Skip to main content

Aging and Autoimmunity

  • Chapter
  • First Online:
Immunosenescence

Part of the book series: Birkhäuser Advances in Infectious Diseases ((BAID))

Abstract

Human aging is associated with sharp increases in the frequency of degenerative diseases, autoimmune diseases, and cancer, and a multitude of physiological age changes occur in parallel. The differentiation between physiological aging and age-related diseases is exceedingly difficult, however, and the pathogenic mechanisms are incompletely understood, which complicates the characterization of the age-related changes which truly contribute to disease pathogenesis. The aging immune system is characterized by features which resemble autoimmune diseases such as rheumatoid arthritis. The possible contribution of immunosenescence to autoimmunity and the mechanisms of both degeneration and possibly regeneration of the immune system are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Pawelec G, Derhovanessian E, Larbi A, Strindhall J, Wikby A (2009) Cytomegalovirus and human immunosenescence. Rev Med Virol 19:47–56

    Article  PubMed  CAS  Google Scholar 

  2. Koch S, Larbi A, Derhovanessian E, Ozcelik D, Naumova E, Pawelec G (2008) Multiparameter flow cytometric analysis of CD4 and CD8 T cell subsets in young and old people. Immun Ageing 5:6

    Article  PubMed  Google Scholar 

  3. Ogata K, An E, Shioi Y et al (2001) Association between natural killer cell activity and infection in immunologically normal elderly people. Clin Exp Immunol 124:392–397

    Article  PubMed  CAS  Google Scholar 

  4. Kilpatrick RD, Rickabaugh T, Hultin LE et al (2008) Homeostasis of the naive CD4+ T cell compartment during aging. J Immunol 180:1499–1507

    PubMed  CAS  Google Scholar 

  5. Weng NP, Levine BL, June CH, Hodes RJ (1995) Human naive and memory T lymphocytes differ in telomeric length and replicative potential. Proc Natl Acad Sci USA 92:11091–11094

    Article  PubMed  CAS  Google Scholar 

  6. Haynes L, Swain SL (2006) Why aging T cells fail: implications for vaccination. Immunity 24:663–666

    Article  PubMed  CAS  Google Scholar 

  7. Fülöp T, Larbi A, Hirokawa K et al (2007) Immunosupportive therapies in aging. Clin Interv Aging 2:33–54

    Article  PubMed  Google Scholar 

  8. Henson SM, Pido-Lopez J, Aspinall R (2004) Reversal of thymic atrophy. Exp Gerontol 39:673–678

    Article  PubMed  CAS  Google Scholar 

  9. Marsden VS, Kappler JW, Marrack PC (2006) Homeostasis of the memory T cell pool. Int Arch Allergy Immunol 139:63–74

    Article  PubMed  Google Scholar 

  10. Prelog M (2006) Aging of the immune system: a risk factor for autoimmunity? Autoimmun Rev 5:136–139

    Article  PubMed  CAS  Google Scholar 

  11. Ligthart GJ, Corberand JX, Geertzen HG, Meinders AE, Knook DL, Hijmans W (1990) Necessity of the assessment of health status in human immunogerontological studies: evaluation of the SENIEUR protocol. Mech Ageing Dev 55:89–105

    Article  PubMed  CAS  Google Scholar 

  12. Ligthart GJ, Corberand JX, Fournier C et al (1984) Admission criteria for immunogerontological studies in man: the SENIEUR protocol. Mech Ageing Dev 28:47–55

    Article  PubMed  CAS  Google Scholar 

  13. De Martinis M, Franceschi C, Monti D, Ginaldi L (2006) Inflammation markers predicting frailty and mortality in the elderly. Exp Mol Pathol 80:219–227

    Article  PubMed  Google Scholar 

  14. Franceschi C, Capri M, Monti D et al (2007) Inflammaging and anti-inflammaging: a systemic perspective on aging and longevity emerged from studies in humans. Mech Ageing Dev 128:92–105

    Article  PubMed  CAS  Google Scholar 

  15. Trzonkowski P, Myśliwska J, Pawelec G, Myśliwski A (2009) From bench to bedside and back: the SENIEUR Protocol and the efficacy of influenza vaccination in the elderly. Biogerontology 10:83–94

    Article  PubMed  Google Scholar 

  16. Alberti S, Cevenini E, Ostan R et al (2006) Age-dependent modifications of type 1 and type 2 cytokines within virgin and memory CD4+ T cells in humans. Mech Ageing Dev 127:560–566

    Article  PubMed  CAS  Google Scholar 

  17. Schindowski K, Fröhlich L, Maurer K, Müller WE, Eckert A (2002) Age-related impairment of human T lymphocytes’ activation: specific differences between CD4(+) and CD8(+) subsets. Mech Ageing Dev 123:375–390

    Article  PubMed  CAS  Google Scholar 

  18. Stacy S, Krolick KA, Infante AJ, Kraig E (2002) Immunological memory and late onset autoimmunity. Mech Ageing Dev 123:975–985

    Article  PubMed  CAS  Google Scholar 

  19. Zanni F, Vescovini R, Biasini C et al (2003) Marked increase with age of type 1 cytokines within memory and effector/cytotoxic CD8+ T cells in humans: a contribution to understand the relationship between inflammation and immunosenescence. Exp Gerontol 38:981–987

    Article  PubMed  CAS  Google Scholar 

  20. Boren E, Gershwin ME (2004) Inflamm-aging: autoimmunity, and the immune-risk phenotype. Autoimmun Rev 3:401–406

    Article  PubMed  CAS  Google Scholar 

  21. Yamaoka M, Kusunoki Y, Kasagi F, Hayashi T, Nakachi K, Kyoizumi S (2004) Decreases in percentages of naïve CD4 and CD8 T cells and increases in percentages of memory CD8 T-cell subsets in the peripheral blood lymphocyte populations of A-bomb survivors. Radiat Res 161:290–298

    Article  PubMed  CAS  Google Scholar 

  22. Shimizu Y, Mabuchi K, Preston DL, Shigematsu I (1996) Mortality study of atomic-bomb survivors: implications for assessment of radiation accidents. World Health Stat Q 49:35–39

    PubMed  CAS  Google Scholar 

  23. Kodama K, Fujiwara S, Yamada M, Kasagi F, Shimizu Y, Shigematsu I (1996) Profiles of non-cancer diseases in atomic bomb survivors. World Health Stat Q 49:7–16

    PubMed  CAS  Google Scholar 

  24. Hakoda M, Oiwa H, Kasagi F et al (2005) Mortality of rheumatoid arthritis in Japan: a longitudinal cohort study. Ann Rheum Dis 64:1451–1455

    Article  PubMed  CAS  Google Scholar 

  25. Kasjanov A, Cebecauer L, Baláz V (1984) Antibodies against ss-DNA in persons of various age. Mech Ageing Dev 28:289–295

    Article  PubMed  CAS  Google Scholar 

  26. Candore G, Di Lorenzo G, Mansueto P et al (1997) Prevalence of organ-specific and non organ-specific autoantibodies in healthy centenarians. Mech Ageing Dev 94:183–190

    Article  PubMed  CAS  Google Scholar 

  27. Bovbjerg DH, Kim YT, Schwab R, Schmitt K, DeBlasio T, Weksler ME (1991) “Cross-wiring” of the immune response in old mice: increased autoantibody response despite reduced antibody response to nominal antigen. Cell Immunol 135:519–525

    Article  PubMed  CAS  Google Scholar 

  28. Manoussakis MN, Tzioufas AG, Silis MP, Pange PJ, Goudevenos J, Moutsopoulos HM (1987) High prevalence of anti-cardiolipin and other autoantibodies in a healthy elderly population. Clin Exp Immunol 69:557–565

    PubMed  CAS  Google Scholar 

  29. Xavier RM, Yamauchi Y, Nakamura M et al (1995) Antinuclear antibodies in healthy aging people: a prospective study. Mech Ageing Dev 78:145–154

    Article  PubMed  CAS  Google Scholar 

  30. Mishra N, Kammer GM (1998) Clinical expression of autoimmune diseases in older adults. Clin Geriatr Med 14:515–542

    PubMed  CAS  Google Scholar 

  31. Phillips LH, Torner JC, Anderson MS, Cox GM (1992) The epidemiology of myasthenia gravis in central and western Virginia. Neurology 42:1888–1893

    Article  PubMed  Google Scholar 

  32. Weyand CM, Schmidt D, Wagner U, Goronzy JJ (1998) The influence of sex on the phenotype of rheumatoid arthritis. Arthritis Rheum 41:817–822

    Article  PubMed  CAS  Google Scholar 

  33. Pease CT, Bhakta BB, Devlin J, Emery P (1999) Does the age of onset of rheumatoid arthritis influence phenotype? a prospective study of outcome and prognostic factors. Rheumatology (Oxford) 38:228–234

    Article  CAS  Google Scholar 

  34. Doran MF, Pond GR, Crowson CS, O’Fallon WM, Gabriel SE (2002) Trends in incidence and mortality in rheumatoid arthritis in Rochester, Minnesota, over a forty-year period. Arthritis Rheum 46:625–631

    Article  PubMed  Google Scholar 

  35. Kaipiainen-Seppänen O, Aho K, Isomäki H, Laakso M (1996) Shift in the incidence of rheumatoid arthritis toward elderly patients in Finland during 1975–1990. Clin Exp Rheumatol 14:537–542

    PubMed  Google Scholar 

  36. Rantapää-Dahlqvist S, de Jong BA, Berglin E et al (2003) Antibodies against cyclic citrullinated peptide and IgA rheumatoid factor predict the development of rheumatoid arthritis. Arthritis Rheum 48:2741–2749

    Article  PubMed  Google Scholar 

  37. Solana R, Pawelec G, Tarazona R (2006) Aging and innate immunity. Immunity 24:491–494

    Article  PubMed  CAS  Google Scholar 

  38. Ghia P, Prato G, Stella S, Scielzo C, Geuna M, Caligaris-Cappio F (2007) Age-dependent accumulation of monoclonal CD4+CD8+ double positive T lymphocytes in the peripheral blood of the elderly. Br J Haematol 139:780–790

    Article  PubMed  CAS  Google Scholar 

  39. Zuckermann FA (1999) Extrathymic CD4/CD8 double positive T cells. Vet Immunol Immunopathol 72:55–66

    Article  PubMed  CAS  Google Scholar 

  40. Fagnoni FF, Vescovini R, Passeri G et al (2000) Shortage of circulating naive CD8(+) T cells provides new insights on immunodeficiency in aging. Blood 95:2860–2868

    PubMed  CAS  Google Scholar 

  41. Hong MS, Dan JM, Choi JY, Kang I (2004) Age-associated changes in the frequency of naïve, memory and effector CD8+ T cells. Mech Ageing Dev 125:615–618

    Article  PubMed  Google Scholar 

  42. Lazuardi L, Jenewein B, Wolf AM, Pfister G, Tzankov A, Grubeck-Loebenstein B (2005) Age-related loss of naïve T cells and dysregulation of T-cell/B-cell interactions in human lymph nodes. Immunology 114:37–43

    Article  PubMed  CAS  Google Scholar 

  43. Kovaiou RD, Weiskirchner I, Keller M, Pfister G, Cioca DP, Grubeck-Loebenstein B (2005) Age-related differences in phenotype and function of CD4+ T cells are due to a phenotypic shift from naive to memory effector CD4+ T cells. Int Immunol 17:1359–1366

    Article  PubMed  CAS  Google Scholar 

  44. Jackola DR, Hallgren HM (1998) Dynamic phenotypic restructuring of the CD4 and CD8 T-cell subsets with age in healthy humans: a compartmental model analysis. Mech Ageing Dev 105:241–264

    Article  PubMed  CAS  Google Scholar 

  45. Nociari MM, Telford W, Russo C (1999) Postthymic development of CD28-CD8+ T cell subset: age-associated expansion and shift from memory to naive phenotype. J Immunol 162:3327–3335

    PubMed  CAS  Google Scholar 

  46. Fagnoni FF, Vescovini R, Mazzola M et al (1996) Expansion of cytotoxic CD8+ CD28- T cells in healthy ageing people, including centenarians. Immunology 88:501–507

    Article  PubMed  CAS  Google Scholar 

  47. Koetz K, Bryl E, Spickschen K, O’Fallon WM, Goronzy JJ, Weyand CM (2000) T cell homeostasis in patients with rheumatoid arthritis. Proc Natl Acad Sci USA 97:9203–9208

    Article  PubMed  CAS  Google Scholar 

  48. Wagner UG, Koetz K, Weyand CM, Goronzy JJ (1998) Perturbation of the T cell repertoire in rheumatoid arthritis. Proc Natl Acad Sci USA 95:14447–14452

    Article  PubMed  CAS  Google Scholar 

  49. Gregersen PK, Silver J, Winchester RJ (1987) The shared epitope hypothesis. An approach to understanding the molecular genetics of susceptibility to rheumatoid arthritis. Arthritis Rheum 30:1205–1213

    Article  PubMed  CAS  Google Scholar 

  50. Goronzy JJ, Bartz-Bazzanella P, Hu W, Jendro MC, Walser-Kuntz DR, Weyand CM (1994) Dominant clonotypes in the repertoire of peripheral CD4+ T cells in rheumatoid arthritis. J Clin Invest 94:2068–2076

    Article  PubMed  CAS  Google Scholar 

  51. Schmidt D, Goronzy JJ, Weyand CM (1996) CD4+ CD7− CD28− T cells are expanded in rheumatoid arthritis and are characterized by autoreactivity. J Clin Invest 97:2027–2037

    Article  PubMed  CAS  Google Scholar 

  52. Snyder MR, Weyand CM, Goronzy JJ (2004) The double life of NK receptors: stimulation or co-stimulation? Trends Immunol 25:25–32

    Article  PubMed  CAS  Google Scholar 

  53. Waase I, Kayser C, Carlson PJ, Goronzy JJ, Weyand CM (1996) Oligoclonal T cell proliferation in patients with rheumatoid arthritis and their unaffected siblings. Arthritis Rheum 39:904–913

    Article  PubMed  CAS  Google Scholar 

  54. Bryl E, Vallejo AN, Weyand CM, Goronzy JJ (2001) Down-regulation of CD28 expression by TNF-alpha. J Immunol 167:3231–3238

    PubMed  CAS  Google Scholar 

  55. Namekawa T, Wagner UG, Goronzy JJ, Weyand CM (1998) Functional subsets of CD4 T cells in rheumatoid synovitis. Arthritis Rheum 41:2108–2116

    Article  PubMed  CAS  Google Scholar 

  56. Nakajima T, Schulte S, Warrington KJ et al (2002) T-cell-mediated lysis of endothelial cells in acute coronary syndromes. Circulation 105:570–575

    Article  PubMed  CAS  Google Scholar 

  57. Kimmig S, Przybylski GK, Schmidt CA et al (2002) Two subsets of naive T helper cells with distinct T cell receptor excision circle content in human adult peripheral blood. J Exp Med 195:789–794

    Article  PubMed  CAS  Google Scholar 

  58. Kohler S, Thiel A (2009) Life after the thymus: CD31+ and CD31− human naive CD4+ T-cell subsets. Blood 113:769–774

    Article  PubMed  CAS  Google Scholar 

  59. Rossol M, Meusch U, Pierer M et al (2007) Interaction between transmembrane TNF and TNFR1/2 mediates the activation of monocytes by contact with T cells. J Immunol 179:4239–4248

    PubMed  CAS  Google Scholar 

  60. Wagner U, Pierer M, Wahle M, Moritz F, Kaltenhäuser S, Häntzschel H (2004) Ex vivo homeostatic proliferation of CD4+ T cells in rheumatoid arthritis is dysregulated and driven by membrane-anchored TNFalpha. J Immunol 173:2825–2833

    PubMed  CAS  Google Scholar 

  61. Schönland SO, Lopez C, Widmann T et al (2003) Premature telomeric loss in rheumatoid arthritis is genetically determined and involves both myeloid and lymphoid cell lineages. Proc Natl Acad Sci USA 100:13471–13476

    Article  PubMed  Google Scholar 

  62. Lorenzi AR, Morgan TA, Anderson A et al (2009) Thymic function in juvenile idiopathic arthritis. Ann Rheum Dis 68:983–990

    Article  PubMed  CAS  Google Scholar 

  63. Kolte L, Dreves AM, Ersbøll AK et al (2002) Association between larger thymic size and higher thymic output in human immunodeficiency virus-infected patients receiving highly active antiretroviral therapy. J Infect Dis 185:1578–1585

    Article  PubMed  Google Scholar 

  64. Min D, Panoskaltsis-Mortari A, Kuro-O M, Holländer GA, Blazar BR, Weinberg KI (2007) Sustained thymopoiesis and improvement in functional immunity induced by exogenous KGF administration in murine models of aging. Blood 109:2529–2537

    Article  PubMed  CAS  Google Scholar 

  65. Kenins L, Gill JW, Boyd RL, Holländer GA, Wodnar-Filipowicz A (2008) Intrathymic expression of Flt3 ligand enhances thymic recovery after irradiation. J Exp Med 205:523–531

    Article  PubMed  CAS  Google Scholar 

  66. Akamizu T, Murayama T, Teramukai S et al (2006) Plasma ghrelin levels in healthy elderly volunteers: the levels of acylated ghrelin in elderly females correlate positively with serum IGF-I levels and bowel movement frequency and negatively with systolic blood pressure. J Endocrinol 188:333–344

    Article  PubMed  CAS  Google Scholar 

  67. Napolitano LA, Schmidt D, Gotway MB et al (2008) Growth hormone enhances thymic function in HIV-1-infected adults. J Clin Invest 118:1085–1098

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ulf Wagner .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Basel AG

About this chapter

Cite this chapter

Wagner, U. (2012). Aging and Autoimmunity. In: Thiel, A. (eds) Immunosenescence. Birkhäuser Advances in Infectious Diseases. Springer, Basel. https://doi.org/10.1007/978-3-0346-0219-8_7

Download citation

Publish with us

Policies and ethics