Skip to main content

Role of non-neuronal and neuronal acetylcholine in the airways

  • Chapter
Muscarinic Receptors in Airways Diseases

Part of the book series: Progress in Inflammation Research ((PIR))

Abstract

It is well known that acetylcholine represents a dominant neurotransmitter within mammalian airways and that airway functions, like smooth muscle activity and secretion, are under a continuous cholinergic tone. However, the teleology of this basal cholinergic tone, assumed to originate from neuronal activity, appears difficult to understand, whereas neuronal cholinergic reflex activity can be regarded as a rational regulatory pathway to protect the airways from injury [1-3]. Based on recent experimental observations, both phenomena may reflect two different biological roles of acetylcholine, acting first as a universal cytomolecule (non-neuronal) and second as a classical neurotransmitter (neuronal).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Nadel JA, Widdicombe JG (1962) Reflex effects of upper airway irritation on total lung resistance and blood pressure. J Appl Physiol 17: 861–865

    PubMed  CAS  Google Scholar 

  2. Nadel JA (1980) Autonomic regulation of airway smooth muscle. In: JA Nadel (ed): Physiology and pharmacology of the airways, Marcel Dekker, New York, 217–257

    Google Scholar 

  3. Gross NJ (1989) Cholinergic control. In: PJ Barnes, IW Rodger, NC Thomson (eds): Asthma,basic mechanisms and clinical management. Academic Press, London, 381–393

    Google Scholar 

  4. Loewi O (1921) Über humorale Übertragbarkeit der Herznervenwirkung. Pflugers Arch 189: 239–242

    Google Scholar 

  5. Loewi O, Navratil E (1926) Über humorale Übertragbarkeit der Herznervenwirkung. X. Mitteilung. Uber das Schicksal des Vagusstoff. Pflügers Arch Gesamte Physiol 214: 678–688

    CAS  Google Scholar 

  6. Ewins AJ (1914) Acetylcholine, a new active principle of ergot. Biochem J 8: 44–49

    PubMed  CAS  Google Scholar 

  7. Burgen ASV (1995) The background of the muscarinic system. Life Sci 56: 801–806

    PubMed  CAS  Google Scholar 

  8. Dale HH, Dudley HW (1929) The presence of histamine and acetylcholine in the spleen of the ox and the horse. J Physiol (Lond) 58: 97–123

    Google Scholar 

  9. Beyer G, Wense UT (1936) Über den Nachweis von Hormonen in einzelligen Tieren. Cholin and Acetylcholin in Paramecium. Pfügers Arch Gesamte Physiol Menschen Tier 237: 417–422

    Google Scholar 

  10. Comline RS (1946) Synthesis of acetylcholine by non-nervous tissue. J Physiol (Lond) 105: 6–7P.

    CAS  Google Scholar 

  11. Biilbring E, Lourie EM, Pardoe U (1949) Presence of acetylcholine in Trypanosoma rhodesiense and its absence from Plasmodium gallinaceum. Br J Pharmacol 4: 290–294

    Google Scholar 

  12. Lentz TL (1966) Histochemical localization of neurohumors in a sponge. J Exp Zool 162: 171–180

    Google Scholar 

  13. Saxena PR, Tangri KK, Bhargava KP (1966) Identification of acetylcholine, histamine, and 5-hydroxytryptamine in Girardinia heterophylla (DECNE). Can J Physiol Pharmacol 44: 621–627

    PubMed  CAS  Google Scholar 

  14. Jaffe MJ (1970) Evidence for the regulation of phytochrome-mediated processes in bean roots by the neurohumor acetylcholine. Plant Physiol 46: 768–777

    PubMed  CAS  Google Scholar 

  15. Hartmann E, Kilbinger H (1974) Occurrence of light-dependent acetylcholine concentrations in higher plants. Experientia 30: 1387–1388

    CAS  Google Scholar 

  16. Erzen I, Brzin M. (1979) Cholinergic mechanisms in Planaria torva. Comp Biochem Physiol 64C: 207–216

    CAS  Google Scholar 

  17. Whittaker VP (1963) Identification of acetylcholine and related esters of biological origin. In: O Eichler, A Farah, GB Koelle (eds): Handbuch der Experimentellen Pharmakologie, Bd. 15. Springer Verlag, Berlin, 1–39

    Google Scholar 

  18. Koelle GB (1963) Cytological distributions and physiological functions of cholinesterases. In: O Eichler, A Farah, GB Koelle (eds): Handbuch der Experimentellen Pharmakologie,Bd. 15. Springer Verlag, Berlin, 187–298

    Google Scholar 

  19. Sastry BVR, Sadavongvivad C (1979) Cholinergic systems in non-nervous tissues. Pharmacol Rev 30: 65–132

    Google Scholar 

  20. Wessler I, Kirkpatrick CJ, Racké K (1999) The cholinergic pitfall: acetylcholine, a universal cell molecule in biological systems, including humans. Clin Exp Pharmacol Physiol 26: 198–205

    PubMed  CAS  Google Scholar 

  21. Grando SA (1997) Biological functions of keratinocyte cholinergic receptors. J Invest Dermatol Symp Proc 2: 41–48

    CAS  Google Scholar 

  22. Grando SA, Horton RM (1997) The keratinocyte cholinergic system: acetylcholine as an epidermal cytotransmitter. Curr Opin Dermatol 4: 262–268

    Google Scholar 

  23. Klapproth H, Reinheimer T, Metzen J, Munch M, Bittinger F, Kirkpatrick CJ, Höhle K-D, Schemann M, Racké K, Wessler I (1997) Non-neuronal acetylcholine, a signalling molecule synthesized by surface cells of rat and man. Naunyn-Schmiedeberg’s Arch Pharmacol 355: 515–523

    CAS  Google Scholar 

  24. Wessler I, Kirkpatrick CJ, Racke K (1998) Non-neuronal acetylcholine, a locally acting molecule widely distributed in biological systems: expression and function in humans. Pharmacol Ther 77: 59–79

    PubMed  CAS  Google Scholar 

  25. Widdicombe JG (1963) Regulation of tracheobronchial smooth muscle. Physiol Rev 43: 1–37

    PubMed  CAS  Google Scholar 

  26. Richardson JB (1979) Nerve supply to the lungs. Am Rev Respir Dis 119: 785–802

    PubMed  CAS  Google Scholar 

  27. Barnes PJ (1986) Neural control of human airways in health and Disease. Am Rev Respir Dis 134: 11289–1314

    Google Scholar 

  28. Barnes PJ (1991) Neural mechanisms in asthma. In: CP Page, PJ Barnes (eds): Pharmacology of asthma. Springer Verlag, Berlin, 143–159

    Google Scholar 

  29. Barnes PJ (1992) Modulation of neurotransmission in airways. Physiol Rev 72: 699–729

    PubMed  CAS  Google Scholar 

  30. Nachmansohn D, Machado AL (1943) The formation of acetylcholine. A new enzyme choline acetylase. J Neurophysiol 6: 397–403

    CAS  Google Scholar 

  31. Tucek S (1988) Choline acetyltransferase and the synthesis of acetylcholine. In: VP Whittaker (ed): Handbook of Experimental Pharmacology, Vol. 86. Springer Verlag, Berlin, 129–131

    Google Scholar 

  32. Rossier J (1977) Acetyl-coenzyme A and coenzyme A analogues, their effects on rat brain choline acetyltransferase. Biochem J 165: 321–326

    PubMed  CAS  Google Scholar 

  33. White HL, Wu JC (1973) Choline and carnitine acetyltransferase of heart. Biochem 12: 841–846

    CAS  Google Scholar 

  34. Tucek S (1982) The synthesis of acetylcholine in skeletal muscles of the rat. J Physiol (Lond) 322: 53–69

    CAS  Google Scholar 

  35. Tucek S (1978) Acetylcholine synthesis in neurons. Chapman & Hall, London

    Google Scholar 

  36. Adamic S (1972) Effects of quaternary ammonium compounds on choline entry into the rat diaphragm muscle fibre. Biochem Pharmacol 21: 2925–2929

    PubMed  CAS  Google Scholar 

  37. Ducis I (1988) The high-affinity choline uptake systen. In: VP Whittaker (ed): Handbook of Experimental Pharmacology, Vol 86. Springer Verlag, Berlin, 409–437

    Google Scholar 

  38. Birks R, MacIntosh FC (1961) Acetylcholine metabolism of a sympathetic ganglion. Can J Biochem Physiol 39: 787–825

    CAS  Google Scholar 

  39. Jope RS (1979) High affinity choline transport and acetylCoA production in brain and their roles in the regulation of acetylcholine synthesis. Brain Res Rev 1: 313–344

    CAS  Google Scholar 

  40. Cohen-Haguenauer O, Brice A, Berrard S, Nguyen VC, Mallet J, Frezal J (1990) Localization of the choline acetyltransferase (ChAT) gene to human chromosome 10. Genomics 6: 374–378

    PubMed  CAS  Google Scholar 

  41. Cervini R, Rocchi M, DiDonato S, Finocchiaro G (1991) Isolation and sub-chromosomal localization of a DNA fragment of the human choline acetyltransferase gene. Neurosci Lett 132: 191–194

    PubMed  CAS  Google Scholar 

  42. Viegas-Pequignot E, Berrard S, Brice A, Apiou F, Mallet J (1991) Localization of a 900- bp-long fragment of the human choline acetyltransferase gene to 10q11.2 by nonradioactive in situ hybridization. Genomics 9: 210–212

    PubMed  CAS  Google Scholar 

  43. Wu D, Hersh LB (1994) Choline acetyltransferase: celebrating its fiftieth year. J Neurochem 62: 1653–1663

    PubMed  CAS  Google Scholar 

  44. Ibanez CF, Pelto-Huikko M, Soder O, Ritzen EM, Hersh LB, Hökfelt T, Persson H (1991) Expression of choline acetyltransferase mRNA in spermatogenic cells results in an accumulation of the enzyme in the postacrosomal region of mature spermatozoa. Proc Natl Acad Sci USA 88: 3676–3680

    PubMed  CAS  Google Scholar 

  45. Benjanin S, Cervini R, Mallet J, Berrad S (1994) A unique gene organization for two cholinergic markers, choline acetyltransferase and a putative vesicular transporter of acetylcholine. J Biol Chem 269: 21944–57

    Google Scholar 

  46. Erickson JD, Varoqui H, Schäfer MK-H, Modi W, Diebler M-F, Weihe E, Rand J, Eiden LE, Bonner TI, Usdin TB (1994) Functional identification of a vesicular acetylcholine transporter and its expression from a “cholinergic” gene locus. J Biol Chem 269: 21929–21932

    PubMed  CAS  Google Scholar 

  47. Berrard S, Varoqui H, Cervini R, Israel M, Mellet J, Diebler MF (1995) Coregulation of two embedded gene products, choline acetyltransferase and the vesicular acetylcholine transporter. J Neurochem 65: 939–942

    PubMed  CAS  Google Scholar 

  48. Eiden LE (1998). The cholinergic gene locus. J Neurochem 70: 2227–2240

    PubMed  CAS  Google Scholar 

  49. Mautner HG (1986) Choline acetyltransferase. In: AA Boulton, GB Baker, PH Yu PH (eds): Neuromethods, Vol. 5, Neurotransmitter Enzymes. Humana Press Inc. Clifton, New Jersey, USA, 273–317

    Google Scholar 

  50. Schäfer MKH, Eiden LE, Weihe E (1998) Cholinergic neurons and terminal fields revealed by immunohistochemistry for the vesicular acetylcholine transporter.II. The peripheral nervous system. Neurosci 84: 361–376

    Google Scholar 

  51. Kawashima K, Fujii T, Watanabe Y, Misawa H (1998) Acetylcholine synthesis and muscarinic receptors subtype mRNA expression in T-lymphocytes. Life Sci 62: 1701–1705

    PubMed  CAS  Google Scholar 

  52. Fujii T, Tsuchiya T, Yamada S, Fujimoto K, Suzuki T, Kasahara T, Kawashima K (1996) Localization and synthesis of acetylcholine in human leukemic T cell lines. J Neurosci Res 44: 66–72

    PubMed  CAS  Google Scholar 

  53. Vogel P, Reinheimer T, Racké K, Bittinger F, Kirkpatrick CJ, Wessler I (1998) Expression of the non-neuronal cholinergic system in human circulating and immune cells. Naunyn-Schmiedeberg’s Arch Pharmacol (Suppl) 357: R21

    Google Scholar 

  54. Fuji T, Yamada S, Watanabe Y, Misawa H, Tajima S, Fujimoto K, Kasahara T, Kawashima K (1998) Induction of choline acetyltransferase mRNA in human mononuclear leukocytes stimulated by phytohemagglutinin, a T-cell activator. J Neuroimmunol 82: 101–107

    Google Scholar 

  55. Fritz S, Föhr KJ, Boddien S, Berg U, Bruckner C, Mayerhofer A (1999) Functional and molecular characterization of a muscarinic receptor type and evidence for expression of choline-acetyltransferase and vesicular acetylcholine transporter in human granulosaluteal cells. J Clin Endocrinol Metab 84: 1744–1750

    PubMed  CAS  Google Scholar 

  56. Anderson DC, King SC, Parsons SM (1983) Pharmacological characterization of the acetylcholine transport system in purified Torpedo electric organ synaptic vesicles. Mol Pharmacol 24: 46–54

    Google Scholar 

  57. Marshall IG, Parsons SM (1987) The vesicular acetylcholine transport system. Trends Pharmacol Sci 10: 174–177

    CAS  Google Scholar 

  58. Calakos N, Scheller R (1996) Synaptic vesicle biogenesis, docking, and fusion: a molecular description. Physiol Rev 76: 1–29

    PubMed  CAS  Google Scholar 

  59. Jahn R, Südhof TC (1994) Synaptic vesicles and exocytosis. Ann Rev Neurosci 17: 219–246

    PubMed  CAS  Google Scholar 

  60. Monck JR, Fernandez JM (1994) The exocytotic fusion pore and neurotransmitter release. Neuron 12: 707–716

    PubMed  CAS  Google Scholar 

  61. van der Kloot W, Molgo J (1994) Quantal acetylcholine release at the vertebrate neuromuscular junction. Physiol Rev 74: 899–991

    PubMed  Google Scholar 

  62. Volknandt W (1995) Commentary. The synaptic vesicle and its targets. Neuroscience 64: 277–300

    PubMed  CAS  Google Scholar 

  63. Fisher LJ, Schinstine M, Salvaterra P, Dekker AJ, Thai L, Gage FH (1993) In vivo production and release of acetylcholine from primary fibroblasts genetically modified to express choline acetyltransferase. J Neurochem. 61: 1323–1332

    PubMed  CAS  Google Scholar 

  64. Falk-Vairant J, Israel M, Bruner J, Stinnakre J, Meunier F-M, Gaultier P, Meunier FA, Lesbats B, Synguelakis M, Correges P et al (1996) Enhancement of quantal transmitter release and mediatophore expression by cyclic AMP in fibroblasts loaded with acetylcholine. Neurosci 75: 353–360

    CAS  Google Scholar 

  65. Rowell PR, Sastry BVR (1981) Human placental cholinergic system: depression of the uptake of α-aminoisobutyric acid in isolated human placental villi by choline acetyltransferase inhibitors. J Pharmacol Exp Ther 216: 232–238

    PubMed  CAS  Google Scholar 

  66. Sastry BVR (1997) Human placental cholinergic system. Biochem Pharmacol 53: 1577–1586

    PubMed  CAS  Google Scholar 

  67. Reinheimer T, Vogel P, Bittinger F, Kirkpatrick CJ, Saloga J, Knop J, Wessler I (1998) Up-regulation of non-neuronal acetylcholine in patients with atopic dermatitis. J Invest Dermatol (Suppl) 110: 556

    Google Scholar 

  68. Zhang XY, Robinson NE, Wang ZW, Lu MC (1995) Catecholamine affects acetylcholine release in trachea: α2-mediated inhibition and β2-mediated augmentation. Am J Physiol 268: L368–L373

    PubMed  CAS  Google Scholar 

  69. Edwards C, Dolezal V, Tucek S, Zemkova H, Vyskocil F (1985) Is an acetylcholine transport system responsible for nonquantal release of acetylcholine at the rodent myoneural junction? Proc Natl Acad Sci USA 82: 3514–3518

    PubMed  CAS  Google Scholar 

  70. Dunant Y, Israel M (1993) Ultrastructure and biophysics of acetylcholine release: Central role of the mediatophore. J Physiol (Paris) 87: 179–192

    CAS  Google Scholar 

  71. Maus ADJ, Pereira EFR, Karachunski PI, Horton RM, Navaneetham D, Macklin K, Cortes WS, Albuquerque EX, Conti-Fine BM (1998) Human and rodent bronchial epithelial cells express functional nicotinic acetylcholine receptors. Mol Pharmacol 54: 779–788

    PubMed  CAS  Google Scholar 

  72. Basbaum CB, Barnes PJ, Grillo M, Widdicombe JH, Nadel JA (1983) Adrenergic and cholinergic receptors in submucosal glands of the ferret trachea: autoradiographic localization. Eur J Respir Dis 64: 433–435

    Google Scholar 

  73. Grando SA, Crosby AM, Zelickson BD, Dahl MV (1993) Agarose gel keratinocyte outgrowth system as a model of skin re-epithelization: requirement of endogenous acetylcholine for outgrowth initiation. J Invest Dermatol 101: 804–810

    PubMed  CAS  Google Scholar 

  74. Grando SA, Kist DA, Qi M, Dahl MV (1993) Human keratinocytes synthesize, secrete, and degrade acetylcholine. J Invest Dermatol 101: 32–36

    PubMed  CAS  Google Scholar 

  75. Grando SA, Zelickson BD, Kist DA, Weinshenker D, Bigliardi PL, Wendelschafer-Crabb G, Kennedy WR, Dahl MV (1995) Keratinocyte muscarinic acetylcholine receptors: immunolocalization and partial characterization. J Invest Dermatol 104: 95–100

    PubMed  CAS  Google Scholar 

  76. Grando SA, Horton RM, Mauro TM, Kist DA, Lee TX, Dahl, MV (1996) Activation of keratinocyte nicotinic cholinergic receptors stimulates calcium influx and enhances cell differentiation. J Invest Dermatol 107: 412–418

    PubMed  CAS  Google Scholar 

  77. Wennerberg PA, Welch F (1977) Effects of cholinergic drugs on uptake of 14C-α-aminoisobutyric acid by human term placenta fragments: Implication for acetylcholine recognition sites and observations on the binding of radioactive cholinergic ligands. Fed Proc 36: 980–988

    Google Scholar 

  78. Athweh A, Grayhack MS, Richman DP (1984) A cholinergic receptor site on murine lymphocytes with novel binding characteristics. Life Sci 35: 2459–2469

    Google Scholar 

  79. Brunner F, Kukovetz WR (1986) Muscarinic receptors of the vascular bed: radioligand binding studies on bovine splenic veins. J Cardiovasc Pharmacol 8: 712–721

    PubMed  CAS  Google Scholar 

  80. Brunner F, Kiihberger E, Brockmeier D, Kukovetz WR (1990) Evidence for muscarinic receptors in endothelial cells from combined functional and binding studies. Eur J Pharmacol 187: 145–154

    PubMed  CAS  Google Scholar 

  81. Costa LG, Kaylor G, Murphy D (1988) Muscarinic cholinergic binding sites on rat lymphocytes. Immunopharmacol 16: 139–149

    CAS  Google Scholar 

  82. Maslinski W (1989) Cholinergic receptors of lymphocytes. Brain Behav Immunol 3: 1–14

    CAS  Google Scholar 

  83. O’Malley KE, Farrell CB, O’Boyle KM, Baird AW (1995) Cholinergic activation of Clsecretion in rat colonic epithelia. Eur J Pharmacol 275: 83–89

    PubMed  Google Scholar 

  84. Hootman SR, de-Ondarza J (1995) Regulation of goblet cell degranulation in isolated pancreatic ducts. Am J Physiol 268: G24–G32

    PubMed  CAS  Google Scholar 

  85. Hiemke C, Stolp M, Reuss S, Wevers A, Reinhardt S, Maelicke A, Schlegel S, Schröder H (1996) Expression of alpha subunit genes of nicotinic acetylcholine receptors in human lymphocytes. Neurosci Lett 214: 171–174

    PubMed  CAS  Google Scholar 

  86. Lapied B, Le Corrone H, Hue B (1990) Sensitive nicotinic and mixed nicotinic-muscarinic receptors in insect neurosecretory cells. Brain Res 533:132–136

    PubMed  CAS  Google Scholar 

  87. Shirvan MH, Pollard HB, Heldman E (1991) Mixed nicotinic and muscarinic features of cholinergic receptor coupled to secretion in bovine chromaffin cells. Proc Natl Acad Sci USA 88: 4860–4864

    PubMed  CAS  Google Scholar 

  88. Minette PA, Barnes PJ (1990) Muscarinic receptor subtypes in lung. Am Rev Respir Dis 141:S162–5165

    PubMed  CAS  Google Scholar 

  89. Mak JCW, Baraniuk JN, Barnes PJ (1992) Localization of muscarinic receptor subtype mRNAs in human lung. Am J Respir Cell Mol Biol 7: 344–348

    PubMed  CAS  Google Scholar 

  90. Barnes PJ (1993) Muscarinic receptor subtypes in airways. Life Sci 52: 521–527

    PubMed  CAS  Google Scholar 

  91. Singer-Lahat D, Rojas E, Felder CC (1996) Muscarinic receptor activated Ca2+ channels in non-excitable cells. In: J Klein, K Löffelholz K (eds): Progress in Brain Research, Vol 109. Elsevier, Amsterdam, 195–199

    Google Scholar 

  92. McDonald TV, Premack BA, Gardner P (1993) Flash photolysis of caged inosito1–1,4,5,- trisphosphate activates plasma membrane calcium current in human T cells. J Biol Chem 268: 3889–3896

    PubMed  CAS  Google Scholar 

  93. Alles GA, Hawes RC (1940) Cholinesterase in the blood of man. J Biol Chem 133: 375

    CAS  Google Scholar 

  94. Small RC, Good DM, Dixon JS, Kennedy I (1990) The effects of epithelium removal on the actions of cholinomimetic drugs in opened segments and perfused tubular preparations of guinea-pig trachea. Br J Pharmacol 100: 516–522

    PubMed  CAS  Google Scholar 

  95. Adler M, Reutter SA, Moore DH, Filbert MG (1991) Regulation of acetylcholine hydrolysis in canine tracheal smooth muscle. Eur J Pharmacol 205: 73–79

    PubMed  CAS  Google Scholar 

  96. Norel X, Angrisani M, Labat C, Gorenne I, Dulmet E, Rossi F, Brink C (1993) Degradation of acetylcholine in human airways: role of butyrylcholinesterase. Br J Pharmacol 108: 914–919

    PubMed  CAS  Google Scholar 

  97. Reinheimer T, Munch M, Bittinger F, Racké K, Kirkpatrick CJ, Wessler I (1998) Glucocorticoids mediate reduction of epithelial acetylcholine in the airways of rat and man. Eur J Pharmacol 349: 277–284

    PubMed  CAS  Google Scholar 

  98. Wessler I, Kirkpatrick CJ, Racke K (1999) Airway epithelium: more than just a barrier. Airway epithelium:source of non-neuronal acetylcholine and modulator of neurotransmission. Trends Pharmacol Sci 20: 52–53

    PubMed  CAS  Google Scholar 

  99. Krause RM, Hamann M, Bader CR, Liu J-H, Baroffio A, Bernheim L (1995) Activation of nicotinic acetylcholine receptors increases the rate of fusion of cultured human myoblasts. J Physiol (Lond) 489: 779–790

    CAS  Google Scholar 

  100. Miledi R, Molenaar PC, Polak RL, Tas JWM, van der Laaken T (1982) Neuronal and non-neuronal acetylcholine in the rat diaphragm. Proc R Soc London B 214: 153–168

    CAS  Google Scholar 

  101. Dolecal V, Tucek S (1983) The synthesis and release of acetylcholine in normal and den-ervated rat diaphragms during incubation in vitro. J Physiol (Lond) 334: 461–474

    Google Scholar 

  102. Parnavelas JG, Kelly W, Burnstock G (1985) Ultrastructural localization of choline acetyltransferase in vascular endothelial cells in rat brain. Nature 316: 724–725

    PubMed  CAS  Google Scholar 

  103. Gonzalez JL, Santos-Benito FF (1987) Synthesis of acetylcholine by endothelial cells isolated from rat brain cortex capillaries. Brain Res 412: 148–150

    PubMed  CAS  Google Scholar 

  104. Ikeda C, Morita I, Mori A, Fujimoto K, Suzuki T, Kawashima K, Murota S (1994) Phorbol ester stimulates acetylcholine synthesis in cultured endothelial cells isolated from porcine cerebral microvessels. Brain Res 655: 147–152

    PubMed  CAS  Google Scholar 

  105. Reinheimer T, Vogel P, Racké K, Bittinger F, Kirkpatrick CJ, Saloga J, Knop J, Wessler I (1998) Non-neuronal acetylcholine is increased in chronic inflammation like atopic dermatitis. Naunyn-Schmiedeberg’s Arch Pharmacol (Suppl) 358: R87

    Google Scholar 

  106. Fujii T, Yamada S, Misawa H, Tajima S, Fujimoto K, Suzuki T, Kawashima K (1995) Expression of choline acetyltransferase mRNA and protein in T-Lymphocytes. Proc Japan Acad (Ser. B) 71: 231–235

    Google Scholar 

  107. Strom TB, Sytkowski AT, Carpenter CB, Merrill JP (1974) Cholinergic augmentation of lymphocyte-mediated cytotoxicity. A study of the cholinergic receptor of cytotoxic T lymphocytes. Proc Natl Acad Sci USA 71: 1330–1334

    PubMed  CAS  Google Scholar 

  108. Haddock AM, Patel KR, Alston WC, Kerr JW (1975) Response of lymphocyte guanyl cyclase to propranolol, noradrenaline, thymoxamine and acetylcholine in extrinsic bronchial asthma. Br Med J 2: 357–359

    PubMed  CAS  Google Scholar 

  109. Masturzo P, Salmona M, Nordstrom O, Consolo S, Ladinski H (1985) Intact human lymphocyte membranes respond to muscarinic receptor stimulation by oxotremorine with marked changes in microviscosity and an increase in cyclic GMP. FEBS Lett 192: 194–198

    PubMed  CAS  Google Scholar 

  110. Richardson JB, Ferguson CC (1979) Neuromuscular structure and function in the airways. Federation Proc 38: 202–208

    CAS  Google Scholar 

  111. Gabella G (1987) Innervation of airway smooth muscle: fine structure. Ann Rev Physiol 49: 583–594

    CAS  Google Scholar 

  112. Coburn RF (1987) Peripheral airway ganglia. Ann Rev Physiol 49: 573–582

    CAS  Google Scholar 

  113. Jeffery PK (1994) Innervation of the airways mucosa: structure, function and changes in airway disease. In: R Goldie (ed): Immunopharmacology of epithelial barriers, Academic Press, London, 85–118

    Google Scholar 

  114. Fischer A, Canning BJ, Kummer W (1996) Correlation of vasoactive peptide and nitric oxide synthase with choline acetyltransferase in the airway innervation. Ann NY Acad Sci 805: 717–722

    PubMed  CAS  Google Scholar 

  115. Canning BJ, Fischer A (1997) Localization of cholinergic nerves in lower airways of guinea pigs using antisera to choline acetyltransferase. Am J Physiol Lung Cell Mol 16: L731–L738

    Google Scholar 

  116. Jeffery P, Reid L (1973) Intra-epithelial nerves in normal rat airways: a quantitative electron microscopic study. J Anat 114: 35–45

    PubMed  CAS  Google Scholar 

  117. Downing SE, Lee JC (1980) Nervous control of the pulmonary circulation. Ann Rev Physiol 42: 199–210

    CAS  Google Scholar 

  118. Andersson RGG, Grundström N (1987) Innervation of airway smooth muscle. Efferent mechanisms. Pharmac Ther 32: 107–130

    CAS  Google Scholar 

  119. Olsen CR, Colenbatch JH, Mebel PE, Nadel JA, Staub NC (1965) Motor control of pulmonary airways studied by nerve stimulation. J Appl Physiol 20: 202–208

    Google Scholar 

  120. Widdicombe JG (1954) Respiratory reflexes from the trachea and bronchi of the cat. J Physiol (Lond) 123: 55–70

    CAS  Google Scholar 

  121. Lundberg JM, Brodin E, Saria A (1983) Effects and distribution of vagal capsaicin-sensitive substance P neurons with special reference to the trachea and lungs. Acta Physiol Scand 119: 243–252

    PubMed  CAS  Google Scholar 

  122. Wessler I, Klein A, Pohan D, Maclagan J, Racke K (1991) Release of [3H]acetylcholine from the isolated rat or guinea-pig trachea evoked by preganglionic nerve stimulation; comparison to transmural stimulation. Naunyn-Schmiedeberg’s Arch Pharmacol 344: 403–411

    CAS  Google Scholar 

  123. Daniel EE, Kannan M, Davis C, Posey-Daniel V (1986) Ultrastructural studies on the neuromuscular control of human tracheal and bronchial msucle. Resp Physiol 63: 109–128

    CAS  Google Scholar 

  124. Wessler I, Bender H, Härle P, Höhle K-D, Kirdorf G, Klapproth H, Reinheimer T, Ricny J, Schniepp-Mendelssohn KE, Racké K (1995) Release of [3H]acetylcholine in human isolated bronchi: effect of indomethacin on muscarinic autoinhibition. Am J Resp Crit Care Med 151:1040–1046

    PubMed  CAS  Google Scholar 

  125. Smith AD, Winkler H (1972) Fundamental mechanisms in the release of catecholamines. In: H Blaschko, E Musholl (eds): Catecholamines, Handbuch der Experimentellen Pharmakologie, Bd 33, Springer Verlag, Berlin, 500–617

    Google Scholar 

  126. Roffel AF, Meurs H, Elzinga CRS, Zaagsma J (1990) Characterization of the muscarinic receptor subtype involved in phosphoinositide metabolism in bovine tracheal smooth muscle. Br J Pharmacol 99: 293–296

    PubMed  CAS  Google Scholar 

  127. Yang CM, Yo YY, Wang YY (1993) Intracellular calcium in canine cultured tracheal smooth muscle cells is regulated by M3 muscarinic receptors. Br J Pharmacol 110: 983–988

    PubMed  CAS  Google Scholar 

  128. Daniel EE, Bourreau JP, Abela A, Jury J (1992) The internal calcium store in airway muscle: emptying, refilling and chloride. Biochem Pharmacol 43: 29–37

    PubMed  CAS  Google Scholar 

  129. Jeffery PK (1990) Microscopic anatomy. In: RAL Brewis, GJ Gibson, DM Geddes DM (eds): Respiratory medicine, Bailliere Tindall, London, 57–78

    Google Scholar 

  130. Adriaensen D, Scheuermann DW (1993) Neuroendocrine cells and nerves of the lung. The Anatomical Record 236: 70–85

    PubMed  CAS  Google Scholar 

  131. Pack RJ, Al-Ugaily LH, Widdicombe JG (1984) The innervation of the trachea and extrapulmonary bronchi of the mouse. Cell Tissue Res 238: 61–68

    PubMed  CAS  Google Scholar 

  132. Reinheimer T, Bernedo P, Klapproth H, Oerlert B, Zeiske B, Racké K, Wessler I (1995) Synthesis and storage of acetylcholine in the isolated airways of rat, guinea-pig and man: species differences in the role of the airway mucosa. Am J Physiol 270: L722–L728

    Google Scholar 

  133. Webber SE, Widdicombe JG (1987) The effect of vasoactive intestinal peptide on smooth muscle tone and mucus secretion from the ferret trachea. Br J Pharmacol 91: 139–148

    PubMed  CAS  Google Scholar 

  134. Tokuyama K, Kuo HP, Rohde JA, Barnes PJ, Rogers DF (1990) Neural control of goblet cell secretion in guinea-pig airways. Am J Physiol 259: L108–L115

    PubMed  CAS  Google Scholar 

  135. Marin MG (1994) Update: Pharmacology of airway secretion. Pharmacol Rev 46: 35–65

    PubMed  CAS  Google Scholar 

  136. Phipps RJ, Richardson PS (1976) The effects of irritation at various levels of the airway upon tracheal mucus secretion in the cat. J Physiol (Lond) 261: 563–581

    CAS  Google Scholar 

  137. Johansson 0, Wang L (1993) Choline acetyltransferase-like immunofluorescence in epidermis of human skin. Neurobiology 1: 201–206

    PubMed  CAS  Google Scholar 

  138. Downing SE, Lee JC (1980) Nervous control of the pulmonary circulation. Ann Rev Physiol 42: 199–210

    CAS  Google Scholar 

  139. Hepp C (1969) Motor innervation of the pulmonary blood vessels of mammals. In: AP Fishman, HH Hecht (eds): The pulmonary circulation and interstitial space, Univ Chicago Press, Chicago, 195

    Google Scholar 

  140. Waaler BA (1971) Physiology of the pulmonary circulation. Angiologica 8: 266–284

    PubMed  CAS  Google Scholar 

  141. Cattaneo MG, Datri F, Vicentini LM (1997) Mechanisms of mitogen-activated protein kinase activation by nicotine in small-cell lung carcinoma cells. Biochem J 328: 499–503

    PubMed  CAS  Google Scholar 

  142. Guizzetti M, Cost LG (1996) Inhibition of muscarinic receptor-stimulated glial cell proliferation by ethanol. J Neurochem 67: 2236–2245

    PubMed  CAS  Google Scholar 

  143. Qui Y, Peng Y, Wang J (1996) Immunoregulatory role of neurotransmitters. Adv Neuroimmunol 6: 223–231

    Google Scholar 

  144. Wanner A, Salathé M, O’Riordan TG (1996) Mucociliary clearance in the airways. Am J Respir Crit Care Med 154: 1868–1902

    PubMed  CAS  Google Scholar 

  145. Olver REB, Davis B, Marin MG, Nadel JA (1975) Active transport of Na+ and Clacross the canine tracheal epithelium in vitro. Am Rev Respir Dis 112: 811–815

    CAS  Google Scholar 

  146. Cullen JJ, Welsh MJ (1986) Regulation of sodium absorption by canine tracheal epithelium. J Clin Invest 79: 73–79

    Google Scholar 

  147. McCann JD, Welsh MJ (1990) Regulation of Cl-and K+ channels in airway epithelium. Annu Rev Physiol 52: 115–135

    PubMed  CAS  Google Scholar 

  148. Acevedo M (1994) Effect of acetylcholine on ion transport in sheep tracheal epithelium. Pfliigers Arch 427: 543–546

    CAS  Google Scholar 

  149. Stewart C P, Turnberg LA (1989) A microelectrode study of responses to secretagogues by epithelial cells on villus and crypt of rat small intestine. Am J Physiol 257: G334–G343

    PubMed  CAS  Google Scholar 

  150. Biagi B, Wang YZ, Cooke HJ (1990) Effects of tetrodotoxin on chloride secretion in rabbit distal colon: tissue and cellular studies. Am J Physiol 258: G223–G230

    PubMed  CAS  Google Scholar 

  151. Altenberg GA, Subramanyam M., Bergmann JS, Johnson KM, Reuss L (1993) Muscarinic stimulation of gallbladder epithelium. I. Electrophysiology and signaling mechanisms. Am J Physiol 265: C1604–C1612

    PubMed  CAS  Google Scholar 

  152. Jansen FW, Fleure-Jakobs AM, De-Pont JJ, Bonting SL (1980) Blocking by 2,4,6-triaminopyrimidine of increased tight junction permeability induced by acetylcholine in the pancreas. Biochim Biophys Acta 598: 115–126

    PubMed  CAS  Google Scholar 

  153. Davis CW, Dowell ML, Lethem M, van Scott M (1992) Goblet cell degranulation in isolated canine tracheal epithelium: response to exogenous ATP, ADP, and adenosine. Am J Physiol 262: C1313–C1323

    PubMed  CAS  Google Scholar 

  154. Dwyer TM, Szebeni A, Diveki K, Farley JM (1992) Transient cholinergic glycoconjugate secretion from swine tracheal submucosal gland cells. Am J Physiol 262: L418–L426

    PubMed  CAS  Google Scholar 

  155. Gawin AZ, Emery BE, Baraniuk JN, Kaliner MA (1991) Nasal glandular secretory response to cholinergic stimulation in humans and guinea pigs. J Appl Physiol 71: 2460–2468

    PubMed  CAS  Google Scholar 

  156. Basbaum CB, Ueki I, Brezina L, Nadel JA (1981) Tracheal submucosal gland serous cells stimulated in vitro with adrenergic and cholinergic agonists. Cell Tissue Rev 220: 481–498

    CAS  Google Scholar 

  157. Bülbring E, Burn, JH, Shelley HJ (1953) Acetylcholine and ciliary movement in the gill plate of Mytilus edulis. Proc Roy Soc Ser Biol Sci 141: 445–466

    Google Scholar 

  158. Kordik P, Biilbring E, Burn JH (1952) Ciliary movement and acetylcholine. Br J Pharmacol 7: 67–79

    CAS  Google Scholar 

  159. Wong LB, Miller IF, Yeates DB (1988) Regulation of ciliary beat frequency by autonomic agonists in vivo. J Appl Physiol 65: 971–981

    CAS  Google Scholar 

  160. Wong LB, Miller IF, Yeates DB (1988) Regulation of ciliary beat frequency by autonomic mechanisms in vitro. J Appl Physiol 65: 1895–1901

    CAS  Google Scholar 

  161. Eljamal M., Wong LB, Yeates DB (1994) Capsaicin-activated bronchial-and alveolar-initiated pathways regulating tracheal ciliary beat frequency. J Appl Physiol 77: 1239–1245

    PubMed  CAS  Google Scholar 

  162. Hamm-Alvarez SF, Sheetz M (1998) Microtubule-dependent vesicle transport: modulation of channel and transporter activity in liver and kidney. Physiol Rev 78: 1109–1129

    PubMed  CAS  Google Scholar 

  163. Janmey PA (1998) The cytoskeleton and cell signaling: component localization and mechanical coupling. Physiol Rev 78: 763–781

    PubMed  CAS  Google Scholar 

  164. Gheber L, Priel Z (1994) metachronal activity of cultured mucociliary epithelium under normal and stimulated conditions. Cell Motil Cytoskeleton 28: 333–345

    PubMed  CAS  Google Scholar 

  165. Ueda F, Ban K, Ishima T (1995) Irsoglandine activates gap-junctional intercellular corn-munication through Ml muscarinic acetylcholine receptor. J Pharmacol Exp Ther 274: 815–819

    PubMed  CAS  Google Scholar 

  166. Klapproth H, Racké K, Wessler I (1994) Modulation of the airway smooth muscle tone by mediators released from cultured epithelial cells of rat trachea. Naunyn-Schmiedeberg’s Arch Pharmacol (Suppl) 349: R72

    Google Scholar 

  167. Kawashima K, Fujii T, Misawa H, Yamada S, Tajima S, Suzuki T, Fujimoto K, Kasahara T (1996) Presence and synthesis of acetylcholine in the blood. J Neurochem (Suppl 6) 66: S73

    Google Scholar 

  168. Rinner I, Kawashima K, Schauenstein K (1998) Rat lymphocytes produce and secrete acetylcholine in dependence of differentiation and activation. J Neuroimmunol 81: 31–37

    PubMed  CAS  Google Scholar 

  169. Rinner I, Schauenstein K (1991) The parasympathetic nervoues system takes part in the immuno-neuroendocrine dialogue. J Neuroimmunol 34: 165–172

    PubMed  CAS  Google Scholar 

  170. Felsner P, Hofer D, Rinner I, Mangge H, Gruber M, Korsatko W Schauenstein K (1992) Continuous in vivo treatment with catecholamines suppresses in vitro reactivity of peripheral blood lymphocytes via α-adrenoceptor mediated mechanisms. J Neuroimmunol 37: 47–57

    PubMed  CAS  Google Scholar 

  171. Felsner P, Hofer D, Rinner I, Porta S, Korsatko W Schauenstein K (1995) Adrenergic suppression of peripheral blood T-cell reactivity in the rat is due to activation of peripheral α2-receptors. J Neuroimmunol 57: 27–34

    PubMed  CAS  Google Scholar 

  172. Koyama S, Rennard SI, Robbins RA (1992) Acetylcholine stimulates bronchial epithelial cells to release neutrophil and monocyte chemotactic activity. Am J Physiol 262: L466–L471

    PubMed  CAS  Google Scholar 

  173. Klapproth H, Racké K, Wessler I (1998) Acetylcholine and nicotine stimulate the release of granulocyte-macrophage colony stimulating factor from cultured human bronchial epithelial cells. Naunyn-Schmiedeberg’s Arch Pharmacol 357: 472–475

    CAS  Google Scholar 

  174. Reinheimer T, Baumgärtner D, Höhle KD, Racké K, Wessler I (1997) Acetylcholine via muscarinic receptors inhibits histamine release from human bronchi. Am J Resp Crit Care Med 156: 389–395

    PubMed  CAS  Google Scholar 

  175. Metcalfe DD, Baram D, Mekori Y (1997) Mast cells. Physiol Rev 77: 1033–1079

    PubMed  CAS  Google Scholar 

  176. Reinheimer T, Zimmermann S, Weikel W, Racké K, Wessler I (1999) Acetylcholine and nicotine inhibit histamine release from human skin. Naunyn-Schmiedeberg’s Arch Pharmacol (Suppl.) 359: R22

    Google Scholar 

  177. Baroody FM, Ford S, Lichtenstein LM, Kagey-Sobotka, N. RM (1994) Physiologic responses and histamine release after nasal antigen challenge. Am J Respir Crit Care Med 149: 1457–1465

    PubMed  CAS  Google Scholar 

  178. Jeffery PK (1992) Pathology of asthma. In: PJ Barnes PJ (ed): Asthma,Br Med Bulletin 48, Churchill Livingstone, New York, 23–50

    Google Scholar 

  179. Arm JP, Lee TH (1992) The pathobiology of bronchial asthma. Adv Immunol 51: 323–382

    PubMed  CAS  Google Scholar 

  180. Goldstein RA (1994) NIH Conference. Asthma. Ann Inter Med 121: 698–708

    CAS  Google Scholar 

  181. Hay DWP, Farmer SG, Goldie RG (1994) Inflammatory mediators and modulation of epithelial/smooth muscle interactions. In: Goldie R (ed): Immunopharmacology of epithelial barriers, Academic Press, London, 119–146

    Google Scholar 

  182. Folkerts G, Nijkamp FP (1998) Airway epithelium: more than just a barrier. Trends Pharmacol Sci 19: 334–341

    PubMed  CAS  Google Scholar 

  183. Scott A (1962) Acetylcholine in normal and diseased skin. Brit J Derm 74: 317–322

    PubMed  CAS  Google Scholar 

  184. Fryer AD, Maclagan J (1984) Muscarinic inhibitory receptors in pulmonary parasympathetic nerves in the guinea-pig. Br J Pharmacol 83: 973–978

    PubMed  CAS  Google Scholar 

  185. Fryer AD, Jacoby DB (1991) Parainfluenza virus infection damages inhibitory M2-muscarinic receptors on pulmonary parasympathetic nerves in the guinea-pig. Br J Pharmacol 102: 267–271

    PubMed  CAS  Google Scholar 

  186. Watson N, Maclagan J, Barnes PJ (1993) Endogenous tachykinins facilitate transmission through parasympathetic ganglia in guinea-pig. Br J Pharmacol 109: 751–759

    PubMed  CAS  Google Scholar 

  187. Belvisi MG, Patacchini R, Barnes PJ, Maggi CA (1994) Facilitatory effects of selective agonists for tachykinin receptors on cholinergic neurotransmission: evidence for species differences. Br J Pharmacol 111: 103–110

    PubMed  CAS  Google Scholar 

  188. Ricny J, Höle K-D, Racké K, Wessler I (1995) Long term application of inhalative steroids does not affect synthesis and content of acetylcholine in human bronchi. Eur Resp J 8: 589–589

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2001 Springer Basel AG

About this chapter

Cite this chapter

Wessler, I.K., Kirkpatrick, C.J. (2001). Role of non-neuronal and neuronal acetylcholine in the airways. In: Zaagsma, J., Meurs, H., Roffel, A.F. (eds) Muscarinic Receptors in Airways Diseases. Progress in Inflammation Research. Birkhäuser, Basel. https://doi.org/10.1007/978-3-0348-8358-0_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-0348-8358-0_2

  • Publisher Name: Birkhäuser, Basel

  • Print ISBN: 978-3-0348-9532-3

  • Online ISBN: 978-3-0348-8358-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics