Skip to main content

Regulation of Neutrophil Proteinases

  • Chapter
Molecular Biology of the Lung

Part of the book series: espiratory harmacology and harmacotherapy ((RPP))

  • 87 Accesses

Abstract

Proteinases play a central role in the degradation of proteins by hydrolyzing peptide bonds. Originally thought to fulfill primarily digestive functions, it now is believed that these enzymes are the principal regulators of a multitude of crucial and diverse physiologic processes and have a central role in pathologic tissue destruction of many organs. Their role in tissue destruction has been investigated in the greatest detail in the lungs, especially in relationship to the pathogenesis of emphysema. Recent investigations suggest prominent roles for proteinases in growth and development and in intracellular signaling.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Mayet WJ, Csemok E, Szymkowiak C, Gross WL, Meyer-zum-Buschenfelde KH (1993) Human endothelial cells express proteinase 3, the target antigen of anticytoplasmic antibodies in Wegener’s granulomatosis. Blood 382: 1221–1229

    Google Scholar 

  2. Corden J, Wasylyk B, Buchwalder A, Sassone-Corsi P, Kedinger C, Chambon P (1980) Promoter sequences of eukaryotic protein-coding genes. Science 209: 1406–1414

    Article  PubMed  CAS  Google Scholar 

  3. Myers RM, Tilly K, Maniatis T (1986) Fine structure genetic analysis of a beta-globin promoter. Science 232: 613–618

    Article  PubMed  CAS  Google Scholar 

  4. Mitchell PJ, Wang C, Tjian R (1987) Positive and negative regulation of transcription in vitro: enhancer-binding protine AP-2 is inhibited by SV40 T antigen. Cell 50: 847–861

    Article  PubMed  CAS  Google Scholar 

  5. Moreau-Gachelin F, Tavitian A, Tambourin P (1988) Spi-1 is a putative oncogene in virally induced murine erythroleukaemias. Nature 331: 277–280

    Article  PubMed  CAS  Google Scholar 

  6. Paul R, Schuetze S, Kozak SL, Kozak CA, Kabat D (1991) The Sfpi-1 proviral integration site of Friend erythroleukemia encodes the eta-related transcription factor PU-1. J Virol 65: 464–467

    PubMed  CAS  Google Scholar 

  7. Johnson PF, Landschulz WH, Graves BJ, McKnight SL (1987) Identification of a rat liver nuclear protein that binds to the enhancer core element of three animal viruses. Genes Dev 1: 133–146

    Article  PubMed  CAS  Google Scholar 

  8. Landschulz WH, Johnson PF, Adashi EY, Graves BJ (1988) Isolation of a recombinant copy of the gene encoding C/EBP. Genes Dev 2: 786–800

    Article  PubMed  CAS  Google Scholar 

  9. Biedenkapp H, Borgmeyer U, Sippel AE, Klempnauer KH (1988) Viral myb oncogene encodes a sequence-specific DNA-binding activity. Nature 335: 835–837

    Article  PubMed  CAS  Google Scholar 

  10. Parry GC, Mackman N (1994) A set of inducible genes expressed by activated human monocytic and endothelial cells contain кB-like sites that specifically bind c-Rel-p65 heterodimers. J Biol Chem 269: 20823–20825

    PubMed  CAS  Google Scholar 

  11. Vasios GW, Gold JD, Petkovich M, Chambon P, Gudas LJ (1989) A retinoic acid-responsive element is present in the 5′ flanking region of the laminin Bl gene. Proc Natl Acad Sci USA 86: 9099–9103

    Article  PubMed  CAS  Google Scholar 

  12. Sturrock AB, Franklin KF, Hoidal JR (1996) Human proteinase-3 expression is regulated by PU-1 in conjunction with a cytidine-rich element. J Biol Chem 271: 32392–32402

    Article  PubMed  CAS  Google Scholar 

  13. Pahl HL, Rosmarin AG, Tenen DG (1992) Characterization of the myeloid-specific CD11b promoter. Blood 79: 865–870

    PubMed  CAS  Google Scholar 

  14. Postel EH, Berberich SJ, Flint SJ, Ferrone CA (1993) Human c-myc transcription factor PuF identified as nm23-H2 nucleoside diphosphate kinase, a candidate suppressor of tumor metastasis. Science 261: 478–480

    Article  PubMed  CAS  Google Scholar 

  15. Spencer CA, Groudine M (1991) Control of the c-myc regulation in normal and neiplastic cells. Adv Cancer Res 56: 1–48

    Article  PubMed  CAS  Google Scholar 

  16. Han J, Unlap T, Rado TA (1991) Expression of the human neutrophil elastase gene: positive and negative transcriptional elements in the 5′ flanking region. Biochem Biophys Res Commun 181: 1462–1468

    Article  PubMed  CAS  Google Scholar 

  17. Dynan WS, Tjian R (1983) The promoter-specific transcription factor Spl binds to upstream sequences in the SV40 early promoter. Cell 35: 79–87

    Article  PubMed  CAS  Google Scholar 

  18. Srikanth S, Rado TA (1994) A 30-base pair element is responsible for the myeloid-specific activity of the human neutrophil elastase promoter. J Biol Chem 269: 32626–32633

    PubMed  CAS  Google Scholar 

  19. Yoshimura K, Chu C-S, Crystal RG (1994) Enhancer function of a 53-BP repetitive element in the 5′ flanking region of the human neutrophil elastase gene. Biochem Biophys Res Commun 204: 38–42

    Article  PubMed  CAS  Google Scholar 

  20. Nuchprayoon I, Meyers S, Scott LM, Suzow J, Hiebert S, Friedman AD (1994) PEBP2/CBF, the murine homolog of the human myeloid AML1 and PEBP2/2/CBFβ proto-oncoproteins, regulates the murine myeloperoxidase and neutrophil elastase genes in immature myeloid cells. Mol Cell Biol 14: 5558–5568

    PubMed  CAS  Google Scholar 

  21. Kamachi Y, Ogawa E, Asano M, Ishida S, Murakami Y, Satake M, Ito Y, Shigesada K (1990) Purification of a mouse nuclear factor that binds to both the A and B cores of the polyoma-virus enhancer. J Virol 64: 4808–4819

    PubMed  CAS  Google Scholar 

  22. Wang SW, Speck NA (1992) Purification of core-binding factor, a protein that binds the conserved core site in murine leukemia virus enhancers. Mol Cell Biol 12: 89–102

    PubMed  CAS  Google Scholar 

  23. Oelgeschlager M, Nuchprayoon I, Luscher B, Friedman AD (1996) C/EBP, c-Myb, and PU-1 cooperate to regulate the neutrophil elastase promoter. Mol Cell Biol 16: 4717–4725

    PubMed  CAS  Google Scholar 

  24. Nuchprayoon I, Simkevich CP, Luo M, Friedman AD, Rosmarin AG (1997) GABP cooperates with c-Myb and C/EBP to activate the neutrophil elastase promoter. Blood 89: 4546–4554

    PubMed  CAS  Google Scholar 

  25. Hohn PA, Popescu NC, Hanson RD, Salvesen G, Ley TJ (1989) Genomic organization and chromosomal localization of the human cathepsin G gene. J Biol Chem 264: 13412–13419

    PubMed  CAS  Google Scholar 

  26. Grisolano JL, Sclar GM, Ley TJ (1994) Early myeloid cell-specific expression of the human cathepsin G gene in transgenic mice. Proc Natl Acad Sci USA 91: 8989–8993

    Article  PubMed  CAS  Google Scholar 

  27. Grosveld E, van Assendelft GB, Greaves DR, Kollias G (1987) Position-independent, high-level expression of the human β-globin gene in transgenic mice. Cell 51: 975–985

    Article  PubMed  CAS  Google Scholar 

  28. Ley TJ (1991) The pharmacology of hemoglobin switching: of mice and men. Blood 77: 1146–1152

    PubMed  CAS  Google Scholar 

  29. Zhao W-G, Lu JP, Regmi A, Austin GE (1997) Identification and functional analysis of multiple murine myeloperoxidase (MPO) promoters and comparison with human MPO promoter region. Leukemia 11: 97–105

    Article  PubMed  CAS  Google Scholar 

  30. Klemsz MJ, McKercher SR, Celada A, Van-Beveren C, Maki RA (1990) The marophage and B cell-specific transcription factor PU-1 is related to the ets oncogene. Cell 61: 113–124

    Article  PubMed  CAS  Google Scholar 

  31. Zhang DE, Hetherington CJ, Chen HM, Tenen DG (1994) The macrophage transcription factor PU-1 directs tissue-specific expression of the macrophage colony-stimulating factor receptor. Mol Cell Biol 14: 373–381

    Article  PubMed  CAS  Google Scholar 

  32. Hohaus S, Petrovick MS, Voso MT, Sun Z, Zhang DE, Tenen DG (1995) PU-1 (Spi-1) and C/EBP a regulate expression of the granulocyte-macrophage colony-stimulating factor receptor a gene. Mol Cell Biol 15: 5830–5845

    PubMed  CAS  Google Scholar 

  33. Smith LT, Hohaus S, Gonzalez DA, Dziennis SE, Tenen DG (1996) PU-1 (Spi-1) and C/EBP-a regulate the granulocyte colony-stimulating factor receptor promoter in myeloid cells. Blood 88: 1234–1247

    PubMed  CAS  Google Scholar 

  34. Voso MT, Burn TC, Wulf G, Lim B, Leone G, Tenen DG (1994) Inhibition of hematopoi-esis by competitive binding of transcription factor PU-1. Proc Natl Acad Sci USA 91: 7932–7936

    Article  PubMed  CAS  Google Scholar 

  35. Cheng T, Shen H, Goikas D, Gere J, Tenen DG, Scadden DT (1996) Temporal mapping of gene expression levels during the differentiation of individual primary hematopoietic cells. Proc Natl AcadSci USA 93: 13158–13163

    Article  CAS  Google Scholar 

  36. Zhang D-E, Hohaus S, Voso MT, Chen H-M, Smith LT, Hetherington CJ, Tenen DG (1996) Function of PU-1 (Spi-1), C/EBP, and AML1 in early myelopoiesis: regulation of multiple myeloid CSF receptor promoters. Curr Topics Microbiol Immunol 211: 137–147

    Article  CAS  Google Scholar 

  37. Tenen DG, Hromas R, Licht JD, Zhang D-E (1997) Transcription factors, normal myeloid development, and leukemia. Blood 90: 489–519

    PubMed  CAS  Google Scholar 

  38. Pongubala JM, Nagulapalli S, Klemsz MJ, McKercher SR, Maki RA, Atchison ML (1992) PU-1 recruits a second nuclear factor to a site important for immunoglobulin K 3′ enhancer activity. Mol Cell Biol 12: 368–378

    PubMed  CAS  Google Scholar 

  39. Pongubala JM, Van-Beveren C, Nagulapalli S, Klemsz MJ, McKercher SR, Maki RA, Atchison ML (1993) Effect of PU-1 phosphorylation on interaction with NF-EM5 and transcriptional activation. Science 259: 1622–1625

    Article  PubMed  CAS  Google Scholar 

  40. Eisenbeis CF, Singh H, Storb U (1995) Pip, a novel IRF family member, is a lymphoid-specific, PU-1-dependent transcriptional activator. Genes Dev 9: 1377–1387

    Article  PubMed  CAS  Google Scholar 

  41. Hagemeier C, Bannister AJ, Cook A, Kouzarides T, Corden J, Wasylyk B, Buchwalder A, Sassone-Corsi P, Kedinger C, Chambon P (1993) The activation domain of transcription factor PU-1 binds the retinoblastoma (RB) protein and the transcription factor TFHD in vitro: RB shows sequence similarity to TFIID and TFIIB. Proc Natl Acad Sci USA 90: 1580–1584

    Article  PubMed  CAS  Google Scholar 

  42. Weintraub SJ, Chow KN, Luo RX, Zhang SH, He S, Dean DC (1995) Mechanism of active transcriptional repression by the retinoblastoma protein. Nature 375: 812–815

    Article  PubMed  CAS  Google Scholar 

  43. Ford AM, Bennett CA, Healy LE, Towatari M, Greaves MF, Enver T (1996) Regulation of the myeloperoxidase enhancer binding proteins Pul, C-EBP α, β-and δ during granulocyte-lineage specification. Proc Natl Acad Sci USA 93: 10838–10843

    Article  PubMed  CAS  Google Scholar 

  44. Wang CY, Petryniak B, Thompson CB, Kaelin WG, Leiden JM (1993) Regulation of the Ets-related transcription factor Elf-1 by binding to the retinoblastoma protein. Science 260: 1330–1335

    Article  PubMed  CAS  Google Scholar 

  45. Chen PL, Scully P, Shew JY, Wang JY, Lee WH (1989) Phosphorylation of the retinoblastoma gene product is modulated during the cell cycle and cellular differentiation. Cell 58: 1193–1198

    Article  PubMed  CAS  Google Scholar 

  46. Furukawa Y, DeCaprio JA, Freedman A, Kanakura Y, Nakamura M, Ernst TJ, Livingston DM, Griffin JD (1990) Expression and state of phosphorylation of the retinoblastoma susceptibility gene product in cycling and noncycling human hematopoiety cells. Proc Natl Acad Sci USA 87: 2770–2774

    Article  PubMed  CAS  Google Scholar 

  47. Scott EW, Simon MC, Anastasi J, Singh H (1994) Requirement of transcription factor PU-1 in the development of multiple hematopoietic lineages. Science 265: 1573–1577

    Article  PubMed  CAS  Google Scholar 

  48. McKercher SR, Torbett Be, Anderson KL, Henkel GW, Vestal DJ, Baribault H, Klemsz M, Feeney AJ, Wu GE, Paige CJ, Maki RA (1996) Targeted disruption of the PU-1 gene results in multiple hematopoietic abnormalities. EMBO J 15: 5647–5658

    PubMed  CAS  Google Scholar 

  49. Landschulz WH, Johnson PF, McKnight SL (1988) The leucine zipper: a hypothetical structure common to a new class of DNA binding proteins. Science 240: 1759–1764

    Article  PubMed  CAS  Google Scholar 

  50. Natsuka S, Akira S, Nishio Y, Hashimoto S, Sugita T, Isshiki H, Kishimoto T (1992) Macrophage differentiation-specific expression of NF-IL-6, a transcription factor for interleukin-6. Blood 79: 460–466

    PubMed  CAS  Google Scholar 

  51. Chumakov AM, Grillier I, Chumakova E, Chih D, Slater J, Koeffler HP (1997) Cloning of the novel human myeloid-cell-specific C/EBP-epsilon transcription factor. Mol Cell Biol 17: 1375–1386

    PubMed  CAS  Google Scholar 

  52. Antonson P, Stellan B, Yamanaka R, Xanthopoulos KG (1996) A novel human CCAAT/ enhancer binding protein gene, C/EBPepsilon, is expressed in cells of lymphoid and myeloid lineages and is localized on chromosome 14ql 1.2 close to the T cell receptor α/δ locus. Genomics 35: 30–38

    Article  PubMed  CAS  Google Scholar 

  53. Scott LM, Civin CI, Rorth P, Friedman AD (1992) A novel temporal expression pattern of three C/EBP family members in differentiating myelomonocytic cells. Blood 80: 1725–1735

    PubMed  CAS  Google Scholar 

  54. Wang ND, Finegold MJ, Bradley A, Ou CN, Abdelsayed SV, Wilde MD, Taylor LR, Wilson DR, Darlington GJ (1995) Impaired energy homeostasis in C/EBP α knock-out mice. Science 269: 1108–1112

    Article  PubMed  CAS  Google Scholar 

  55. Floby P, Barlow C, Kyelfjord H, Ahrlund-Richter L, Xanthopoulos KG (1996) Increased hepatic cell proliferation and lung abnormalities in mice deficient in CCAAT/enhancer binding protein a. J Biol Chem 271: 24753–24760

    Article  Google Scholar 

  56. Zhang D-E, Zhang P, Wang N-D, Hetherington CJ, Darlington GJ, Tenen DG (1997) Absence of granulocyte colony-stimulating factor signaling and neutrophil development in CCAAT enhancer binding protein α-deficient mice. Proc Natl Acad Sci USA 94: 569–574

    Article  PubMed  CAS  Google Scholar 

  57. Tanaka T, Akira S, Yoshida K, Umemoto M, Yoneda Y, Shirafuji N, Fujiwara H, Suematsu S, Yoshida N, Kishimoto T (1995) Targeted disruption of the NF-IL-6 gene discloses its essential role in bacteria killing and tumor cytotoxicity by macrophages. Cell 80: 353–361

    Article  PubMed  CAS  Google Scholar 

  58. Screpanti I, Romani L, Musiani P, Modesti A, Fattori E, Lazzaro D, Sellitto C, Scarpa S, Bellavia D, Lattanzio G (1995) Lymphoproliferative disorder and imbalanced T-helper response in C/EBP beta-deficient mice. EMBP J 14: 1932–1941

    CAS  Google Scholar 

  59. Luscher B, Eisenman RN (1990) New light on Myc and Myb. Part I. Myc. Genes Dev 4: 2025–2035

    Article  PubMed  CAS  Google Scholar 

  60. Luscher B, Eisenman RN (1990) New light on Myc and Myb. Part II. Myb. Genes Dev 4: 2235–2241

    Article  PubMed  CAS  Google Scholar 

  61. Sheiness D, Gardinier M (1984) Expression of a proto-oncogene (proto-myb) in hemopoi-etic tissues of mice. Mol Cell Biol 4: 1206–1212

    PubMed  CAS  Google Scholar 

  62. Gewirtz AM, Calabretta B (1988) A c-myb antisense oligodeoxynucleotide inhibits normal human hematopoiesis in vitro. Science 242: 1303–1306

    Article  PubMed  CAS  Google Scholar 

  63. Hoffman-Liebermann B, Liebermann DA (1991) Suppressiion of c-myc and c-myb is tightly linked to terminal differentiation induced by IL-6 or LIF and not growth inhibition in myeloid leukemia cells. Oncogene 6: 903–909

    PubMed  CAS  Google Scholar 

  64. Anfossi G, Gewirtz AM, Calabretta B (1989) An oligomer complementary to c-myb-en-coded mRNA inhibits proliferation of human myeloid leukemia cell lines. Proc Natl Acad Sci USA 86: 3379–3383

    Article  PubMed  CAS  Google Scholar 

  65. Mucenski ML, McLain K, Kier AB, Swerdlow SH, Schreiner CM, Miller TA, Pietryga DW, Scott WJ Jr, Potter SS (1991) A functional c-myb gene is required for normal murine fetal hepatic hematopoiesis. Cell 65: 677–689

    Article  PubMed  CAS  Google Scholar 

  66. Bainton DF, Farquhar MG (1966) Origin of granules in polymorphonuclear leukocytes. Two types derived from opposite faces of the Golgi complex in developing granulocytes. J Cell Biol 28: 277–301

    Article  PubMed  CAS  Google Scholar 

  67. Bainton DF, Ullyot JL Farquhar MG (1971) The development of neutrophilic polymorphonuclear leukocytes in human bone marrow. J Exp Med 134: 907–934

    Article  PubMed  CAS  Google Scholar 

  68. Oren A, Taylor JM (1995) The subcellular localization of defensins and myeloperoxidase in human neutrophils: immunocytochemical evidence for azurophil granule heterogeneity. J Lab Clin Med 125: 340–347

    PubMed  CAS  Google Scholar 

  69. Damiano VV, Kucich U, Murer E, Laudenslager N, Weinbaum G (1988) Ultrastructural quantitation of peroxidase-and elastase-containing granules in human neutrophils. Am J Pathol 131: 235–245

    PubMed  CAS  Google Scholar 

  70. Egesten A, Breton-Gorius J, Guichard J, Gullberg U, Olsson I (1994) The heterogeneity of azurophil granules in neutrophil promyelocytes: immunogold localization of myeloperoxidase, cathepsin G, leastase, proteinase 3, and bactericidal/permeability increasing protein. Blood 83: 2985–2994

    PubMed  CAS  Google Scholar 

  71. Borregaard N, Sehested M, Nielsen BS, Sengelov H, Kjeldsen L (1995) Biosynthesis of granule proteins in normal human bone marrow cells. Gelatinase is a marker of terminal neutrophil differentiation. Blood 85: 812–817

    PubMed  CAS  Google Scholar 

  72. Borregard N, Cowland JB (1997) Granules of the human neutrophilic polymorphonuclear leukocyte. Blood 89: 3503–3521

    Google Scholar 

  73. Gullberg U, Andersson E, Garwicz D, Lindmark A, Olsson I (1997) Biosynthesis, processing and sorting of neutrophil proteins: insight into neutrophil granule development. Eur J Haematol 58: 137–153

    Article  PubMed  CAS  Google Scholar 

  74. le Cabec V, Calafat J, Borregaard N (1997) Sorting of the specific granule protein, NGAL, during granulocytic maturation of HL-60 cells. Blood 89: 2113–2121

    PubMed  Google Scholar 

  75. Sigurdsson F, Khanna-Gupta A, Lawson N, Berliner N (1997) Control of late neutrophil-specific gene expression: insights into regulation of myeloid differentiation. Semin Hematol 34: 303–310

    PubMed  CAS  Google Scholar 

  76. Zimmer M, Medcalf RL, Fink TM, Mattmann C, Lichter P, Jenne DE (1992) Three human elastase-like genes coordinately expressed in the myelomonocyte lineage are organized as a single genetic locus on 19pter. Proc Natl Acad Sci USA 89: 8215–8219

    Article  PubMed  CAS  Google Scholar 

  77. Takahashi H, Nukiwa T, Yoshimura K, Quick CD, States DJ, Holmes MD, Whang-Peng J, Knutsen T, Crystal RG (1988) Structure of the human neutrophil elastase gene. J Biol Chem 263: 14739–14747

    PubMed  CAS  Google Scholar 

  78. Fouret P, du-Bois RM, Bernaudin JF, Takahashi H, Ferrans VJ, Crystal RG (1989) Expression of the neutrophil elastase gene during human bone marrow cell differentiation. J Exp Med 169: 833–845

    Article  PubMed  CAS  Google Scholar 

  79. Hanson RD, Hohn PA, Popescu NC, Ley TJ (1990) A cluster of hematopoietic serine protease genes is found on the same chromosomal band as the human α/δ-cell receptor locus. Proc Natl Acad Sci USA 87: 960–963

    Article  PubMed  CAS  Google Scholar 

  80. Sturrock AB, Franklin KF, Rao G, Marshall BC, Rebentisch MB, Lemons RS, Hoidal JR (1992) Structure, chromosomal assignment, and expression of the gene for proteinase-3. The Wegener’s granulomatosis autoantigen. J Biol Chem 267: 21193–21199

    PubMed  CAS  Google Scholar 

  81. Friedman AD, Krieder BL, Venturelli D, Rovera G (1991) Transcriptional regulation of two myeloid-specific genes, myeloperoxidase and lactoferrin, during differentiation of the murine cell line 32D C13. Blood 78: 2426–2432

    PubMed  CAS  Google Scholar 

  82. Suzow J, Friedman AD (1993) The murine myeloperoxidase promoter contains several functional elements, one of which binds a cell type-restricted transcription factor, myeloid nuclear factor 1 (MyNFl). Mol Cell Biol 13: 2141–2151

    PubMed  CAS  Google Scholar 

  83. Khanna-Gupta A, Zibello T, Kolla S, Neufeld EJ, Berliner N (1995) CCAAT displacement protein (CDP/cut) recognizes a slilencer element within the lactoferrin gene promoter. Blood 90: 2784–2795

    Google Scholar 

  84. Salvesen G, Enghild JJ (1990) An unusual specificity in the activation of neutrophil serine proteinase zymogens. Biochemistry 29: 5304–5308

    Article  PubMed  CAS  Google Scholar 

  85. McGuire MJ, Lipsky PE, Thiele DL (1992) Purification and characterization of dipeptidyl peptidase I from human spleen. Arch Biochem Biophys 295: 2180–288

    Article  Google Scholar 

  86. McGuire MJ, Lipsky PE, Thiele DL (1993) Generation of active myeloid and lymphoid granule serine proteases requires processing by the granule thiol protease dipeptidyl peptidase I. J Biol Chem 268: 2458–2467

    PubMed  CAS  Google Scholar 

  87. Rao NV, Rao GV, Hoidal JR (1997) Human Dipeptidyl-peptidase I: gene characterization, localization, and expression. J Biol Chem 272: 10260–10265

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1999 Springer Basel AG

About this chapter

Cite this chapter

Sturrock, A.B., Hoidal, J.R. (1999). Regulation of Neutrophil Proteinases. In: Stockley, R.A. (eds) Molecular Biology of the Lung. Respiratory Pharmacology and Pharmacotherapy. Birkhäuser, Basel. https://doi.org/10.1007/978-3-0348-8831-8_6

Download citation

  • DOI: https://doi.org/10.1007/978-3-0348-8831-8_6

  • Publisher Name: Birkhäuser, Basel

  • Print ISBN: 978-3-0348-9791-4

  • Online ISBN: 978-3-0348-8831-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics