Skip to main content

Growth Related Role for the Nicotinic α-Bungarotoxin Receptor

  • Chapter
Effects of Nicotine on Biological Systems II

Part of the book series: Advances in Pharmacological Sciences ((APS))

Summary

Accumulating evidence now suggests that neurotransmitters are not only involved in synaptic transmission but may also exert a trophic or developmental function in the nervous system. This includes acetylcholine which may mediate such a role through an interaction with nicotinic receptors. In neuronal tissue, a nicotinic receptor population which has been implicated in the modulation of neurite outgrowth is the nicotinic α-bungarotoxin receptor. Interestingly, earlier work had shown that activation of nicotinic α-bungarotoxin sites on muscle cells led to muscle cell degeneration. Furthermore, α-bungarotoxin sites present on non-neuronal cells also appear to be involved in a trophic role as exposure of these cells to nicotine elicits an increase in cell number which is blocked by α-bungarotoxin. These combined studies suggest a common role of the α-bungarotoxin receptor in growth related activities.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Lauder JM. Neurotransmitters as growth regulatory signals: role of receptors and second messengers. Trends Neurosci. 1993; 16: 233–240.

    Article  PubMed  CAS  Google Scholar 

  2. Lipton SA, Kater SB. Neurotransmitter regulation of neuronal outgrowth, plasticity and survival. Trends Neurosci. 1989; 12: 265–270.

    Article  PubMed  CAS  Google Scholar 

  3. Ashkenazi A, Ramachandran J, Capon DJ. Acetylcholine analogue stimulates DNA synthesis in brain derived cells via specific muscarinic receptor subtypes. Nature 1989; 340: 146–150.

    Article  PubMed  CAS  Google Scholar 

  4. Van Hooff COM, De Graan PNE, Oestreicher AB, Gispen WH. Muscarinic receptor activation stimulates B50/GAP43 phosphorylation in isolated nerve growth cones. J. Neurosci. 1989; 9: 3753–3759.

    PubMed  Google Scholar 

  5. Navarro HA, Seidler FJ, Schwartz RD, Baker FE, Dobbins SS, Slotkin TA. Prenatal exposure to nicotine impairs nervous system development at a dose which does not affect viability or growth. Brain Res. Bull. 1989; 23: 187–192.

    Article  CAS  Google Scholar 

  6. Nordberg A, Zhang X, Fredriksson A, Eriksson P. Neonatal nicotine exposure induces permanent changes in brain nicotinic receptors and behaviour in adult mice. Dev. Brain Res. 1991; 63: 201–207.

    Article  CAS  Google Scholar 

  7. Slotkin TA, Greer N, Faust J, Cho H, Seidler FJ. Effects of maternal nicotine injections on brain development in the rat: Ornithine decarboxylase activity, nucleic acids and proteins in discrete brain regions. Brain Res. Bull. 1986; 17: 41–50.

    Article  CAS  Google Scholar 

  8. Slotkin TA, McCook EC, Lappi SE, Seidler FJ. Altered development of basal and forskolin-stimulated adenylate cyclase activity in brain regions of rats exposed to nicotine prenatally. Dev. Brain Res. 1992; 68: 233–239.

    Article  CAS  Google Scholar 

  9. Smith KM, Mitchell SN, Joseph MH. Effects of chronic and subchronic nicotine on tyrosine hydroxylase activity in noradrenergic and dopaminergic neurons in the rat brain. J. Neurochem. 1991; 57: 1750–1756.

    Article  PubMed  CAS  Google Scholar 

  10. Zheng JQ, Felder M, Connor JA, Poo M. Turning of nerve growth cones induced by neurotransmitters. Nature 1994; 368: 140–144.

    Article  PubMed  CAS  Google Scholar 

  11. Deneris ES, Connolly J, Rogers SW, Duvoisin R. Pharmacological and functional diversity of neuronal nicotinic acetylcholine receptors. Trends Pharmacol. Sci. 1991; 12: 34–40.

    CAS  Google Scholar 

  12. Luetje CW, Patrick J, Séguéla P. Nicotine receptors in the mammalian brain. FASEB J. 1990; 4: 2753–2760.

    PubMed  CAS  Google Scholar 

  13. Quik M, Geertsen S. Neuronal nicotinic a-bungarotoxin sites. Can. J. Physiol. Pharmacol. 1988; 66: 97 1979.

    Google Scholar 

  14. Fuchs JL. 125I-a-Bungarotoxin binding marks primary sensory areas of developing rat neocortex. Brain Res. 1989; 501:223–234.

    Google Scholar 

  15. Chan J, Quik M. A role for the neuronal nicotinic a-bungarotoxinn receptor in neurite outgrowth in PC12 cells. Neuroscience 1993; 56: 441–451.

    Article  PubMed  CAS  Google Scholar 

  16. Pugh PC, Berg DK. Neuronal acetylcholine receptors that bind a-bungarotoxin mediate neurite retraction in a calcium dependent manner. J. Neurosci. 1994; 14: 889–895.

    PubMed  CAS  Google Scholar 

  17. Vijayaraghavan S, Pugh PC, Zhang Z, Rathouz MM, Berg DK. Nicotinic receptors that bind a-bungarotoxin raise intracellular free calcium. Neuron 1992; 8: 353–362.

    Article  PubMed  CAS  Google Scholar 

  18. Séguéla P, Wadiche J, Dineley-Miller K, Dani J, Patrick J. Molecular cloning, functional properties, and distribution of rat brain a7: a nicotinic cation channel highlty permeable to calcium. J. Neurosci. 1993; 13: 595–604.

    Google Scholar 

  19. Afar R, Trifaro JM, Quik M. Nicotine induced intracellular calcium changes are not antagonized by abungarotoxin in adrenal medullary cells. Brain Res. 1994; 641: 127–131.

    Article  PubMed  CAS  Google Scholar 

  20. Fenichel GM, Kibler WB, Olson WH, Dettbam WD. Chronic inhibition of cholinesterase as a cause of myopathy. Neurology 1972; 22: 1026–1033.

    PubMed  CAS  Google Scholar 

  21. Leonard JP, Salpeter MM. Agonist induced myopathy at the neuromuscular junction is mediated by calcium. J. Cell Biol. 1979; 82: 811–819.

    Article  PubMed  CAS  Google Scholar 

  22. Brown MC. Sprouting of motor nerves in adult muscles: a recapitulation of ontogeny. Trends Neurosci. 1984; 7: 10–14.

    Article  Google Scholar 

  23. Chini B, Clementi F, Hukovic N, Sher E. Neuronal-type a-bungarotoxin receptors and the (15-nicotinic receptor subunit gene are expressed in neuronal and nonneuronal human cell lines. Proc. Natl. Acad. Sci. U.S.A. 1992; 89: 1572–1576.

    Article  PubMed  CAS  Google Scholar 

  24. Maneckjee R, Minna JD. Opioid and nicotine receptors affect growth regulation of human lung cancer cell lines. Proc. Natl. Acad. Sci. 1990; 87: 3294–3298.

    Article  CAS  Google Scholar 

  25. Tarroni P, Rubboli F, Chini B, Zwart R, Oortgiesen M, Sher E, Clementi F. Neuronal-type nicotinic receptors in human neuroblastoma and small cell lung carcinoma cell lines. FEBS 1992; 312: 66–70.

    Article  CAS  Google Scholar 

  26. Schuller HM. Cell type specific, receptor-mediated modulation of growth kinetics in human lung cancer cell lines by nicotine and tobacco-related nitrosamines. Biochem. Pharmacol. 1989; 38: 3439–3442.

    Article  Google Scholar 

  27. Schuller HM, Nylen E, Park P, Becker KL. Nicotine, acetylcholine and bombesin are trophic growth factors in neuroendocrine cell lines derived from experimental hamster lung tumors. Life Sciences 1990; 47: 57 1578.

    Google Scholar 

  28. Chan J, Patrick J, Quik M. A role for the nicotinic a-bungarotoxin receptor in cell proliferation in small cell lung carcinoma. Soc. Neurosci. Abstr. 1993; 19: 466.

    Google Scholar 

  29. Quik M, Chan J, Patrick J. a-Bungarotoxin blocks the nicotinic receptor mediated increase in cell number in a neuroendocrine cell line. Brain Res. 1994; 655: 161–167.

    Article  PubMed  CAS  Google Scholar 

  30. Codignola A, Tarroni MG, Cattaneo MG, Vincenti L, Clementi F, Sher E. Serotonin release and cell proliferation are under the control of a-bungarotoxin sensitive nicotinic receptors in small cell lung carcinoma cell lines. FEBS letters 1994; 342: 286–290.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1995 Birkhäuser Verlag Basel

About this chapter

Cite this chapter

Quik, M. (1995). Growth Related Role for the Nicotinic α-Bungarotoxin Receptor. In: Clarke, P.B.S., Quik, M., Adlkofer, F., Thurau, K. (eds) Effects of Nicotine on Biological Systems II. Advances in Pharmacological Sciences. Birkhäuser Basel. https://doi.org/10.1007/978-3-0348-7445-8_18

Download citation

  • DOI: https://doi.org/10.1007/978-3-0348-7445-8_18

  • Publisher Name: Birkhäuser Basel

  • Print ISBN: 978-3-0348-7447-2

  • Online ISBN: 978-3-0348-7445-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics