Skip to main content

Multilayered Modelling of the Metallation of Biological Targets

  • Conference paper
  • First Online:
Computational Science and Its Applications – ICCSA 2021 (ICCSA 2021)

Abstract

The unique property of metals – the remarkable ability to modulate the electronic structure of both metal center and bound ligands – is the reason for their omnipresence in enzymes and in metal-coordinating biological factors. Modern metallodrug chemistry began with the serendipitous unveiling of the antitumour properties of cisplatin, followed by an avalanche of synthesized novel metallodrugs. The metallation of biological targets has then become a new paradigm in the field of bioinorganic chemistry, and a plethora of computational approaches have been developed and utilized to ease the detailed comprehension of its mechnisms with a focus on medical applications. Studies of the electronic structure of metallodrugs and of the coordination of metal elements with biomolecular ligands, as well as an accurate description of both thermodynamics and kinetics of reactions with biomolecules, are crucial for development of novel metallodrugs with improved therapeutic profiles. Here, we provide an account of the application of multilayered computational schemes developed in our group for the study of processes leading and/or culminating with the metallation of biomolecules, the key step in the mechanism of action of metallodrugs.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Rosenberg, B., Van Camp, L., Krigas, T.: Inhibition of cell division in escherichia coli by electrolysis products from a platinum electrode. Nature 205(4972), 698–699 (1965). https://doi.org/10.1038/205698a0

    Article  Google Scholar 

  2. Ghosh, S.: Cisplatin: The first metal based anticancer drug. Bioorg. Chem. 88, 102925 (2019). https://doi.org/10.1016/j.bioorg.2019.102925

    Article  Google Scholar 

  3. Jamieson, E.R., Lippard, S.J.: Structure, recognition, and processing of cisplatin−DNA adducts. Chem. Rev. 99(9), 2467–2498 (1999). https://doi.org/10.1021/cr980421n

    Article  Google Scholar 

  4. Zamble, D.B., Mikata, Y., Eng, C.H., Sandman, K.E., Lippard, S.J.: Testis-specific HMG-domain protein alters the responses of cells to cisplatin. J. Inorg. Biochem. 91(3), 451–462 (2002). https://doi.org/10.1016/S0162-0134(02)00472-5

    Article  Google Scholar 

  5. Mjos, K.D., Orvig, C.: Metallodrugs in medicinal inorganic chemistry. Chem. Rev. 114(8), 4540–4563 (2014). https://doi.org/10.1021/cr400460s

    Article  Google Scholar 

  6. Lippert, B.: Impact of cisplatin on the recent development of Pt coordination chemistry: a case study. Coord. Chem. Rev. 182(1), 263–295 (1999). https://doi.org/10.1016/S0010-8545(98)00192-1

    Article  Google Scholar 

  7. Paciotti, R., Tolbatov, I., Graziani, V., Marrone, A., Re, N., Coletti, C.: Insights on the activity of platinum-based anticancer complexes through computational methods. In: AIP Conference Proceedings, vol. 2040, p. 020019:1–4. AIP Publishing LLC (2018). doi: https://doi.org/10.1063/1.5079061

  8. Paciotti, R., Tolbatov, I., Marrone, A., Storchi, L., Re, N., Coletti, C.: Computational investigations of bioinorganic complexes: The case of calcium, gold and platinum ions. In: AIP Conference Proceedings, vol. 2186, issue 1, p. 030011:1–4. AIP Publishing LLC (2019). doi: https://doi.org/10.1063/1.5137922

  9. De Petris, A., et al.: Vibrational signatures of the naked aqua complexes from platinum(II) anticancer drugs. J. Phys. Chem. Lett. 4, 3631–3635 (2013). https://doi.org/10.1021/jz401959s

    Article  Google Scholar 

  10. Corinti, D., et al.: Hydrolysis of cis- and transplatin: structure and reactivity of the aqua complexes in a solvent free environment. RSC Adv. 7, 15877–15884 (2017). https://doi.org/10.1039/C7RA01182B

    Article  Google Scholar 

  11. Cuevas-Flores, M.D.R., Garcia-Revilla, M.A., Bartolomei, M.: Noncovalent interactions between cisplatin and graphene prototypes. J. Comp. Chem. 39, 71–80 (2018). https://doi.org/10.1002/jcc.24920

    Article  Google Scholar 

  12. Cuevas-Flores, M.R., Bartolomei, M., García-Revilla, M.A., Coletti, C.: Interaction and reactivity of cisplatin physisorbed on graphene oxide nano-prototypes. Nanomaterials 10, 1074 (2020). https://doi.org/10.3390/nano10061074

    Article  Google Scholar 

  13. Messori, L., Marzo, T., Gabbiani, C., Valdes, A.A., Quiroga, A.G., Merlino, A.: Peculiar features in the crystal structure of the adduct formed between cis-PtI2(NH3)2 and hen egg white lysozyme. Inorg. Chem. 52(24), 13827–13829 (2013). https://doi.org/10.1021/ic402611m

    Article  Google Scholar 

  14. Tolbatov, I., et al.: Reactions of cisplatin and cis-[PtI2(NH3)2] with molecular models of relevant protein sidechains: a comparative analysis. J. Inorg. Biochem. 209, 111096 (2020). https://doi.org/10.1016/j.jinorgbio.2020.111096

    Article  Google Scholar 

  15. Parro, T., et al.: The second generation of iodido complexes: trans-[PtI2(amine)(amine′)] bearing different aliphatic amines. J. Inorg. Biochem. 127, 182–187 (2013). https://doi.org/10.1016/j.jinorgbio.2013.04.010

    Article  Google Scholar 

  16. Paciotti, R., et al.: Cisplatin and transplatin interaction with methionine: bonding motifs assayed by vibrational spectroscopy in the isolated ionic complexes. Phys. Chem. Chem. Phys. 19, 26697–26707 (2017). https://doi.org/10.1039/C7CP05203K

    Article  Google Scholar 

  17. Corinti, D., et al.: Cisplatin primary complex with l-histidine target revealed by IR multiple photon dissociation (IRMPD) spectroscopy. ChemPhysChem 18, 318–325 (2017). https://doi.org/10.1002/cphc.201601172

    Article  Google Scholar 

  18. Tomassoli, I., Gündisch, D.: Bispidine as a privileged scaffold. Curr. Top. Med. Chem. 16(11), 1314–1342 (2016)

    Article  Google Scholar 

  19. Graziani, V., Coletti, C., Marrone, A., Re, N.: Activation and reactivity of a bispidine analogue of cisplatin: A theoretical investigation. J. Phys. Chem. A 120(27), 5175–5186 (2016). https://doi.org/10.1021/acs.jpca.6b00844

    Article  Google Scholar 

  20. Cui, H., Goddard, R., Pörschke, K.R., Hamacher, A., Kassack, M.U.: Bispidine analogues of cisplatin, carboplatin, and oxaliplatin. Synthesis, structures, and cytotoxicity. Inorg. Chem. 53(7), 3371–3384 (2014). doi: https://doi.org/10.1021/ic402737f

  21. Ho, G.Y., Woodward, N., Coward, J.I.: Cisplatin versus carboplatin: comparative review of therapeutic management in solid malignancies. Crit. Rev. Oncol. Hematol. 102, 37–46 (2016). https://doi.org/10.1016/j.critrevonc.2016.03.014

    Article  Google Scholar 

  22. Boulikas, T., Vougiouka, M.: Cisplatin and platinum drugs at the molecular level. Oncol. Rep. 10(6), 1663–1682 (2003). https://doi.org/10.3892/or.10.6.1663

    Article  Google Scholar 

  23. Ciancetta, A., Coletti, C., Marrone, A., Re, N.: Activation of carboplatin by chloride ions: a theoretical investigation. Theor. Chem. Acc. 129(6), 757–769 (2011). https://doi.org/10.1007/s00214-011-0933-9

    Article  Google Scholar 

  24. Ciancetta, A., Coletti, C., Marrone, A., Re, N.: Activation of carboplatin by carbonate: a theoretical investigation. Dalton Trans. 41(41), 12960–12969 (2012). https://doi.org/10.1039/C2DT30556A

    Article  Google Scholar 

  25. Di Pasqua, A.J., Goodisman, J., Dabrowiak, J.C.: Understanding how the platinum anticancer drug carboplatin works: from the bottle to the cell. Inorganica Chim. Acta 389, 29–35 (2012). https://doi.org/10.1016/j.ica.2012.01.028

    Article  Google Scholar 

  26. Aldossary, S.A.: Review on pharmacology of cisplatin: clinical use, toxicity and mechanism of resistance of cisplatin. Biomed. Pharmacol. J. 12(1), 7–15 (2019). https://doi.org/10.13005/bpj/1608

    Article  MathSciNet  Google Scholar 

  27. Yimit, A., Adebali, O., Sancar, A., Jiang, Y.: Differential damage and repair of DNA-adducts induced by anti-cancer drug cisplatin across mouse organs. Nature Comm. 10(1), 1–11 (2019). https://doi.org/10.1038/s41467-019-08290-2

    Article  Google Scholar 

  28. Wexselblatt, E., Gibson, D.: What do we know about the reduction of Pt (IV) pro-drugs? J. Inorg. Biochem. 117, 220–229 (2012). https://doi.org/10.1016/j.jinorgbio.2012.06.013

    Article  Google Scholar 

  29. Tolbatov, I., Coletti, C., Marrone, A., Re, N.: Insight into the electrochemical reduction mechanism of Pt (IV) anticancer complexes. Inorg. Chem. 57(6), 3411–3419 (2018). https://doi.org/10.1021/acs.inorgchem.8b00177

    Article  Google Scholar 

  30. Schmidt, C., et al.: A gold (I) biscarbene complex with improved activity as a TrxR inhibitor and cytotoxic drug: comparative studies with different gold metallodrugs. Metallomics 11(3), 533–545 (2019). https://doi.org/10.1039/c8mt00306h

    Article  Google Scholar 

  31. Liu, W., Gust, R.: Metal N-heterocyclic carbene complexes as potential antitumor metallodrugs. Chem. Soc. Rev. 42(2), 755–773 (2013). https://doi.org/10.1039/C2CS35314H

    Article  Google Scholar 

  32. Graham, G.G., Champion, G.D., Ziegler, J.B.: The cellular metabolism and effects of gold complexes. Met. Based Drugs 1(5–6), 395–404 (1994)

    Article  Google Scholar 

  33. Tolbatov, I., Coletti, C., Marrone, A., Re, N.: Reactivity of gold (I) monocarbene complexes with protein targets: a theoretical study. Int. J. Mol. Sci. 20(4), 820 (2019). https://doi.org/10.3390/ijms20040820

    Article  Google Scholar 

  34. Pratesi, A., et al.: Insights on the mechanism of thioredoxin reductase inhibition by gold N-heterocyclic carbene compounds using the synthetic linear selenocysteine containing C-terminal peptide hTrxR (488–499): an ESI-MS investigation. J. Inorg. Biochem. 136, 161–169 (2014). https://doi.org/10.1016/j.jinorgbio.2014.01.009

    Article  Google Scholar 

  35. Tolbatov, I., Coletti, C., Marrone, A., Re, N.: Insight into the substitution mechanism of antitumor Au (I) N-heterocyclic carbene complexes by cysteine and selenocysteine. Inorg. Chem. 59(5), 3312–3320 (2020). https://doi.org/10.1021/acs.inorgchem.0c00106

    Article  Google Scholar 

  36. Hickey, J.L., Ruhayel, R.A., Barnard, P.J., Baker, M.V., Berners-Price, S.J., Filipovska, A.: Mitochondria-targeted chemotherapeutics: the rational design of gold (I) N-heterocyclic carbene complexes that are selectively toxic to cancer cells and target protein selenols in preference to thiols. J. Am. Chem. Soc. 130(38), 12570–12571 (2008). https://doi.org/10.1021/ja804027j

    Article  Google Scholar 

  37. Zhang, X., et al.: Repurposing of auranofin: thioredoxin reductase remains a primary target of the drug. Biochimie 162, 46–54 (2019). https://doi.org/10.1016/j.biochi.2019.03.015

    Article  Google Scholar 

  38. Madeira, J.M., Gibson, D.L., Kean, W.F., Klegeris, A.: The biological activity of auranofin: implications for novel treatment of diseases. Inflammopharmacology 20(6), 297–306 (2012). https://doi.org/10.1007/s10787-012-0149-1

    Article  Google Scholar 

  39. Marzo, T., et al.: Replacement of the thiosugar of auranofin with iodide enhances the anticancer potency in a mouse model of ovarian cancer. ACS Med. Chem. Lett. 10(4), 656–660 (2019). https://doi.org/10.1021/acsmedchemlett.9b00007

    Article  Google Scholar 

  40. Tolbatov, I., et al.: Mechanistic insights into the anticancer properties of the auranofin analog Au(PEt3)I: a theoretical and experimental study. Front. Chem. 8, 812 (2020). https://doi.org/10.3389/fchem.2020.00812

    Article  Google Scholar 

  41. Casini, A., et al.: Chemistry, antiproliferative properties, tumor selectivity, and molecular mechanisms of novel gold(III) compounds for cancer treatment: a systematic study. J. Biol. Inorg. Chem. 14, 1139–1149 (2009). https://doi.org/10.1007/s00775-009-0558-9

    Article  Google Scholar 

  42. Hara-Chikuma, M., Verkman, A.S.: Prevention of skin tumorigenesis and impairment of epidermal cell proliferation by targeted aquaporin-3 gene disruption. Mol. Cell Biol. 28, 326–332 (2008). https://doi.org/10.1128/MCB.01482-07

    Article  Google Scholar 

  43. Graziani, V., Marrone, A., Re, N., Coletti, C., Platts, J.A., Casini, A.: A multilevel theoretical study to disclose the binding mechanisms of gold (III) bipyridyl compounds as selective aquaglyceroporin inhibitors. Chem. Eur. J. 23(55), 13802–13813 (2017). https://doi.org/10.1002/chem.201703092

    Article  Google Scholar 

  44. Wenzel, M.N., et al.: Insights into the mechanisms of aquaporin-3 inhibition by gold (III) complexes: the importance of non-coordinative adduct formation. Inorg. Chem. 58(3), 2140–2148 (2019). https://doi.org/10.1021/acs.inorgchem.8b03233

    Article  Google Scholar 

  45. Clarke, M.J.: Ruthenium metallopharmaceuticals. Coord. Chem. Rev. 232, 69–93 (2002). https://doi.org/10.1016/S0010-8545(02)00025-5

    Article  Google Scholar 

  46. Ang, W.H., Dyson, P.J.: Classical and non-classical ruthenium-based anticancer drugs: towards targeted chemotherapy. Eur. J. Inorg. Chem. 4003−4018 (2006). doi: https://doi.org/10.1002/ejic.200600723

  47. Bešker, N., Coletti, C., Marrone, A., Re, N.: Binding of antitumor ruthenium complexes to DNA and proteins: a theoretical approach. J. Phys. Chem. B 111(33), 9955–9964 (2007). https://doi.org/10.1021/jp072182q

    Article  Google Scholar 

  48. Kostova, I.: Ruthenium complexes as anticancer agents. Curr. Med. Chem. 13(9), 1085–1107 (2006). https://doi.org/10.2174/092986706776360941

    Article  Google Scholar 

  49. Bešker, N., Coletti, C., Marrone, A., Re, N.: Aquation of the ruthenium-based anticancer drug NAMI-A: a density functional study. J. Phys. Chem. B 112(13), 3871–3875 (2008). https://doi.org/10.1021/jp800411g

    Article  Google Scholar 

  50. Barresi, E., et al.: A mixed-valence diruthenium (II, III) complex endowed with high stability: from experimental evidence to theoretical interpretation. Dalton Trans. 49(41), 14520–14527 (2020). https://doi.org/10.1039/D0DT02527E

    Article  Google Scholar 

  51. Benedek, T.G.: The history of gold therapy for tuberculosis. J. Hist. Med. Allied Sci. 59(1), 50–89 (2004). https://doi.org/10.1093/jhmas/jrg042

    Article  Google Scholar 

  52. Berners-Price, S.J., Filipovska, A.: Gold compounds as therapeutic agents for human diseases. Metallomics 3(9), 863–873 (2011). https://doi.org/10.1039/c1mt00062d

    Article  Google Scholar 

  53. Checa, S.K., Espariz, M., Audero, M.E.P., Botta, P.E., Spinelli, S.V., Soncini, F.C.: Bacterial sensing of and resistance to gold salts. Mol. Microbiol. 63(5), 1307–1318 (2007). https://doi.org/10.1111/j.1365-2958.2007.05590.x

    Article  Google Scholar 

  54. Checa, S.K., Soncini, F.C.: Bacterial gold sensing and resistance. Biometals 24(3), 419–427 (2011). https://doi.org/10.1007/s10534-010-9393-2

    Article  Google Scholar 

  55. Wei, W., et al.: Structural insights and the surprisingly low mechanical stability of the Au–S bond in the gold-specific protein GolB. J. Am. Chem. Soc. 137(49), 15358–15361 (2015). https://doi.org/10.1021/jacs.5b09895

    Article  Google Scholar 

  56. Tolbatov, I., Re, N., Coletti, C., Marrone, A.: An insight on the gold (I) affinity of golB protein via multilevel computational approaches. Inorg. Chem. 58(16), 11091–11099 (2019). https://doi.org/10.1021/acs.inorgchem.9b01604

    Article  Google Scholar 

  57. Tong, S., Schirnding, Y.E.V., Prapamontol, T.: Environmental lead exposure: a public health problem of global dimensions. Bull. World Health Org. 78, 1068–1077 (2000)

    Google Scholar 

  58. Roane, T.M.: Lead resistance in two bacterial isolates from heavy metal–contaminated soils. Microb. Ecol. 37(3), 218–224 (1999). https://doi.org/10.1007/s002489900145

    Article  Google Scholar 

  59. Tolbert, A.E., et al.: Heteromeric three-stranded coiled coils designed using a Pb (II)(Cys)3 template mediated strategy. Nature Chem. 12(4), 405–411 (2020). https://doi.org/10.1038/s41557-020-0423-6

    Article  Google Scholar 

  60. Borremans, B., Hobman, J.L., Provoost, A., Brown, N.L., van der Lelie, D.: Cloning and functional analysis of the pbr lead resistance determinant of Ralstonia metallidurans CH34. J. Bacteriol. 183(19), 5651–5658 (2001). https://doi.org/10.1128/JB.183.19.5651-5658.2001

    Article  Google Scholar 

  61. Huang, S., et al.: Structural basis for the selective Pb (II) recognition of metalloregulatory protein PbrR691. Inorg. Chem. 55(24), 12516–12519 (2016). https://doi.org/10.1021/acs.inorgchem.6b02397

    Article  Google Scholar 

  62. Tolbatov, I., Re, N., Coletti, C., Marrone, A.: Determinants of the Lead (II) affinity in pbrR protein: a computational study. Inorg. Chem. 59(1), 790–800 (2019). https://doi.org/10.1021/acs.inorgchem.9b03059

    Article  Google Scholar 

  63. Tolbatov, I., Marrone, A.: Molecular dynamics simulation of the Pb(II) coordination in biological media via cationic dummy atom models. Theoret. Chem. Acc. 140(2), 1–12 (2021). https://doi.org/10.1007/s00214-021-02718-z

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Iogann Tolbatov .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Tolbatov, I., Marrone, A., Paciotti, R., Re, N., Coletti, C. (2021). Multilayered Modelling of the Metallation of Biological Targets. In: Gervasi, O., et al. Computational Science and Its Applications – ICCSA 2021. ICCSA 2021. Lecture Notes in Computer Science(), vol 12958. Springer, Cham. https://doi.org/10.1007/978-3-030-87016-4_30

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-87016-4_30

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-87015-7

  • Online ISBN: 978-3-030-87016-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics