Skip to main content

History and development of HMG-CoA reductase inhibitors

  • Chapter

Part of the book series: Milestones in Drug Therapy MDT ((MDT))

Abstract

Coronary heart disease (CHD) is the leading cause of mortality in Western countries [1, 2]. A strong, positive correlation between high levels of plasma total and low-density lipoprotein (LDL) cholesterol and CHD is well established [3]. Dietary and/or pharmacological approaches aimed at lowering elevated plasma LDL appears therefore to be a logical intervention to reduce incidence of CHD or even reversing the development of coronary atherosclerosis [1, 48]. A number of cholesterol-lowering drugs are currently available for human use [1, 2, 9]. Among these, 3-hydroxy-3-methylglutaryl coenzyme A (HMG-CoA) reductase inhibitors, the so-called statins: atorvastatin, cerivastatinl, fluvastatin, pitavastatin, pravastatin, lovastatin, rosuvastatin and simvastatin, can achieve relatively large reductions in plasma cholesterol levels and are a well-established class of drugs for the treatment of hypercholesterolemia [10]. Clinical trials have demonstrated that they can induce regression of vascular atherosclerosis, as well as reduction of cardiovascular-related morbidity and mortality, in patients with and without coronary artery disease CAD [1121]. These trials provide a powerful endorsement of the value of lipid-lowering therapy with a statin in patients who are at risk for CAD.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Executive summary of the third report of the National Cholesterol Education Program (NECP) expert panel on detection, evaluation, and treatment of high blood cholesterol in adults (Adult Treatment Panel III). (2001) JAMA 285: 2486–2509

    Article  Google Scholar 

  2. nd Joint Task Force of European, other Societies on Coronary Prevention (1998) Prevention of coronary heart disease in clinical practice. Eur Heart J 19: 1434–1503

    Article  Google Scholar 

  3. Brown MS, Goldstein JL (1986) A receptor-mediated pathway for cholesterol homeostasis. Science 232: 34–47

    Article  PubMed  CAS  Google Scholar 

  4. Frick MH, Elo O, Haapa K, Heinonen OP, Heinsalim P, Helo P, Huttunen JK, Kaitainemi P, Koskinen P, Maunien V et al (1987) Helsinki Heart Study: primary prevention trial with gemfibrozil in middle-aged men with dyslipidemia. N Engl J Med 317: 1237–1245

    Article  PubMed  CAS  Google Scholar 

  5. Watts GF, Lewis B, Brunt JNH, Lewis ES, Coltart DJ, Smith LDR, Mann JI, Swan AV (1992) Effects on coronary artery disease of lipid-lowering diet, or diet plus cholestyramine, in the St Thomas’ Atherosclerosis Regression Study (STARS). Lancet 339: 563–569

    Article  PubMed  CAS  Google Scholar 

  6. Lipid Research Clinics Coronary Primary Prevention Trial: Results II (1984) The relationship of reduction in incidence of coronary heart disease to cholesterol lowering. JAMA 251: 365–374

    Article  Google Scholar 

  7. Buchwald H, Varco RL, Matts JP, Long JM, Fitch LL, Campbell GS, Pearce MB, Yellin AE, Edmiston WA, Smink RD et al for the PSCH group (1990) Effect of partial ileal bypass surgery on mortality and morbidity from coronary heart disease in patients with hypercholesterolemia. N Engl J Med 323: 946–955

    Article  PubMed  CAS  Google Scholar 

  8. Kane JP, Malloy MJ, Ports TA, Phillips NR, Diehl JC, Havel RJ (1990) Regression of coronary atherosclerosis during treatment of familial hypercholesterolemia with combined drug regimens. JAMA 264: 3007–3012

    Article  PubMed  CAS  Google Scholar 

  9. Knopp RH (1999) Drug treatment of lipid disorders. N Engl J Med 341: 498–511

    Article  PubMed  CAS  Google Scholar 

  10. Corsini A, Bellosta S, Baetta R, Fumagalli R, Bernini F (1999) New insights into the pharmacodynamics and pharmacokinetic properties of statins. Pharmacol Ther 84: 413–428

    Article  PubMed  CAS  Google Scholar 

  11. Brown BG, Zhao XQ, Sacco DE, Albers JJ (1993) Lipid lowering and plaque regression: new insights into prevention of plaque disruption and clinical events in coronary disease. Circulation 87: 1781–1791

    Article  PubMed  CAS  Google Scholar 

  12. Downs JR, Clearfield M, Weis S, Whitney E, Shapiro DR, Beere PA, Langendorfer A, Stein EA, Kruyer W, Gotto AM Jr (1998) Primary prevention of acute coronary events with lovastatin in men and women with average cholesterol levels: results of AFCAPS/TexCAPS. JAMA 279: 1615–1622

    Article  PubMed  CAS  Google Scholar 

  13. Herd JA, Ballantyne CM, Farmer JA, Ferguson JJ 3rd, Jones PH, West MS, Gould KL, Gotto AM Jr (1997) Effects of fluvastatin on coronary atherosclerosis in patients with mild to moderate cholesterol elevations [Lipoprotein and Coronary Atherosclerosis Study (LCAS)]. Am J Cardiol 80: 278–286

    Article  PubMed  CAS  Google Scholar 

  14. Jukema JW, Bruschke AV, van Boven AJ, Reiber JH, Bal ET, Zwinderman AH, Jansen H, Boerma GJ, van Rappard FM, Lie KI et al (1995) Effects of lipid lowering by pravastatin on progression and regression of coronary artery disease in symptomatic men with normal to moderately elevated serum cholesterol levels: the Regression Growth Evaluation Statin Study (REGRESS). Circulation 91: 2528–2540

    Article  PubMed  CAS  Google Scholar 

  15. Long-term intervention with pravastatin in ischaemic disease (LIPID) study group (1998) Prevention of cardiovascular events and death with pravastatin in patients with coronary heart disease and a broad range of initial cholesterol levels. N Engl J Med 339: 1349–1357

    Article  Google Scholar 

  16. Riegger G, Abletshauser C, Ludwig M, Schwandt P, Widimsky J, Weidinger G, Welzel D (1999) The effect of fluvastatin on cardiac events in patients with symptomatic coronary artery disease during one year of treatment. Atherosclerosis 144: 263–270

    Article  PubMed  CAS  Google Scholar 

  17. Sacks FM, Pfeffer MA, Moye LA, Rouleau JL, Rutherford JD, Cole TG (1996) The effect of pravastatin on coronary events after myocardial infarction in patients with average cholesterol levels. N Engl J Med 335: 1001–1009

    Article  PubMed  CAS  Google Scholar 

  18. Scandinavian Simvastatin Survival Study Group (1994) Randomised trial of cholesterol lowering in 4444 patients with coronary heart disease: the Scandinavian Simvastatin Survival Study (4S). Lancet 344: 1383–1389

    Google Scholar 

  19. Shepherd J, Cobbe SM, Ford I, Isles CG, Lorimer AR, MacFarlane PW, McKillop JH, Packard CJ (1995) Prevention of coronary heart disease with pravastatin in men with hypercholesterolemia. West of Scotland Coronary Prevention Study Group. N Engl J Med 333: 1301–1307

    Article  PubMed  CAS  Google Scholar 

  20. Pitt B, Waters D, Brown WV, van Boven AJ, Schwartz L, Title LM, Eisenberg D, Shurzinske L, McCormick LS (1999) Aggressive lipid-lowering therapy compared with angioplasty in stable coronary artery disease. Atorvastatin versus revascularization treatment investigators. N Engl J Med 341: 70–76

    Article  PubMed  CAS  Google Scholar 

  21. Schwartz GG, Olsson AG, Ezekowitz MD, Ganz P, Oliver MF, Waters D, Zeiher A, Chaitman BR, Leslie S, Stem T (2001) Myocardial Ischemia Reduction with Aggressive Cholesterol Lowering (MIRACL) Study Investigators Effects of atorvastatin on early recurrent ischemic events in acute coronary syndromes: the MIRACL study: a randomized controlled trial. JAMA 285: 1711–1718

    Article  PubMed  CAS  Google Scholar 

  22. Feussner G (1994) HMG-CoA reductase inhibitors. Curr Opin Lipidol 5: 59–68

    Article  PubMed  CAS  Google Scholar 

  23. Goldstein JL, Brown MS (1990) Regulation of the mevalonate pathway. Nature 343: 425–430

    Article  PubMed  CAS  Google Scholar 

  24. Grunter J, Ericsson J, Dallner G (1994) Branch-point reactions in the biosynthesis of cholesterol, dolichol, ubiquinone and prenylated proteins. Biochim Biophys Acta 1212: 259–277

    Article  Google Scholar 

  25. Bellosta S, Bernini F, Fern N, Quarato P, Canavesi M, Arnaboldi L, Fumagalli R, Paoletti R, Corsini A (1998) Direct vascular effects of HMG-CoA reductase inhibitors. Atherosclerosis 137 (Suppl): S101–S109

    Article  PubMed  CAS  Google Scholar 

  26. Bernini F, Didoni G, Bonfadini G, Bellosta S, Fumagalli R (1993) Requirement for mevalonate in acetylated LDL induction of cholesterol esterification in macrophages. Atherosclerosis 104: 19–26

    Article  PubMed  CAS  Google Scholar 

  27. Corsini A, Mazzotti M, Raiteri M, Soma MR, Gabbiani G, Fumagalli R, Paoletti R (1993) Relationship between mevalonate pathway and arterial myocyte proliferation: in vitro studies with inhibitors of HMG-CoA reductase. Atherosclerosis 101: 117–125

    Article  PubMed  CAS  Google Scholar 

  28. Rosenson RS, Tangney C (1998) Antiatherothrombotic properties of statins. JAMA 279: 1643–1650

    Article  PubMed  CAS  Google Scholar 

  29. Bellosta S, Ferri N, Bernini F, Paoletti R, Corsini A (2000) Non-lipid-related effects of statins. Ann Med 32: 164–176

    Article  PubMed  CAS  Google Scholar 

  30. Comparato C, Altana C, Bellosta S, Baetta R, Paoletti R, Corsini A (2001) Clinically relevant pleiotropic effects of statins: drug properties or effect of profound cholesterol reduction? Nutr Metab Cardiovasc Dis 11: 328–343

    PubMed  CAS  Google Scholar 

  31. Endo A, Kuroda M (1976) Citrinin, an inhibitor of cholesterol synthesis. J Antibiot 29: 841–843

    Article  PubMed  CAS  Google Scholar 

  32. Endo A, Kuroda M, Tsujita Y (1976) ML-236A, ML-236B and ML-236C, new inhibitors of cholesterogenesis produced by Penicillium citrinum. J Antibiot 29: 1346–1348

    Article  PubMed  CAS  Google Scholar 

  33. Brown AG, Smale TC, King TJ, Hasenkamp R, Thompson RH (1976) Crystal and molecular structure of compactin, a new antifungal metabolite from Penicillium brevicompactum. J Chem Soc Perkin I: 1165–1170

    Article  Google Scholar 

  34. Endo A, Kuroda M, Tanzawa K (1976) Competitive inhibition of 3-hydroxy-3-methylglutaryl coenzyme A reductase by ML-236A and ML-236B, fungal metabolites, having hypocholesterolemic activity. FEBS Lett 72: 323–326

    Article  PubMed  CAS  Google Scholar 

  35. Endo A (1979) Monacolin K, a new hypocholesterolemic agent produced by Monascus species. J Antibiot 32: 852–854

    Article  PubMed  CAS  Google Scholar 

  36. Alberts AW, Chen J, Kuron G, Hunt V, Huff J, Hoffmann C, Rothrock J, Lopez M, Joshua H, Harris E et al (1980) Mevinolin: a highly potent competitive inhibitor of hydroxy-methylglutarylcoenzyme A reductase and a cholesterol-lowering agent. Proc Nati Acad Sci USA 77: 3957–3961

    Article  CAS  Google Scholar 

  37. Arai M, Serizawa N, Terhara A, Tsujita Y, Tanaka M, Masuda H, Ishikawa S (1988) Pravastatin sodium (CS-514), a novel cholesterol lowering agent which inhibits HMG-CoA reductase. Sankyo Kenkyusho Nempo 40: 1–38

    CAS  Google Scholar 

  38. Hoffmann WF, Alberts AW, Cragoe EJ, Deanna AA, Evans BE, Gilfillan JL, Gould NP, Huff JW, Novello FC, Prugh JD et al (1986) 3-hydroxy-3-methylglutaryl Coenzyme A reductase inhibitors. 2. Structural modifications of 7-(substituted aryl)-3,5-dihydroxy-6-heptenoic acids and their lac-tone derivatives. J Med Chem 29: 159–169

    Article  Google Scholar 

  39. Kathawala FG (1991) HMG-CoA reductase inhibitors: an exciting development in the treatment of hyperlipoproteinemia. Med Res Rev 11: 121–146

    PubMed  CAS  Google Scholar 

  40. Endo A, Tsujita Y, Kuroda M, Tanzawa K (1977) Inhibition of cholesterol synthesis in vitro and in vivo by ML-236A and ML-236B, competitive inhibitors of 3-hydroxy-3-methylglutaryl Coenzyme A reductase. Eur J Biochem 77: 31–36

    Article  PubMed  CAS  Google Scholar 

  41. Istvan ES, Palnitkar M, Buchanan SK, Deisenhofer J (2000) Crystal structure of the catalytic portion of human HMG-CoA reductase: insights into regulation of activity and catalysis. EMBO J 19: 819–830

    Article  PubMed  CAS  Google Scholar 

  42. Olender EH, Simoni RD (1992) The intracellular targeting and membrane topology of 3-hydroxy-3-methylglutaryl-CoA reductase. J Biol Chem 267: 4223–4235

    PubMed  CAS  Google Scholar 

  43. Gil G, Faust JR, Chin DJ, Goldstein JL, Brown MS (1985) Membrane-bound domain of HMG CoA reductase is required for sterol-enhanced degradation of the enzyme. Cell 41: 249–258

    Article  PubMed  CAS  Google Scholar 

  44. Chun KT, Simoni RD (1992) The role of the membrane domain in the regulated degradation of 3-hydroxy-3-methylglutaryl coenzyme A reductase. J Biol Chem 267: 4236–4246

    PubMed  CAS  Google Scholar 

  45. Kumagai H, Chun KT, Simoni RD (1995) Molecular dissection of the role of the membrane domain in the regulated degradation of 3-hydroxy-3-methylglutaryl coenzyme A reductase. J Biol Chem 270: 19,107–19,113

    Article  PubMed  CAS  Google Scholar 

  46. Istvan ES, Deisenhofer J (2000) The structure of the catalytic portion of human HMG-CoA reductase. Biochim Biophys Acta 1529: 9–18

    Article  PubMed  CAS  Google Scholar 

  47. Nakanishi M, Goldstein JL, Brown MS (1988) Multivalent control of 3-hydroxy-3-methylglutaryl coenzyme A reductase. Mevalonate-derived product inhibits translation of mRNA and accelerates degradation of enzyme. J Biol Chem 263: 8929–8937

    PubMed  CAS  Google Scholar 

  48. Omkumar RV, Rodwell VW (1994) Phosphorylation of Ser871 impairs the function of His865 of Syrian hamster 3-hydroxy-3-methylglutaryl coenzyme A reductase. J Biol Chem 268: 16,862–16,866

    Google Scholar 

  49. Moriyama T, Wada M, Urade R, Kito M, Katunuma N, Ogawa T, Simoni RD (2001) 3-hydroxy-3 methylglutaryl coenzyme A reductase is sterol-dependently cleaved by cathepsin L-type cysteine protease in the isolated endoplasmic reticulum. Arch Biochem Biophys 386: 205–212

    Article  PubMed  CAS  Google Scholar 

  50. Moriyama T, Sather SK, McGee TP, Simoni RD (1998) Degradation of HMG-CoA reductase in vitro. Cleavage in the membrane domain by a membrane-bound cysteine protease. J Biol Chem 273: 22037–22043

    Article  PubMed  CAS  Google Scholar 

  51. Edwards P, Ericsson J (1999) Sterols and isoprenoids: signaling molecules derived from the cholesterol biosynthetic pathway. Annu Rev Biochem 68: 157–183

    Article  PubMed  CAS  Google Scholar 

  52. Corsini A, Maggi FM, Catapano AL (1995) Pharmacology of competitive inhibitors of HMG-CoA reductase. Pharmacol Res 31: 9–27

    Article  PubMed  CAS  Google Scholar 

  53. Flamberg PL, Peishoff CE, Bryan DL, Leber J, Elliott JD, Metcalf BW, Mayer RJ (1990) Slow binding inhibition of 3-hydroxy-3-methylglutaryl Coenzyme A reductase. Biochemistry 29: 4115–4120

    Article  Google Scholar 

  54. Tsujita Y, Kuroda M, Shimada Y, Tanzawa M, Kaneko I, Tanaka M, Masuda H, Turami C, Watanabe Y, Fujii S (1986) CS-514, a competitive inhibitor of 3-hydroxy-3-methylglutaryl Coenzyme A reductase: tissue-selective inhibitor of sterol synthesis and hypolipidemic effect on various animal species. Biochim Biophys Acta 877: 50–60

    Article  PubMed  CAS  Google Scholar 

  55. Aoki T, Nishimura H, Nakagawa S, Kojima J, Suzuki H, Tamaki T, Wada Y, Yokoo N, Sato F, Kimata H et al (1997) Pharmacological profile of a novel synthetic inhibitor of 3-hydroxy-3- methylglutaryl-coenzyme A reductase. Arzneim-Forsch/Drug Res 47 (II): 904–909

    CAS  Google Scholar 

  56. Shaw MK, Newton RS, Sliskovic DR, Roth B, Ferguson E, Krause BR (1990) Hep-G2 cells and primary rat hepatocytes differ in their response to inhibitors of HMG-CoA reductase. Biochim Biophys Res Comm 170: 726–734

    Article  CAS  Google Scholar 

  57. Bischoff H, Angerbauer R, Bender J, Bischoff E, Faggiotto A, Petzinna D, Pfitzner J, Porter MC, Schmidt D, Thomas G (1997) Cerivastatin: pharmacology of a novel synthetic and highly active HMG-CoA reductase inhibitor. Atherosclerosis 135: 119–130

    Article  PubMed  CAS  Google Scholar 

  58. McTaggart F, Buckett L, Davidson R, Holdgate G, McCormick A, Schneck D, Smith G, Warwick M (2001) Preclinical and clinical pharmacology of rosuvastatin, a new 3-hydroxy-3-methylglutaryl-coenzyme A reductase inhibitor. Am J Cardiol 87(suppl): 28B–32B

    Article  Google Scholar 

  59. Bischoff KM, Rodwell VW (1992) Biosynthesis and characterization of (S)-and (R)-3-hydroxy-3- methylglutaryl coenzyme A. Biochem Med Metab Biol 48: 149–158

    Article  PubMed  CAS  Google Scholar 

  60. Bosisio E, Cighetti G, Di Padova C, Rovagnati P, Galli Kienle M, Galli G, Paoletti R (1982) Effects of compactin (ML-236B) on biliary lipid composition and cholesterol catabolism in the hamster. Pharmacol Res Commun 14: 577–592

    Article  PubMed  CAS  Google Scholar 

  61. Alberts AW (1988) HMG-CoA reductase inhibitors. The development. Ather Rev 18: 123–131

    CAS  Google Scholar 

  62. Istvan ES, Deisenhofer J (2001) Structural mechanism for statin inhibition of HMG-CoA reductase. Science 292: 1160–1164

    Article  PubMed  CAS  Google Scholar 

  63. Komai T, Shigehara E, Tokui T, Koga T, Ishigami M, Kuroiwa C, Horiichi S (1992) Carrier-mediated uptake of pravastatin by rat hepatocytes in primary culture. Biochem Pharmacol 43: 667–670

    Article  PubMed  CAS  Google Scholar 

  64. Nakai D, Nakagomi R, Furuta Y, Tokui T, Abe T, Ikeda T, Nishimura K (2001) Human liver-specific organic anion transporter, LST-1, mediates uptake of pravastatin by human hepatocytes. J Pharmacol Exp Ther 297: 861–867

    CAS  Google Scholar 

  65. Brown MS, Faust JR, Goldstein JL, Kaneko I, Endo A (1978) Induction of 3-hydroxy-3-methylglutaryl Coenzyme A reductase activity in human fibroblasts incubated with compactin (ML-236B), a competitive inhibitor of the reductase. J Biol Chem 253: 1121–1128

    PubMed  CAS  Google Scholar 

  66. Chin DJ, Luskey KL, Anderson RGW, Faust JR, Goldstein JL, Brown MS (1982) Appearance of crystalloid endoplasmic reticulum in compactin resistant Chinese hamster cells with a 500-fold increase in 3-hydroxy-3-methylglutaryl Coenzyme A reductase. Proc Nati Acad Sci USA 79: 1185–1189

    Article  CAS  Google Scholar 

  67. Liscum L, Luskey KL, Chin DJ, Ho YK, Goldstein JL, Brown MS (1983) Regulation of 3-hydroxy-3-methylglutaryl Coenzyme A reductase and its mRNA in rat liver as studied with a monoclonal antibody and a cDNA probe. J Biol Chem 258: 8450–8455

    PubMed  CAS  Google Scholar 

  68. Edwards PA, Lan SF, Fogelman AM (1983) Alteration in the rates of synthesis and degradation of rat liver 3-hydroxy-3-methylglutaryl Coenzyme A reductase produced by cholestyramine and mevinolin. J Biol Chem 258: 10219–10222

    PubMed  CAS  Google Scholar 

  69. Todd PA, Goa KL (1990) Simvastatin. Drugs 40: 583–607

    Article  PubMed  CAS  Google Scholar 

  70. Suzuki H, Yamazaki H, Aoki T, Tamaki T, Sato F, Kitahara M, Saito Y (2001) Hypolipidemic effect of NK-104 and other 3-hydroxy-3-methylglutaryl coenzyme A reductase inhibitors in guinea pigs. Arzneim-Forsch/Drug Res 51: 38–45

    CAS  Google Scholar 

  71. Suzuki H, Yamazaki H, Aoki T, Kojima J, Tamaki T, Sato F, Kitahara M, Saito Y (2000) Lipid-lowering and antiatherosclerotic effect of NK-104, a potent 3-hydroxy-3-methylglutaryl coenzyme A reductase inhibitor, in Watanabe heritable hyperlipidemic rabbits. Arzneim-Forsch/Drug Res 50: 995–1003

    CAS  Google Scholar 

  72. Glomset JA, Gelb MH, Farnsworth CC (1990) Prenyl proteins in eukaryotic cells: a new type of membrane anchor. Trends Biochem Sci 15: 139–142

    Article  PubMed  CAS  Google Scholar 

  73. Maltese WA (1990) Post-translational modification of proteins by isopreno ds in mammalian cells. FASEB J 4: 3319–3328

    PubMed  CAS  Google Scholar 

  74. Ross R (1999) Atherosclerosis — an inflammatory disease. N Engl J Med 340: 115–126

    Article  PubMed  CAS  Google Scholar 

  75. Wissler RW (1991) Update on the pathogenesis of atherosclerosis. Am J Med 91 (Suppl 1B): 1B–3S_1B–9S

    Article  Google Scholar 

  76. Ip JH, Fuster V, Badimon L, Badimon J, Taubman MB, Chesebro JH (1990) Syndromes of accelerated atherosclerosis: role of vascular injury and smooth muscle cell proliferation. J Am Coll Cardiol 15: 1667–1687

    Article  PubMed  CAS  Google Scholar 

  77. Richardson PD, Davies MJ, Born GVR (1989) Influence of plaque configuration and stress distribution on fissuring of coronary atherosclerotic plaques. Lancet 2: 941–944

    Article  PubMed  CAS  Google Scholar 

  78. Burleigh MC, Briggs AD, Lendon CL, Davies MJ, Born GV, Richardson PD (1992) Collagen types I and II, collagen content, GAGs and mechanical strength of human atherosclerotic plaque caps: snap-wise variations. Atherosclerosis 96: 71–81

    Article  PubMed  CAS  Google Scholar 

  79. Dollery CM, McEwan JR, Henney AM (1995) Matrix metalloproteinases and cardiovascular disease. Circ Res 77: 863–868

    Article  PubMed  CAS  Google Scholar 

  80. Bellosta S, Via D, Canavesi M, Pfister P, Fumagalli R, Paoletti R, Bernini F (1998) HMG-CoA reductase inhibitors reduce MMP-9 secretion by macrophages. Arterioscl Thromb Vasc Biol 18: 1671–1678

    Article  PubMed  CAS  Google Scholar 

  81. Endo A (1992) The discovery and development of HMG-CoA reductase inhibitors. J Lipid Res 33: 1569–1582

    PubMed  CAS  Google Scholar 

  82. Aviram M, Dankner G, Cogan U, Hochgraf E, Brook JG (1992) Lovastatin inhibits low-density lipoprotein oxidation and alters its fluidity and uptake by macrophages: in vitro and in vivo studies. Metabolism 41: 229–235

    Article  PubMed  CAS  Google Scholar 

  83. Umetani N, Kanayama Y, Okamura M, Negoro N, Takeda T (1996) Lovastatin inhibits gene expression of type-I scavenger receptor in THP-1 human macrophages. Biochim Biophys Acta 1303: 199–206

    Article  PubMed  Google Scholar 

  84. La Ville A, Moshy R, Turner PR, Miller NE, Lewis B (1984) Inhibition of cholesterol synthesis reduces low-density-lipoprotein apoprotein B production without decreasing very-low-densitylipoprotein apoprotein B synthesis in rabbits. Biochem J 218: 321–323

    Google Scholar 

  85. Bernini F, Scurati N, Bonfadini G, Fumagalli R (1995) HMG-CoA reductase inhibitors reduce acetyl LDL endocytosis in mouse peritoneal macrophages. Arterioscl Thromb Vasc Biol 15: 1352–1358

    Article  PubMed  CAS  Google Scholar 

  86. Corsini A, Arnaboldi L, Raiteri M, Quarato P, Faggiotto A, Paoletti R, Fumagalli R (1996) Effect of the new HMG-CoA reductase inhibitor cerivastatin (BAY W 6228) on migration, proliferation and cholesterol synthesis in arterial myocytes. Pharmacol Res 33: 56–62

    Article  Google Scholar 

  87. Soma MR, Donetti E, Parolini C, Mazzini G, Ferrari C, Fumagalli R, Paoletti R (1993) HMG-CoA reductase inhibitors: in vivo effects on carotid intimal thickening in normocholesterolemic rabbits. Arterioscl Thromb Vasc Biol 13: 571–578

    Article  CAS  Google Scholar 

  88. Corsini A, Bernini F, Quarato P, Donetti E, Bellosta S, Fumagalli R, Paoletti R, Soma MR (1996) Non-lipid-related effects of 3-hydroxy-3-methylglutaryl coenzyme A reductase inhibitors. Cardiology 87: 458–468

    Article  PubMed  CAS  Google Scholar 

  89. Sakai M, Kobori S, Matsumura T, Biwa T, Sato Y, Takemura T, Hakamata H, Horiuchi S, Shichiri M (1997) HMG-CoA reductase inhibitors suppress macrophage growth induced by oxidized low density lipoprotein. Atherosclerosis 133: 51–59

    Article  PubMed  CAS  Google Scholar 

  90. Cignarella A, Brennhausen B, von Eckardstein A, Assmann G, Cullen P (1998) Differential effects of lovastatin on the trafficking of endogenous and lipoprotein-derived cholesterol in human monocyte-derived macrophages. Arterioscl Thromb Vasc Biol 18: 1322–1329

    Article  PubMed  CAS  Google Scholar 

  91. Masaaki K, Kurose I, Russell J, Granger DN (1997) Effect of fluvastatin on leukocyte-endothelial cell adhesion in hypercholesterolemic rats. Arterioscl Thromb Vasc Biol 17: 1521–1526

    Article  Google Scholar 

  92. Colli S, Eligini S, Lalli M, Camera M, Paoletti R, Tremoli E (1997) Vastatins inhibit tissue factor in cultured human macrophages: a novel mechanism of protection against atherosclerosis. Arterioscler Thromb Vasc Biol 17: 265–272

    Article  PubMed  CAS  Google Scholar 

  93. Giroux LM, Davignon J, Naruszewicz (1993) Simvastatin inhibits the oxidation of low-density lipoproteins by activated human monocyte-derived macrophages. Biochim Biophys Acta 1165: 335–338

    Article  PubMed  CAS  Google Scholar 

  94. Laufs U, Gertz K, Huang P, Nickenig G, Bohm M, Dirnagl U, Endres M (2000) Atorvastatin upregulates type III nitric oxide synthase in thrombocytes, decreases platelet activation, and protects from cerebral ischemia in normocholesterolemic mice. Stroke 31: 2442–2449

    Article  PubMed  CAS  Google Scholar 

  95. Kimura M, Kurose I, Russell J, Granger DN (1997) Effects of fluvastatin on leukocyte-endothe-lial cell adhesion in hypercholesterolemic rats. Arterioscler Thromb Vasc Biol 17: 1521–1526

    Article  PubMed  CAS  Google Scholar 

  96. Romano M, Diomede L, Sironi M, Massimiliano I, Sottocorno M, Polentarutti N, Guglielmotti A, Albani D, Bruno A, Fruscella P et al (2000) Inhibition of monocyte chemotactic protein-1 synthesis by statins. Lab Invest 80: 1095–1100

    Article  PubMed  CAS  Google Scholar 

  97. Ikeda U, Shimada K (1999) Statins and monocytes. Lancet 353: 2070

    Article  PubMed  CAS  Google Scholar 

  98. Terkeltaub R, Solan J, Barry MJ, Santoro D, Bokoch GM (1994) Role of the mevalonate pathway of isoprenoid synthesis in IL-8 generation by activated monocytic cells. J Leukocyte Biol 55: 749–755

    PubMed  CAS  Google Scholar 

  99. Essig M, Vrtovsnik F, Nguyen G, Sraer JD, Friedlander G (1998) Lovastatin modulates in vivo and in vitro the plasminogen activator/plasmin system of rat proximal tubular cells: role of geranylgeranylation and Rho proteins. J Am Soc Nephrol 9: 1377–1388

    PubMed  CAS  Google Scholar 

  100. Baetta R, Paoletti R, Fumagalli R, Soma MR (1997) Mevalonate modulation of cell proliferation and apoptosis. Oncol Rep 4: 257–261

    CAS  Google Scholar 

  101. Guijarro C, Blanco-Colio LM, Ortego M, Alonso C, Ortiz A, Plaza JJ, Diaz C, Hernandez G, Egido J (1998) 3-hydroxy-3-methylglutaryl coenzyme A reductase and isoprenylation inhibitors induce apoptosis of vascular smooth muscle cells in culture. Circ Res 83: 490–500

    Article  PubMed  CAS  Google Scholar 

  102. Baetta R, Donetti E, Comparato C, Calore M, Rossi A, Teruzzi C, Paoletti R, Fumagalli R, Soma MR (1997) Proapoptotic effect of atorvastatin on stimulated rabbit smooth muscle cells. Pharmacol Res 36: 115–121

    Article  PubMed  CAS  Google Scholar 

  103. Ridker PM, Rifai N, Pfeffer MA, Sacks F, Braunwald E (1999) Long-term effects of pravastatin on plasma concentration of C-reactive protein. Circulation 100: 230–235

    Article  PubMed  CAS  Google Scholar 

  104. Weitz-Schmidt G, Welzenbach K, Brinkmann V, Kamata T, Kallen J, Bruns C, Cottens S, Takada Y, Hommel U (2001) Statins selectively inhibit leukocyte function antigen-1 by binding to a novel regulatory integrin site. Nat Med 7: 687–692

    Article  PubMed  CAS  Google Scholar 

  105. Inoue I, Goto S, Mizotani K, Awata T, Mastunaga T, Kawai S, Nakajima T, Hokari S, Komoda T, Katayama S (2000) Lipophilic HMG-CoA reductase inhibitor has an anti-inflammatory effect: reduction of mRNA levels for interleukin-lbeta, interleukin-6, cyclooxygenase-2, and p22phox by regulation of peroxisome proliferator-activated receptor alpha (PPARalpha) in primary endothelial cells. Life Sci 67: 863–876

    Article  PubMed  CAS  Google Scholar 

  106. Li AC, Brown KK, Silvestre MJ, Willson TM, Palinski W, Glass CK (2000) Peroxisome proliferator-activated receptor gamma ligands inhibit development of atherosclerosis in LDL receptor-deficient mice. J Clin Invest 106: 523–531

    Article  PubMed  CAS  Google Scholar 

  107. Fajas L, Schoonjans K, Gelman L, Kim JB, Najib J, Martin G, Fruchart JC, Briggs M, Spiegelman BM, Auwerx J (1999) Regulation of peroxisome proliferator-activated receptor gamma expression by adipocyte differentiation and determination factor 1/sterol regulatory element binding protein 1: implications for adipocyte differentiation and metabolism. Mol Cell Biol 19: 5495–5503

    PubMed  CAS  Google Scholar 

  108. Mundy G, Garrett R, Harris S, Chan J, Chen D, Rossini G, Boyce B, Zhao M, Gutierrez G (1999) Stimulation of bone formation in vitro and in rodents by statins. Science 286: 1946–1949

    Article  PubMed  CAS  Google Scholar 

  109. Escobales N, Castro M, Altieri PI, Sanabria P (1996) Simvastatin releases Ca2+ from a thapsigargin-sensitive pool and inhibits InsP3-dependent Ca2+ mobilization in vascular smooth muscle cells. J Cardiovasc Pharmacol 27: 383–391

    Article  PubMed  CAS  Google Scholar 

  110. Yada T, Nakata M, Shiraishi T, Kakei M (1999) Inhibition by simvastatin, but not pravastatin, of glucose-induced cytosolic Ca2+ signaling and insulin secretion due to blockade of L-type Ca2+ channels in rat islet beta-cells. Br J Pharmacol 126: 1205–1213

    Article  PubMed  CAS  Google Scholar 

  111. Dunnington DJ, Prichett W, Greig R (1989) Stimulation of anchorage independent proliferation of human adrenocortical carcinoma cells by inhibition of cholesterol biosynthesis. Biochem Biophys Res Commun 165: 219–225

    Article  CAS  Google Scholar 

  112. Perez-Sala D, Mollinedo F (1994) Inhibition of isoprenoid biosynthesis induces apoptosis in human promyelocytic HL-60 cells. Biochem Biophys Res Commun 199: 1209–1215

    Article  PubMed  CAS  Google Scholar 

  113. Guijarro C, Blanco-Colio LM, Ortego M, Alonso C, Ortiz A, Plaza JJ, Diaz C, Hernandez G, Edigo J (1998) 3-Hydroxy-3-methylglutaryl coenzyme a reductase and isoprenylation inhibitors induce apoptosis of vascular smooth muscle cells in culture. Circ Res 83: 490–500

    Article  PubMed  CAS  Google Scholar 

  114. Soma MR, Pagliarini P, Butti G, Paoletti R, Paoletti P, Fumagalli R (1992) Simvastatin, an inhibitor of cholesterol biosynthesis, shows a synergistic effect with N,N’-bis(2-chloroethyl)-Nnitrosourea and beta-interferon on human glioma cells. Cancer Res 52: 4348–4355

    PubMed  CAS  Google Scholar 

  115. Vincent L, Chen W, Hong L, Mirshahi F, Mishal Z, Mirshahi-Khorassani T, Vannier J, Soria J, Soria C (2001) Inhibition of endothelial cell migration by cerivastatin, an HMG-CoA reductase inhibitor: contribution to its anti-angiogenic effect. FEBS Lett 495: 159–166

    Article  PubMed  CAS  Google Scholar 

  116. Kureishi Y, Luo Z, Shiojima I, Bialik A, Fulton D, Lefer DJ, Sessa WC, Walsh K (2000) The HMG-CoA reductase inhibitor simvastatin activities the protein kinases Akt and promotes angiogenesis in normocholesterolemic animals. Nat Med 6: 1004–1010

    Article  PubMed  CAS  Google Scholar 

  117. Jick H, Zornberg GL, Jick SS, Seshadri S, Drachman DA (2000) Statins and the risk of dementia. Lancet 1627–1631

    Google Scholar 

  118. Dechend R, Fiebeler A, Park JK, Muller DN, Theuer J, Mervaala E, Bieringer M, Gulba D, Dietz R, Luft FC et al (2001) Amelioration of angiotensin II-induced cardiac injury by a 3-hydroxy-3- methylglutaryl coenzyme A reductase inhibitor. Circulation 104: 576–581

    Article  PubMed  CAS  Google Scholar 

  119. Walter DH, Schachinger V, Elsner M, Mach S, Auch-Schwelk W, Zeiher AM (2000) Effect of statin therapy on restenosis after coronary stent implantation. Am J Cardiol 85: 962–968

    Article  PubMed  CAS  Google Scholar 

  120. Corsini A, Pazzucconi F, Pfister P, Paoletti R, Sirtori CR (1996) Inhibition of proliferation of arterial smooth-muscle cells by fluvastatin [letter]. Lancet 348: 1584

    Article  PubMed  CAS  Google Scholar 

  121. O’Driscoll G, Green D, Taylor RR (1997) Simvastatin, an HMG-coenzyme A reductase inhibitor, improves endothelial function within 1 month. Circulation 95: 1126–1131

    Article  PubMed  Google Scholar 

  122. Sheng-Fang S, Ca-Ling H, Ca-Wei C, Bai-Ching L, Tsung-Ming L (2000) Effects of pravastatin on left ventricular mass in patients with hyperlipidemia and essential hypertension. Am J Cardiol 86: 514–518

    Article  Google Scholar 

  123. Sparrow CP, Burton CA, Hernandez M, Mundt S, Hassing H, Patel S, Rosa R, HermanowskiVosatka A, Wang P, Zhang D et al (2001) Simvastatin has anti-inflammatory and antiatherosclerotic activities independent of plasma cholesterol lowering. Arterioscler Thromb Vasc Biol 21: 115–121

    Article  PubMed  CAS  Google Scholar 

  124. Ni W, Egashira K, Kataoka C, Kitamoto S, Koyanagi M, Inoue S, Takeshita A (2001) Antiinflammatory and antiatherosclerotic actions of HMG-CoA reductase inhibitors in a rat model of chronic inhibition of nitric oxide synthesis. Circ Res 89: 415–421

    Article  PubMed  CAS  Google Scholar 

  125. Laufs U, La Fata V, Plutzky J, Liao JK (1998) Upregulation of endothelial nitric oxide synthase by HMG-CoA reductase inhibitors. Circulation 97: 1129–1135

    Article  PubMed  CAS  Google Scholar 

  126. Laufs U, La Fata V, Liao JK (1997) Inhibition of 3-hydroxy-3-methylglutaryl (HMG)-CoA reductase blocks hypoxia-mediated down-regulation of endothelial nitric oxide synthase. J Biol Chem 272: 31,725–31,729

    Article  PubMed  CAS  Google Scholar 

  127. Kaesemeyer WH (1999) Pravastatin sodium activates endothelial nitric oxide synthase independently of its cholesterol-lowering actions. J Am Coll Cardiol 33: 234–241

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2002 Springer Basel AG

About this chapter

Cite this chapter

Bellosta, S., Paoletti, R., Corsini, A. (2002). History and development of HMG-CoA reductase inhibitors. In: Schmitz, G., Torzewski, M. (eds) HMG-CoA Reductase Inhibitors. Milestones in Drug Therapy MDT. Birkhäuser, Basel. https://doi.org/10.1007/978-3-0348-8135-7_1

Download citation

  • DOI: https://doi.org/10.1007/978-3-0348-8135-7_1

  • Publisher Name: Birkhäuser, Basel

  • Print ISBN: 978-3-0348-9451-7

  • Online ISBN: 978-3-0348-8135-7

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics