Skip to main content

Sensors for biomolecular studies

  • Chapter
  • 159 Accesses

Part of the book series: BioMethods ((BIOMETHODS))

Abstract

Chemical sensing is a process by which selected information about chemical composition is obtained in real time. This usually takes the form of an amplified electrical signal related to the concentration of one or more chemical species present in the system. The signal can subsequently be manipulated in many ways, with varying degrees of sophistication, depending on the user’s requirements.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Göpel W, Hesse J, Zemel JN (eds) (1991) Sensors: a comprehensive survey. Vol. 2 and 3: Chemical and Biochemical Sensors. VCH, Weinheim

    Google Scholar 

  2. Göpel W (1995) Controlled signal transduction across interfaces of “Intelligent” molecular systems. Biosens Bioelectron10: 35–60

    Article  Google Scholar 

  3. Göpel W, Heiduschka P (1994) Introduction to bioelectronics: “Interfacing biology with electronics”. Biosens Bioelectron 9: iii-xiii

    Article  PubMed  Google Scholar 

  4. Connolly P (1994) Bioelectronic interfacing: micro-and nanofabrication techniques for generating predetermined molecular arrays. Trends Biotechnol12: 123–127

    Article  PubMed  CAS  Google Scholar 

  5. Allara DL (1995) Critical issues in applications of self-assembled monolayers. Biosens Bioelectron10: 771–784

    Article  CAS  Google Scholar 

  6. Chaudhury MK (1995) Self-assembled monolayers on polymer surfaces. Biosens Bioelectron10: 785–786

    Article  CAS  Google Scholar 

  7. Löfâs S, Johnsson B, Edström A, Hansson A, Lindquist G, Müller Hillgren R-M, Stigh L (1995) Methods for site controlled coupling to carboxymethyldextran surfaces in surface plasmon resonance sensors. Biosens Bioelectron10: 813–822

    Article  Google Scholar 

  8. Morales P, Pavone A, Sperandei M, Leter G, Mosiello L, Nencini L (1995) A laser assisted deposition techniques suitable for the fabrication of biosensors and molecular electronic devices. Biosens Bioelectron10: 847–852

    Article  PubMed  CAS  Google Scholar 

  9. Ratner BD (1995) Surface modification of polymers: chemical, biological and surface analytical challenges. Biosens Bioelectron10: 797–804

    Article  PubMed  CAS  Google Scholar 

  10. Decher G, Lehr B, Lowack K, Lvov Yu, Schmitt J (1994) New nanocomposite films for biosensors: layer-by-layer adsorbed films of polyelectrolytes, proteins or DNA. Bio-sens Bioelectron9: 677–684

    Article  CAS  Google Scholar 

  11. Geckeler KE, Müller B (1993) Polymer materials in biosensors. Naturwissenschaften80: 18–24

    Article  PubMed  CAS  Google Scholar 

  12. Bartlett PN, Cooper JM (1993) A review of the immobilization of enzymes in electropolymerized films. J Electroanal Chem362: 1–12

    Article  CAS  Google Scholar 

  13. Moser I, Schalkhammer Th, Mann-Buxbaum E, Hawa G, Rakohl M, Urban G, Pittner F (1992) Advanced immobilization and protein techniques on thin film biosensors. Sens Actuators B7: 356–362

    Article  Google Scholar 

  14. Fodor SPA, Read JL, Pirrung C, Stryer L, Lu AT, Sofas D (1991) Light-directed, spatially addressable parallel chemical synthesis. Science251: 767–773

    Article  PubMed  CAS  Google Scholar 

  15. Calvert JM (1993) Lithographic patterning of self-assembled films. J Vac Sci Technol B11: 2155–2163

    Article  CAS  Google Scholar 

  16. Morgan H, Pritchard DJ, Cooper JM (1995) Photo-patterning of sensor surfaces with biomolecular structures: Characterization using AFM and fluorescence microscopy. Biosens Bioelectron10: 841–846

    Article  PubMed  CAS  Google Scholar 

  17. Morales P, Pavone A, Sperandei M, Leter G, Mosiello L, Nencini L (1995) A laser assisted deposition techniques suitable for the fabrication of biosensors and molecular electronic devices. Biosens Bioelectron10: 847–852

    Article  PubMed  CAS  Google Scholar 

  18. Mittler-Neher S, Spinke J, Liley M, Nelles G, Weisser M, Back R, Wenz G, Knoll W (1995) Spectroscopic and surface-analytical characterization of self-assembled layers on Au. Biosens Bioelectron10: 903–916

    Article  CAS  Google Scholar 

  19. Pantano P, Kuhr WG (1993) Dehydrogenase-modified carbon-fiber microelectrodes for the measurement of neurotransmitter dynamics. 2. Covalent modification utilizing avidin-biotin technology. Anal Chem65: 623–630

    Article  PubMed  CAS  Google Scholar 

  20. Müller W, Ringsdorf H, Rump E, Wildburg G, Zhang X, Angermaier L, Knoll W, Liley M, Spinke J (1993) Attempts to mimic docking processes of the immune system: Recognition-induced formation of protein multilayers. Science262: 1706–1708

    Article  PubMed  Google Scholar 

  21. de Alwis U, Wilson GS (1989) Strategies for the reversible immobilization of enzymes by use of biotin-bound anti-enzyme antibodies. Talanta36: 249–253

    Article  PubMed  Google Scholar 

  22. Spinke J, Liley M, Guder H-J, Angermaier L, Knoll W (1993) Molecular recognition at self-assembled monolayers: The construction of multicomponent multilayers. Langmuir9: 1821–1825

    Article  CAS  Google Scholar 

  23. Dave BC, Dunn B, Valentine JS, Zink JI (1994) Sol-gel encapsulation methods for biosensors. Anal Chem66: 1120–1127

    Article  Google Scholar 

  24. Avnir D, Braun S, Lev O, Ottolenghi M (1994) Enzymes and other proteins entrapped in sol-gel materials. Chem Mater6: 1605–1614

    Article  CAS  Google Scholar 

  25. Harris JM (ed) (1992) Poly(ethylene glycol) chemistry. Biotechnical and Biomedical Applications. Plenum Press, New York and London

    Google Scholar 

  26. Lundström I (1994) Real-time biospecific interaction analysis. Biosens Bioelectron9: 725–736

    Article  Google Scholar 

  27. Löfås S, Johnsson B, Edström Å, Hansson A, Lindquist G, Müller Hillgren R-M, Stigh L (1995) Methods for site controlled coupling to carboxymethyldex-tran surfaces in surface plasmon resonan- ce sensors. Biosens Bioelectron 10: 813–822

    Article  Google Scholar 

  28. Brecht A, Gauglitz G (1995) Optical probes and transducers. Biosens Bioelectron10: 923–936

    Article  PubMed  CAS  Google Scholar 

  29. Rickert J, Brecht A, Göpel W (1997) Quartz microbalances for quantitive biosensing and characterizing protein multilayers. Biosens Bioelect12: 567–575

    Article  CAS  Google Scholar 

  30. Rickert J, Weiß T, Kraas, Jung G, Göpel W (1996) A New Affinity Biiosensor: Self-Assembled Thiols as Selective Monolayer Coatings of Quartz Microbalances. Conf. Proc. Eurosensors IX, Stockholm (S) (6/1995); Conf. Proc. ABI Workshop, Tampere (SF) 6/1995 and Biosens Bioelect 11: 591–598

    Article  CAS  Google Scholar 

  31. Rickert J, Brecht A, Göpel W (1997) QCM Operation in Liquids: Constant Sensitivity Found During Formation of Extended Protein Multilayers by Affinity. Analyt. Chem. 69: 1441–1448

    CAS  Google Scholar 

  32. Rickert J, Hayward GL, Cavic BA, Thompson W, Göpel W (1999) Biosensors Based on Acoustic Wave Devices. In: Baltes H, Göpel W, Hesse J (eds) “Sensors Update”, Vol. 5, Wiley-VCH, Weinheim (D), in press

    Google Scholar 

  33. Tom-Moy M, Baer RL, Spira-Solomon D, Doherty TP (1995) Atrazine measurements using surface transverse wave. Anal Chem67: 1510–1516

    Article  CAS  Google Scholar 

  34. Du J, Harding, GL, Ogilvy JA, Dencher PR, Lake M (1996) An experimental study of love wave acoustic sensors operating in liquids. Sens ActuatorsA 56: 211–219

    Google Scholar 

  35. Nieuwenhuizen MS, Venema A, in: Göpel G, Hesse J, Zemel N (ed) (1991) Sensors Volume 2: Chemical and Biochemical Sensors Part I, Verlag Chemie Weinheim pp 647–680

    Google Scholar 

  36. Suleiman AA, Guilbault GG (1994) Recent developments in piezoelectric immunosensors. Analyst119: 2279–2282

    Article  PubMed  CAS  Google Scholar 

  37. Ballantine DS, Martin SJ, Ricco AJ, Frye GC, Wohltjen H, White RM, Zellers ET (1997) Acoustic wave sensors-theory, design and physico-chemical applications. Academic Press San Diego

    Google Scholar 

  38. Rickert J, Weiß T, Kraas W, Jung G, Göpel W (1996) A new affinity biosensor: self-assembled thiols as selective monolayer coatings of quartz crystal microbalances. Biosens Bioelectron 11: 591 - 598

    Article  CAS  Google Scholar 

  39. Rickert J, Weiß T, Göpel W (1996) Self-assembled monolayers for chemical sensors: Molecular recognition by immobilized supramolecular structures. Sens Actuators B31: 45–50

    Article  Google Scholar 

  40. Rickert J, Brecht A, Göpel W (1996) QCM operation in liquids: Constant sensitivity during formation of extended protein multilayers by affinity. Anal Chem69: 1441–1448

    Article  Google Scholar 

  41. Su H, Chong S, Thompson M (1997) Kinetics of hybridization of interfacial RNA homopolymer studied by thickness shear mode acoustic wave sensor. Biosens & Bio-elect12: 161–173

    CAS  Google Scholar 

  42. Su H, Chong S, Thompson M (1997) Kinetics of hybridization of interfacial RNA homopolymer studied by thickness shear mode acoustic wave sensor. Biosens & Bio-elect12: 161–173

    CAS  Google Scholar 

  43. Jelesarov I, Leder L, Bosshard HR (1996) Methods (Orlando) 9: 533–541

    CAS  Google Scholar 

  44. Berger R, Gerber C, Gimzewski JK, Meyer E, Günthrodt H-J (1996) Thermal analysis using a micromechanical calorimeter. Appl Physics Let69: 40–42

    Article  CAS  Google Scholar 

  45. Berger R, Gerber C, Gimzewski JK (1996) Nanometers picowatts, femtojoules: Thermal analysis and optical spectroscopy using micromechanics. Analytical Methods & Instrumentation, Special Issue pTAS’96

    Google Scholar 

  46. Bard AJ, Faulkner, LR (1980) Electrochemical methods, fundamentals and applications. John Wiley & Sons New York

    Google Scholar 

  47. Kissinger PT, Heineman WR (ed) (1996) Laboratory techniques in electroanalytical chemistry. Marcel Dekker New York

    Google Scholar 

  48. Rusling JF, Suib SL (1994) Characterizing materials with cyclic voltammetry. Adv Mater6: 922–930

    Article  CAS  Google Scholar 

  49. O’Dea JJ, Osteryoung JG (1993) Characterization of quasi-reversible surface processes by square-wave voltammetry. Anal Chem65: 3090–3097

    Article  Google Scholar 

  50. Gabrielli C, Takenouti H, Haas O, Tsukada A (1991) Impedance investigations of the charge transport in film-modified electrodes. J Electro Anal Chem302: 59–89

    Article  CAS  Google Scholar 

  51. Lang G, Bacskai J, Inzelt G (1993) Impedance analysis of polymer film electrodes. Electrochim Acta38: 773–780

    Article  CAS  Google Scholar 

  52. Armstrong FA (1990) Probing metallo-proteins by voltammetry. Structure and Bonding72: 137–221

    Article  CAS  Google Scholar 

  53. Guo L-H, Hill HAO (1991) Direct electrochemistry of proteins and enzymes. Adv Inorg Chem36: 341–375

    Article  CAS  Google Scholar 

  54. Collinson M, Bowden EF (1992) Voltamme-try of covalently immobilized cytochrome c on self-assembled monolayer. Langmuir8: 1247–1250

    Article  CAS  Google Scholar 

  55. Niwa O, Xu Y, Halsall HB, Heineman WR (1993) Small-volume voltammetric detection of 4-aminophenol with interdigitated array electrodes and ist application to electrochemical enzyme immunoassay. Anal Chem65: 1559–1563

    Article  PubMed  CAS  Google Scholar 

  56. Fiaccabrino GC, Tang X-M, Skinner N, de Rooij NF, Koudelka-Hep M (1996) Electrochemical characterization of thin-film carbon interdigitated electrode arrays. Anal Chim Acta326: 155–161

    Article  CAS  Google Scholar 

  57. Hintsche R, Paeschke M, Wollenberger U, Schnakenberg U, Wagner B, Lisec T (1994) Microelectrode arrays and application to biosensing devices. Biosens & Bioelectron9: 697–705

    Article  CAS  Google Scholar 

  58. Brecht A, Burckardt R, Rickert J, Stemmler I, Schuetz A, Fischer S, Friedrich Th, Gaug-litz G, Goepel W (1996) Transducer based approaches for parallel binding assays in HTS. J Biomol Screen1: 191–201

    Article  CAS  Google Scholar 

  59. Schöning MJ, Tsarouchas D, Beckers L, Schubert J, Zander W, Kordos P, Luth H (1996) A highly long term stable silicon based pH-sensor fabricated by pulsed laser deposition technique. Sensors & Actuators B35: 228–233

    Article  Google Scholar 

  60. Voigt H, Schitthelm F, Lange T, Kullick T, Ferretti R (1996) Diamond-like carbon ISFET. Conf Proc Eurosensors X, Leuven Belgium

    Google Scholar 

  61. Hogg G, Lutze O, Cammann K (1996) Novel membrane material for ione selective field effect transistors with extended lifetime and improved selectivity. Anal Chim Acta335: 103–109

    Article  Google Scholar 

  62. Bone S, Zaba B (1992) Bioelectronics, John Wiley & Sons Chichester

    Google Scholar 

  63. Maupas H, Saby C, Martelet C, JaffrezicRenault N, Soldatkin AP, Charles MH, Delair T, Mandrand B (1996) Impedance analysis of Si/Si02 heterostrucutres grafted with antibodies: an approach for immunosensor development. J Electroanal Chem406: 53–58

    Article  Google Scholar 

  64. Tegenfeldt J (1997) Nanofabrication and characterization for applications in biochemistry and molecular electronics. Thesis, Lund University Sweden

    Google Scholar 

  65. Rickert J, Göpel W, Beck W, Jung G, Heiduschka P (1996) A `mixed’ self-assembled monolayer for an impedimetric immunosensor. Biosens Bioelectron11: 757–768

    Article  PubMed  CAS  Google Scholar 

  66. Sergeyeva TA, Lavrik NV, Piletsky SA, Rachkov AE, El’skaya AV (1996) Poly-aniline label-base conductometric sensor for IgG detection. Sens Actuators B34: 283–288

    Article  Google Scholar 

  67. van Gerwen P, Varian A, Huyberechts G, op de Beek M, Baert K, Sansen W, Hermans L, Mertens R (1997) Nanoscaled impedimetric sensors for multiparameter testing of biochemical samples. Proc. of 1st Conf. on Sensors for biomolecular studies microreaction technology, Frankfurt/Main Germany

    Google Scholar 

  68. Liedberg B, Nylander C, Lundström I (1983) Surface plasmon resonance for gas detection and biosensing. Sens Actuators4: 299–304

    Article  CAS  Google Scholar 

  69. Jorgenson RC, Yee SS (1993) Optical bio-sensors. Sens. Actuators B12: 213–220

    Article  CAS  Google Scholar 

  70. Lavers CR, Wilkinson JS (1994) Design principles of biosensors. Sens Actuators B22: 75–81

    Article  Google Scholar 

  71. Striebel Ch, Brecht A, Gauglitz G (1994) Characterization of biomembranes by spectral ellipsometry, surface plasmon resonance and interferometry with regard to biosensor application. Biosens Bioelectron9: 139–146

    Article  PubMed  CAS  Google Scholar 

  72. Piehler J, Brecht A, Gauglitz G (1996) Affinity detection of low molecular weight analytes. Anal Chem68: 139–143

    Article  PubMed  CAS  Google Scholar 

  73. Lukosz W (1995) Integrated optical chemical and direct biochemical sensors. Sens ActuatorsB 29: 37–50

    Google Scholar 

  74. Gauglitz G, Ingenhoff J (1994) Design of new integrated optical substrates for immuno-analytical applications. Fres J Anal Chem349: 355–359

    Article  CAS  Google Scholar 

  75. Gale MT, Baraldi LG, Kunz RE (1994) Proc SPIE-Int Soc Opt Eng, 2213: 2–10

    CAS  Google Scholar 

  76. Lai Q, Bachmann M, Hunziker W, Besse PA, Melchior H (1996) Arbitrary ratio power spitters using anglied silica on silicon multimode interference couplers. Elect Letters32: 1576–1577

    Article  Google Scholar 

  77. Nellen Ph, Lukosz W (1993) Integrated optical input grating couplers as direct affinity sensors. Biosens Bioelectron8: 129–147

    Article  Google Scholar 

  78. Edwards PR, Gill A, Pollard-Knight DV, Hoare M, Buckle PE, Lowe PA, Leatherbarrow RJ (1995) Kinetics of protein-protein interactions at the surface of an optical bio-sensor. Anal Biochem231: 210–217

    Article  PubMed  CAS  Google Scholar 

  79. Eigen M, Rigler R (1994) Sorting single molecules: Application to diagnostics and evolutionary biotechnology. Proc Natl Acad Sci USA91: 5740–5747

    Article  PubMed  CAS  Google Scholar 

  80. Dandliker WB, de Saussure VA (1970) Fluorescence polarization in immunochemistry. Immunochemistry7: 799–828

    Article  PubMed  CAS  Google Scholar 

  81. Maliwal BP, Lakowicz JR, Kupryszewski G, Rekowski P (1993) Fluorescence study of conformational flexibility of RNase S-peptide: Distance-distribution, end-to-end diffusion, and anisotropy decays. Biochemistry32: 12337–12345

    Article  PubMed  CAS  Google Scholar 

  82. Jin G, Tengvall P, Lundstrom I, Arwin H (1995) A biosensor concept based on imaging ellipsometry for visualization of bio-molecular interactions. Anal Biochem232: 69–72

    Article  PubMed  CAS  Google Scholar 

  83. Eggins B (1996) Biosensors: An Introduction. Wiley/Teubner, Chichester/Stuttgart

    Book  Google Scholar 

  84. Ye L, Hämmerle M, Olsthoorn AJJ, Schuhmann W, Schmidt H-L, Duine JA, Heller A (1993) High current density “wired” quinoprotein glucose dehydrogenase electrode. Anal Chem65: 238–241

    Article  CAS  Google Scholar 

  85. Willner I, Lapidot N, Riklin A, Kasher R, Zahavy E, Katz E (1994) Electron-transfer communication in glutathione reductase assemblies: Electrocatalytic, photocatalytic, and catalytic systems for the reduction of oxidized glutathione. J Am Chem Soc116: 1428–1441

    Article  CAS  Google Scholar 

  86. Piehler J, Brecht A, Giersch T, Hock B, Gauglitz G (1997) Assessment of affinity constants by rapid solid phase detection of equilibrium binding in a flow system. J Immun Meth201: 189–206

    Article  CAS  Google Scholar 

  87. Brecht A, Piehler J, Lang G, Gauglitz G (1995) A direct optical immunosensor for atrazin detection. Anal Chim Acta311: 289–299

    Article  CAS  Google Scholar 

  88. Le Gal La Salle A, Limoges B, Rapicault S, Degrand C, Brossier P (1995) New immunoassay techniques using NAFION-modified electrodes and cationic redox labels or enzyme labels. Anal Chim Acta311: 301–308

    Article  Google Scholar 

  89. Sugawara K, Tanaka S, Nakamura H (1995) Electrochemical assay of avidin and biotin using a biotin derivative labeled with an electroactive compound. Anal Chem67: 299–302

    Article  CAS  Google Scholar 

  90. Gonon FG, Frombarlet CM, Buda MJ, Pujol JF (1981) Electrochemical treatment of pyrolytic carbon fiber electrodes. Anal Chem53: 1386–1389

    Article  CAS  Google Scholar 

  91. Thompson M, Krull UJ, Worsfold PJ (1980) The analytical potential of chemoreception at bilayer lipid membranes. Anal Chim Acta117: 121–132

    Article  CAS  Google Scholar 

  92. Kindervater R, Göpel W, Ottenbacher D, Knichel M (1992). Biosensors based on receptors: Electrical transducer principles. GBF-Monographs (VCH, Weinheim), 17: 178–186

    CAS  Google Scholar 

  93. Ottenbacher D, Jähnig F, Göpel W (1993) A prototype biosensor based on transport proteins: Electrical transducers applied to lactose permease. Sens Actuators B13–14 173–175

    Article  Google Scholar 

  94. Sugao N, Sugawara M, Minami H, Uto M, Umezawa Y (1993) Na’/D-Glucose co-transporter based bilayer lipid membrane sensor for D-glucose. Anal Chem65: 363–369

    Article  PubMed  CAS  Google Scholar 

  95. Seifert K, Fendler K, Bamberg E (1993) Charge transport by ion translocating membrane proteins on solid supported membranes. Biophys J64: 384–391

    Article  PubMed  CAS  Google Scholar 

  96. Gross GW (1994) Internal dynamics of randomized mamalian neuroanl networks in culture. In: DA Sterger, TM McKenna (eds): Enabling technologies for cultured neruonal networks. Academic Press NY 277–317

    Google Scholar 

  97. Harsch A, Ziegler C, Göpel W (1997) Strychnine analysis with neuronal networks in vito: Extracellular array recording of network response. Biosens Bioelectron12: 827–835

    Article  PubMed  CAS  Google Scholar 

  98. Ziegler Ch, Harsch A, Göpel W. Natural Neural Networks for Quantitative Sensing of Neurochemicals: an Artificial Neural Network Analysis. (7/1998) Conf. Proc. 7th IMCS, Beijing (China) 801–803

    Google Scholar 

  99. Harsch A (1997) Extrazelluläre Ableitungen an neuronalen Netzwerken für die Biosensorik. Thesis, University of Tübingen, Germany

    Google Scholar 

  100. Göpel W, Ziegler Ch, Breer H, Schild D, Apfelbach R, Joerges J, and Malaka R (1998) Bioelectronic Noses: A Status Report, Part I. Biosens Bioelect13: 479–493

    Article  Google Scholar 

  101. Ziegler Ch, Göpel W, Hämmerle H, Jung G, Laxhuber L, Schmidt HL, Schütz S, Vögtle F, Zell A (1998) Bioelectronic Noses: A Status Report, Part II. Biosens Bioelect13: 539–571

    Article  CAS  Google Scholar 

  102. Göpel W (1998) Chemical Imaging. I. Concepts and Visions for Electronic and Bioelectronic Noses. Sensors and ActuatorsB52: 125–142

    Google Scholar 

  103. Weimar U, Göpel W (1998) Chemical Imaging: II. Trends in Practical Multiparameter Sensor Systems. Sensors and ActuatorsB52: 143–161

    CAS  Google Scholar 

  104. Kuhn H (1994) Reflections on biosystems motivating supramolecular engineering. Biosens Bioelectron9: 707–717

    Article  CAS  Google Scholar 

  105. Göpel W (1996) Nanosensors and Molecular Recognition. Nanotechnology, Spec. Issue of Microelectronics Engineering 32:75–110 Göpel W (1998) Bioelectronics and Nano-technologies. Conf. Proc. Biosensors 96, Bangkok (Thail.) (5/1996); Biosens Bioelect13: 723–728

    Article  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1999 Springer Basel AG

About this chapter

Cite this chapter

Rickert, J., Wessa, T., Göpel, W. (1999). Sensors for biomolecular studies. In: Köhler, J.M., Mejevaia, T., Saluz, H.P. (eds) Microsystem Technology. BioMethods. Birkhäuser, Basel. https://doi.org/10.1007/978-3-0348-8817-2_12

Download citation

  • DOI: https://doi.org/10.1007/978-3-0348-8817-2_12

  • Publisher Name: Birkhäuser, Basel

  • Print ISBN: 978-3-0348-9784-6

  • Online ISBN: 978-3-0348-8817-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics