Skip to main content

Part of the book series: Pageoph Topical Volumes ((PTV))

Abstract

Accurate and reliable measurement of surface waves is important to Comprehensive Nuclear-Test-Ban Treaty (CTBT) monitoring because the M s :m b , discriminant and its regional variants can in many cases unambiguously identify events as earthquakes or explosions. Surface wave processing at the International Data Center (IDC) is designed to be completely automated and is performed using the program Maxsurf. Maxsurf searches for surface wave characteristics in the expected surface wave arrival time window for all continuous long-period and broadband data in the IDC processing stream. The Prototype IDC GSETT3 Reviewed Event Bulletin (REB) now contains a very large and growing data set of surface wave measurements. Users of this data set need to be aware of processing changes and calibration errors in the GSETT3 experimental bulletin. The prototype International Monitoring System (IMS) surface wave detection threshold is approximately one magnitude unit lower than the detection threshold of other global networks that use visual identification of surface waves. Surface wave identification and measurement can be improved through development of regionalized earth models, phase-matched filtering and the use of path corrected spectral magnitudes in place of M s . Regionalized earth models are developed through tomographic inversion of a very large data set of phase and group velocity dispersion measurements. Discrimination capability can be improved through the use of maximum likelihood magnitudes and maximum likelihood upper bounds.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Aki, K., and Richards, P. G., quantitative Seismology: Theory and Methods (W. H. Freeman, San Francisco, 1980).

    Google Scholar 

  • Archambeau, C. B., Flinn, E. A., and Lambert, D. G. (1966), Detection, Analysis, and Interpretation of Seismic Energy in the Upper Mantle, J. Geophys. Res. 71, 3483–3501.

    Article  Google Scholar 

  • Bache, T. C., Rodi, W. L., and Harkrider, D. G. (1978), Crustal Structures Inferred from Rayleigh-wave Signatures of NTS Explosions, Bull. Seismol. Soc. Am. 68, 1399–1413.

    Google Scholar 

  • Dziewonski, A. M., and Anderson, D. L. (1981), Preliminary Reference Earth Model, J. Phys. Earth Planet. Inter. 25, 297–356.

    Article  Google Scholar 

  • Dziewonski, A. M., Bloch, J., and Landisman, M. (1969), A New Technique for the Analysis of Transient Seismic Signals, Bull. Seismol. Soc. Am. 59, 427–444.

    Google Scholar 

  • Ekström, G., Dziewonski, A. M., Smith, G. P., and Su, W. (1996), Elastic and inelastic structure beneath Eurasia. In Proceed. 18th Annual Seismic Res. Symp. on Monitoring a Comprehensive Test Ban Treaty, 4–6 September, 1996, Phillips Laboratory Report PL-TR-96-2153, July, pp. 309–318, ADA313692.

    Google Scholar 

  • Fisk, M. D., Jepsen, D., and Murphy, J. R. (1999), Experimental Event-Screening Criteria at the Prototype International Data Center, Pure appl. geophy., submitted.

    Google Scholar 

  • Harkrider, D. G., Stevens, J. L., and Archambeau C. B. (1994), Theoretical Rayleigh and Love Waves from an Explosion in Prestressed Source Regions, Bull. Seismol. Soc. Am. 84, 1410–1442.

    Google Scholar 

  • Herak, M., and Herak, D. (1993), Distance Dependence of M s and Calibrating Function for 20 Second Rayleigh Waves, Bull. Seismol. Soc. Am. 83, 1881–1892.

    Google Scholar 

  • Herrin, E., and Goforth, T. (1977), Phase-matched Filtering: Application to the Study of Rayleigh Waves, Bull. Seismol. Soc. Am. 67, 1259–1275.

    Google Scholar 

  • Kennett, B. L. N., seismic Wave Propagation In Stratified Media (Cambridge University Press, Cambridge, UK, 1983).

    Google Scholar 

  • Levshin, A. L., Ritzwoller, M. H., and Smith, S. S. (1996), Group Velocity Variations Across Eurasia. In Proceed. 18th Annual Seismic Res. Symp. on Monitoring A Comprehensive Test Ban Treaty, 4–6 September, 1996, Phillips Laboratory Report PL-TR-96-2153, July, pp. 70–79, ADA313692.

    Google Scholar 

  • Marshall, P. D., and Basham, P. W. (1972), Discrimination Between Earthquakes and Underground Nuclear Explosions Employing an Improved M s Scale, Geophys. J. R. Astr. Soc. 28, 431–458.

    Article  Google Scholar 

  • Mcgarr, A. (1969), Amplitude Variations of Rayleigh Waves — Propagation Across a Continental Margin, Bull. Seismol. Soc. Am. 59, 1281–1305.

    Google Scholar 

  • Mcgarr, A., and Alsop, L. E. (1967), Transmission and Reflection of Rayleigh Waves at Vertical Boundaries, J. Geophys. Res. 72, 2169–2180.

    Article  Google Scholar 

  • Mclaughlin, K. L. (1988), Maximum-likelihood Event Magnitude Estimation with Bootstrapping for Uncertainty Estimation, Bull. Seismol. Soc. Am. 78, 855–862.

    Google Scholar 

  • Mitchell, B. J., Cong, L., and Xie, J. (1996), Seismic Attenuation Studies in the Middle East and Southern Asia, St. Louis University Scientific Report No. 1, PL-TR-96-2154, ADA317387.

    Google Scholar 

  • Mooney, W., Laske, G., and Masters, G. (1998), Crust 5.1: A Global Crustal Model at 5 Ă— 5 Degrees, J. Geophys. Res. 103(B1), 727–747.

    Article  Google Scholar 

  • Murphy, J. R., and Barker, B. W. (1996), A Preliminary Evaluation of Seismic Magnitude Determination at the International Data Center (IDC), EOS Transact. Am. Geophys. Union, November, P. F7.

    Google Scholar 

  • Nolet, G., seismic Wave Propagation and Seismic Tomography. In seismic Tomography With Applications In Global Seismology and Exploration Geophysics (ed. Nolet, G.) (D. Reidel Publishing, Dordrecht, Holland, 1987).

    Google Scholar 

  • Okal, E. A., and Talandier, J. (1987), M s: Theory of a Variable-period Mantle Magnitude, Geophys. Res. Lett. 14, 836–839.

    Article  Google Scholar 

  • Rezapour, M., and Pearce, R. G. (1998), Bias in Surface-wave Magnitude M s due to Inadequate Distance Corrections, Bull. Seismol. Soc. Am. 88, 43–61.

    Google Scholar 

  • Ritzwoller, M. H., Levshin, A. L., Ratnikova, L. I., and Tremblay, D. M. (1996), High resolution group velocity variations across Central Asia. In Proceed. 18th Annual Seismic Res. Symp. on Monitoring a Comprehensive Test Ban Treaty, 4–6 September, 1996, Phillips Laboratory Report PL-TR-96-2153, July, pp. 98–107, ADA313692.

    Google Scholar 

  • Ritzwoller, M. H., Vdovin, O. Y., and Levshin, A. L. (1999), Surface Wave Dispersion across Antarctica: A First Look, Antarctic J. US, in press.

    Google Scholar 

  • Stevens, J. L. (1986), Estimation of Scalar Moments From Explosion-generated Surface Waves, Bull. Seismol. Soc. Am. 76, 123–151.

    Google Scholar 

  • Stevens, J. L., and Day, S. M. (1985), The Physical Basis of the m b:M s and Variable Frequency Magnitude Methods for Earthquake/Explosion Discrimination, J. Geophys. Res. 90, 3009–3020.

    Article  Google Scholar 

  • Stevens, J. L., and Mclaughlin, K. L. (1996), Regionalized Maximum Likelihood Surface Wave Analysis, Maxwell Technologies Technical Report submitted to Phillips Laboratory, PL-TR-96-2273, SSS-DTR-96-15562, September, ADA321813.

    Google Scholar 

  • Stevens, J. L., and Mclaughlin, K. L. (1997), Improved Methods for Regionalized Surface Wave Analysis, Maxwell Technologies Final Report submitted to Phillips Laboratory, MFD-TR-97-15887, September.

    Google Scholar 

  • Stevens, J. L., and Mclaughlin, K. L. (1988), Analysis of Surface Waves from the Novaya Zemlya, Mururoa, and Amchitka Test Sites, and Maximum Likelihood Estimation of Scalar Moments from Earthquakes and Explosions, S-CUBED Technical Report submitted to Air Force Technical Applications Center, SSS-TR-89-9953, September.

    Google Scholar 

  • Sato, R. (1967), Attenuation of seismic waves, J. Phys. Earth 15, 32–61.

    Article  Google Scholar 

  • Takeuchi, H., and Saito, M., seismic Surface Waves, In methods Of Computational Physics (ed. Bolt, B. A.) v. 11 (Academic Press, New York, 1972) pp. 217–295.

    Google Scholar 

  • Thomas, J. H., Marshall, P. D., and Douglas, A. (1978), Rayleigh-wave Amplitudes from Earthquakes in the Range 0–150 Degrees, Geophys. J. R. Astr. Soc. 53, 191–200.

    Article  Google Scholar 

  • Vdovin, O. Y., Rial, J. A., Ritzwoller, M. H., and Levshin, A. L., (1999), Group-velocity Tomography of South America and the Surrounding Oceans, Geophys. J. Int. 136, 324–330.

    Article  Google Scholar 

  • Von Seggern, D. H. (1975a), Q for 20-Second Rayleigh Waves from Complete Great-Circle Paths, Teledyne Geotech Report SDAC-TR-75-3 submitted to the Defense Advanced Research Projects Agency, February.

    Google Scholar 

  • Von Seggern, D. H. (1975b), Distance-Amplitude Relationships for Long-Period P, S, and LR from Measurements on Recordings of the Long-Period Experimental Stations, Teledyne Geotech Report SDAC-TR-75-15 submitted to the Defense Advanced Research Projects Agency, September.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2001 Springer Basel AG

About this chapter

Cite this chapter

Stevens, J.L., Mclaughlin, K.L. (2001). Optimization of Surface Wave Identification and Measurement. In: Levshin, A.L., Ritzwoller, M.H. (eds) Monitoring the Comprehensive Nuclear-Test-Ban Treaty: Surface Waves. Pageoph Topical Volumes. Birkhäuser, Basel. https://doi.org/10.1007/978-3-0348-8264-4_12

Download citation

  • DOI: https://doi.org/10.1007/978-3-0348-8264-4_12

  • Publisher Name: Birkhäuser, Basel

  • Print ISBN: 978-3-7643-6551-6

  • Online ISBN: 978-3-0348-8264-4

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics