (1990): The leucine zipper of c-Myc is required d for full inhibition of erythroleukemia differentiation. Mol Cell Biol 10: 5333–5339

    PubMed  CAS  Google Scholar 

  • Spector DL, Watt RA, Sullivan NF (1987): The v-and c-myc oncogene proteins co-localize in situ with small nuclear ribonucleoprotein particles. Oncogene 1: 5–12

    PubMed  CAS  Google Scholar 

  • Spencer CA, Groudine M (1991): Control of c-myc regulation in normal and neoplastic cells. Adv Cane Res 56: 1–48

    Article  CAS  Google Scholar 

  • Steiner P, Philipp A, Lukas J, Godden-Kent D, Pagano M, Mittnacht S, Bartek J, Eilers M (1995): Identification of a Myc-dependent step during the formation of active Gl cyclin-cdk complexes. EMBO J 14: 4814–4826

    PubMed  CAS  Google Scholar 

  • Stone J, de Lange T, Ramsay G, Jakobovits E, Bishop JM, Varmus H, Lee W (1987): Definition of regions in human c-myc that are involved in transformation and nuclear localization. Mol Cell Biol 7: 1697–1709

    PubMed  CAS  Google Scholar 

  • Street AJ, Blackwood E, Lüscher B, Eisenman RN (1990): Mutational analysis of the carboxyterminal casein kinase II phosphorylation site in human c-myc. Curr Top Microbiol Immunol 166: 251–258

    Article  PubMed  CAS  Google Scholar 

  • Suen T-C, Hung M-C (1991): c-myc reverses new-induced transformed morphology by transcriptional repression. Mol Cell Biol 11: 354–362

    PubMed  CAS  Google Scholar 

  • Suetake I, Tajima S, Asano A (1993): Identification of two novel mouse nuclear proteins that bind selectively to a methylated c-Myc recognizing sequence. Nuc Acids Res 21: 2125–2130

    Article  CAS  Google Scholar 

  • Tobias KE, Shor J, Kahana C (1995): c-Myc and Max transregulate the mouse ornithine decarboxylase promoter through interaction with two downstream CACGTG motifs. Oncogene 11: 1721–1727

    PubMed  CAS  Google Scholar 

  • Vastrik I, Makela TP, Koskinen PJ, Alitalo K (1995): Determination of sequences responsible for the differential regulation of Myc function by delta Max and Max. Oncogene 11: 553–560

    PubMed  CAS  Google Scholar 

  • Wagner AJ, Meyers C, Laimins LA, Hay N (1993): c-myc induces the expression and activity ornithine decarboxylase. Cell Growth DiffA: 879–883

    Google Scholar 

  • Wagner AJ, Kokonitis JM, Hay N (1994): Myc-mediated apoptosis requires wild-type p53 in a manner independent of cell cycle arrest and the ability of p53 to induce p21 wafl/cip1. Genes Dev 8: 2817–2830

    Article  PubMed  CAS  Google Scholar 

  • Wechsler DS, Dang CV (1992): Opposite orientations of DNA bending by c-Myc and Max. ProcNatl Acad Sci USA 89: 7635–7639

    Article  CAS  Google Scholar 

  • Wechsler DS, Papoulas O, Dang CV, Kingston RE (1994): Differential binding of c-Myc and Max to nucleosomal DNA. Mol Cell Biol 14: 4097–4107

    PubMed  CAS  Google Scholar 

  • Wenzel A, Cziepluch C, Hamann U, Scnürmann J, Schwab M (1991): The N-Myc onco-protein is associated in vivo with the phosphoprotein Max(p20/22) in human neuroblastoma cells. EMBO J 10: 3703–3712

    PubMed  CAS  Google Scholar 

  • Whyte M, Evan G (1995): The last cut is the deepest. Nature 376: 17–18

    Article  PubMed  CAS  Google Scholar 

  • Yang B-S, Gilbert JD, Freytag SO (1993): Overexpression of Myc suppresses CCAAT Transcription Factor/Nuclear Factor 1-dependent promoters in vivo. Mol Cell Biol 13: 3093–3102

    PubMed  CAS  Google Scholar 

  • Yano T, Sander CA, Clark HM, Dolezal MV, Jaffe ES, Raffeid M (1993): Clustered mutations in the second exon of the MYC gene in sporadic Burkitt’s lymphoma. Oncogene 8: 2141–2148

    Google Scholar 

  • Zervos AS, Gyuris J, Brent R ( 1993): Mxil, a protein that specifically interacts with Max to bind Myc-Max recognition sites. Cell 72: 223–232

    Article  PubMed  CAS  Google Scholar 

  • Zhu L, van den Heuvel S, Helin K, Fattaey A, Ewen M, Livingston D, Dyson N, Harlow E (1993): Inhibition of cell proliferation by p107, a relative of the retinoblastoma protein. Gems Dev 7: 1111–1125

    Article  CAS  Google Scholar 

  • Zoidl G, Brockmann D, Esche H (1993): Deletion of the β-turn/α-helix motif at the exon 2β boundary of humaa c-Myc leads to loss of its immortalizating function. Gene 131: 269–274

    Article  PubMed  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1997 Springer Basel AG

About this chapter

Cite this chapter

Prendergast, G.C. (1997). Myc Structure and Function. In: Yaniv, M., Ghysdael, J. (eds) Oncogenes as Transcriptional Regulators. Progress in Gene Expression. Birkhäuser, Basel. https://doi.org/10.1007/978-3-0348-8889-9_1

Download citation

  • DOI: https://doi.org/10.1007/978-3-0348-8889-9_1

  • Publisher Name: Birkhäuser, Basel

  • Print ISBN: 978-3-0348-9816-4

  • Online ISBN: 978-3-0348-8889-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics