Skip to main content

Metabolic Pathways in Immune Cells Commitment and Fate

  • Chapter
  • First Online:
Essential Aspects of Immunometabolism in Health and Disease

Abstract

Cellular metabolism, with catabolic and anabolic pathways, is responsible to supply energy and essential molecules involved in cell growth and maintenance. In the last decade, evidence reported that cellular metabolism is an important regulator of immune cell differentiation and function. Immune cells, such as macrophages, B, and T cells are components of the innate and adaptive immune systems that play an important role in several diseases and homeostasis. To perform their function, these cells go through an activation and differentiation process intimately linked to a reprogram of their metabolism of glucose, amino acid, and fatty acid at the expense to generate energy and substances essential to support their function and survival. This chapter reviews the progress of research and the rapid growth of the immunometabolism field that has improved our understanding of the impact of metabolic pathways on immune cells’ commitment and fate. The role of metabolites and metabolic reprogramming involving B and T cells, macrophages, and DC activation and differentiation are discussed. Understanding how all these metabolic adaptations impact the activities of the immune cells in specific conditions, such as homeostasis, inflammation, immune diseases, and even in cancer becomes paramount to design strategies to envisage modulate the immune response in these contexts.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Gonzalez H, Hagerling C, Werb Z (2018) Roles of the immune system in cancer: from tumor initiation to metastatic progression. Genes Dev 32:1267–1284

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Nicholson LB (2016) The immune system. Essays Biochem 60:275–301

    Google Scholar 

  3. Perdiguero EG, Geissmann F (2016) The development and maintenance of resident macrophages. Nat Immunol 17:28

    Article  CAS  Google Scholar 

  4. Ginhoux F, Guilliams M (2016) Tissue-resident macrophage ontogeny and homeostasis. Immunity 44:439–449

    Google Scholar 

  5. Epelman S, Lavine KJ, Randolph GJ (2014) Origin and functions of tissue macrophages. Immunity 41:21–35

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Cavaillon J-M (2011) The historical milestones in the understanding of leukocyte biology initiated by Elie Metchnikoff. J Leukoc Biol 90:413–424

    Google Scholar 

  7. Medzhitov R (2010) Inflammation 2010: new adventures of an old flame. Cell 140:771–776

    Google Scholar 

  8. Watanabe S, Alexander M, Misharin AV, Budinger GRS (2019) The role of macrophages in the resolution of inflammation. J Clin Investig 130:2619–2628

    Article  Google Scholar 

  9. Duque GA, Descoteaux a macrophage cytokines: involvement in immunity and infectious diseases

    Google Scholar 

  10. Orekhov AN, Orekhova VA, Nikiforov NG, Myasoedova VA, Grechko AV, Romanenko EB, Zhang D, Chistiakov DA (2019) Monocyte differentiation and macrophage polarization. Vessel Plus

    Google Scholar 

  11. Wang Y, Smith W, Hao D, He B, Kong L (2019) M1 and M2 macrophage polarization and potentially therapeutic naturally occurring compounds. Int Immunopharmacol 70:459–466

    Google Scholar 

  12. Wang T, Liu H, Lian G, Zhang S-Y, Wang X, Jiang C (2017) HIF1-induced glycolysis metabolism is essential to the activation of inflammatory macrophages. Mediat Inflamm 2017:902–9327

    Google Scholar 

  13. Ryan DG, ONeill LAJ (2017) Krebs cycle rewired for macrophage and dendritic cell effector functions. FEBS Lett 591:2992–3006

    Google Scholar 

  14. Van den Bossche J, Baardman J, Otto NA, van der Velden S, Neele AE, van den Berg SM, Luque-Martin R, Chen H-J, Boshuizen MCS, Ahmed M, Hoeksema MA, de Vos AF, de Winther MPJ (2016) Mitochondrial Dysfunction Prevents Repolarization of Inflammatory Macrophages. Cell Rep 17:684–696

    Google Scholar 

  15. Vijayan V, Pradhan P, Braud L, Fuchs HR, Gueler F, Motterlini R, Foresti R, Immenschuh S (2019) Human and murine macrophages exhibit differential metabolic responses to lipopolysaccharide—A divergent role for glycolysis. Redox Biol 22:101–147

    Google Scholar 

  16. Tarlinton D (2019) B cells still front and centre in immunology. Nat Rev Immunol 19:85–86

    Article  CAS  PubMed  Google Scholar 

  17. Pennock ND, White JT, Cross EW, Cheney EE, Tamburini BA, Kedl RM (2013) T cell responses: naive to memory and everything in between. Adv Physiol Educ 37:273–283

    Google Scholar 

  18. Paul WE (2011) Bridging innate and adaptive immunity. Cell 147:1212–1215

    Article  CAS  PubMed  Google Scholar 

  19. Olsen Saraiva Camara N, Lepique AP, Basso AS (2012) Lymphocyte differentiation and effector functions. Clin Dev Immunol 2012:510–603

    Google Scholar 

  20. Pieper K, Grimbacher B, Eibel H (2013) B-cell biology and development. J Allergy Clin Immunol 131:959–971

    Google Scholar 

  21. Melchers F (2015) Checkpoints that control B cell development. J Clin Investig 125:2203–2210

    Article  PubMed  PubMed Central  Google Scholar 

  22. Cyster JG, Allen CDC (2019) B cell responses: cell interaction dynamics and decisions. Cell 177:524–540

    Google Scholar 

  23. Kumar BV, Connors TJ, Farber DL (2018) Human t cell development, localization, and function throughout life. Immunity 48:202–213

    Google Scholar 

  24. Taniuchi I (2018) CD4 helper and CD8 cytotoxic T cell differentiation. Annu Rev Immunol 36:579–601

    Google Scholar 

  25. Omilusik KD, Goldrath AW (2017) The origins of memory Tnbsp; cells. Nature 552:337–339

    Google Scholar 

  26. Jellusova J (2017) The role of metabolic checkpoint regulators in B cell survival and transformation. [object Object]

    Google Scholar 

  27. Waters LR, Ahsan FM, Wolf DM, Shirihai O, Teitell MA (2018) Initial B cell activation induces metabolic reprogramming and mitochondrial remodeling. iScience 5:99–109

    Google Scholar 

  28. Doughty CA (2006) Antigen receptor-mediated changes in glucose metabolism in B lymphocytes: role of phosphatidylinositol 3-kinase signaling in the glycolytic control of growth. Blood 107

    Google Scholar 

  29. Salmond RJ (2018) mTOR regulation of glycolytic metabolism in T cells. Front cell Dev Biol 6:122

    Article  PubMed  PubMed Central  Google Scholar 

  30. Menk AV, Scharping NE, Moreci RS, Zeng X, Guy C, Salvatore S, Bae H, Xie J, Young HA, Wendell SG, Delgoffe GM (2018) Early TCR signaling induces rapid aerobic glycolysis enabling distinct acute T cell effector functions. Cell Rep 22:1509–1521

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Almeida L, Lochner M, Berod L, Sparwasser T (2016) Metabolic pathways in T cell activation and lineage differentiation. Semin Immunol 28:514–524

    Google Scholar 

  32. Wolowczuk I, Verwaerde C, Viltart O, Delanoye A, Delacre M, Pot B, Grangette C (2008) Feeding our immune system: impact on metabolism. Clin Dev Immunol

    Google Scholar 

  33. Alwarawrah Y, Kiernan K, Iver NJM (2018) Changes in nutritional status impact immune cell metabolism and function. Front Immunol 9

    Google Scholar 

  34. Jung J, Zeng H, Horng T (2019) Metabolism as a guiding force for immunity. Nat Cell Biol 21:85–93

    Article  CAS  PubMed  Google Scholar 

  35. Pearce EL, Pearce EJ (2013) Metabolic pathways in immune cell activation and quiescence. Immunity 38:633–643

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Chapman NM, Boothby MR, Chi H (2019) Metabolic coordination of T cell quiescence and activation. Nat Rev Immunol 20:55–70

    Article  PubMed  CAS  Google Scholar 

  37. Guo CA, Bond L, Ntambi JM (2016) Metabolic regulation of inflammation. pp 83105

    Google Scholar 

  38. Alves RW, Silva LD, Silva EMD, Furstenau CR, Oliveira VA (2020) The non-canonical role of metabolic enzymes in immune cells and its impact on diseases. Current Tissue Microenviron Rep 1:221–237

    Google Scholar 

  39. Lunt SY, Heiden MGV (2011) Aerobic glycolysis: meeting the metabolic requirements of cell proliferation. Annu Rev Cell Dev Biol 27:441–464

    Article  CAS  PubMed  Google Scholar 

  40. Donnelly RP, Finlay DK (2015) Glucose, glycolysis and lymphocyte responses. Mol Immunol 68:513–519

    Article  CAS  PubMed  Google Scholar 

  41. Reyes IM, Chandel NS (2020) Mitochondrial TCA cycle metabolites control physiology and disease. Nat Commun 11

    Google Scholar 

  42. Akram M (2014) Citric acid cycle and role of its intermediates in metabolism. Cell Biochem Biophys 68:47–58

    Article  CAS  Google Scholar 

  43. Fernie AR, Carrari F, Sweetlove LJ (2004) Respiratory metabolism: glycolysis, the TCA cycle and mitochondrial electron transport. Curr Opin Plant Biol 7:254–261

    Article  CAS  PubMed  Google Scholar 

  44. Houten SM, Violante S, Ventura FV, Wanders RJ (2016) The biochemistry and physiology of mitochondrial fatty acid-oxidation and its genetic disorders. Annu Rev Physiol 78:23–44

    Article  CAS  PubMed  Google Scholar 

  45. Li Z, Zhang H (2016) Reprogramming of glucose, fatty acid and amino acid metabolism for cancer progression. Cell Mol Life Sci 73:377–392

    Article  CAS  PubMed  Google Scholar 

  46. Calder PC (2009) Fatty acids and immune function: relevance to inflammatory bowel diseases. Int Rev Immunol 28:506–534

    Article  CAS  PubMed  Google Scholar 

  47. Rose AJ (2019) Amino acid nutrition and metabolism in health and disease. Nutrients 11

    Google Scholar 

  48. Gutierrez S, Svahn SL, Johansson ME (2019) Effects of omega-3 fatty acids on immune cells. Int J Mol Sci 20

    Google Scholar 

  49. Li P, Yin YL, Li D, Kim SW, Wu G (2007) Amino acids and immune function. Br J Nutr 98:237–252

    Article  CAS  PubMed  Google Scholar 

  50. Peng M, Yin N, Chhangawala S, Xu K, Leslie CS, Li MO (2016) Aerobic glycolysis promotes T helper 1 cell differentiation through an epigenetic mechanism. Science 354:481–484

    Google Scholar 

  51. Leone RD, Zhao L, Englert JM, Sun IM, Oh MH, Sun IH, Arwood ML, Bettencourt IA, Patel CH, Wen J, Tam A, Blosser RL, Prchalova E, Alt J, Rais R, Slusher BS, Powell JD (2019) Glutamine blockade induces divergent metabolic programs to overcome tumor immune evasion. Science 366:1013–1021

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Waters LR, Ahsan FM, Wolf DM, Shirihai O, Teitell MA (2018) Initial B cell activation induces metabolic reprogramming and mitochondrial remodeling. IScience 5:99–109

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Pui JC, Allman D, Xu L, DeRocco S, Karnell FG, Bakkour S, Lee JY, Kadesch T, Hardy RR, Aster JC, Pear WS (1999) Notch1 expression in early lymphopoiesis influences B versus T lineage determination. Immunity 11:299–308

    Google Scholar 

  54. Wofford JA, Wieman HL, Jacobs SR, Zhao Y, Rathmell JC (2007) IL-7 promotes Glut1 trafficking and glucose uptake via STAT5-mediated activation of Akt to support T-cell survival. Blood 111:2101–2111

    Google Scholar 

  55. Bailis W, Shyer JA, Zhao J, Canaveras JCG, Khazal FJA, Qu R, Steach HR, Bielecki P, Khan O, Jackson R, Kluger Y, Maher LJ, Rabinowitz J, Craft J, Flavell RA (2019) Distinct modes of mitochondrial metabolism uncouple T cell differentiation and function. Nature 571:403–407

    Google Scholar 

  56. Chang C-H, Curtis JD, Maggi LB, Faubert B, Villarino AV, OSullivan D, Huang SC-C, van der Windt GJW, Blagih J, Qiu J, Weber JD, Pearce EJ, Jones RG, Pearce EL (2013) Posttranscriptional control of T cell effector function by aerobic glycolysis. Cell 153:1239–1251

    Google Scholar 

  57. Ciofani M, Pflucker JCZ (2005) Notch promotes survival of pre-T cells at the beta-selection checkpoint by regulating cellular metabolism. Nat Immunol 6:881–888

    Article  CAS  PubMed  Google Scholar 

  58. Tan J, Dudl E, LeRoy E, Murray R, Sprent J, Weinberg K, Surh C (2001) IL-7 is critical for homeostatic proliferation and survival of naive T cells. Proc Natl Acad Sci 98:8732–8737

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Barrett D, Brown VI, Grupp SA, Teachey DT (2012) Targeting the PI3K/AKT/mTOR signaling axis in children with hematologic malignancies. Pediatr Drugs 14

    Google Scholar 

  60. Zeng H, Yang K, Cloer C, Neale G, Vogel P, Chi H (2013) mTORC1 couples immune signals and metabolic programming to establish T(reg)-cell function. Nature 499:48590

    Google Scholar 

  61. Michalek RD, Rathmell JC (2010) The metabolic life and times of a T-cell. Immunol Rev 236:190–202

    Google Scholar 

  62. Puel A, Ziegler SF, Buckley RH, Leonard WJ (1998) Defective IL7R expression in T(-)B( )NK( ) severe combined immunodeficiency. Nat Genet 20:394–397

    Google Scholar 

  63. Magri M, Yatim A, Benne C, Balbo M, Henry A, Serraf A, Sakano S, Gazzolo L, Levy Y, Lelievre JD (2009) Notch ligands potentiate IL-7-driven proliferation and survival of human thymocyte precursors. Eur J Immunol 39:123–140

    Google Scholar 

  64. Borlado LR, Barber DF, Hernandez C, Marcos MAR, Sanchez A, Hirsch E, Wymann M, A CM, Carrera AC (2003) Phosphatidylinositol 3-kinase regulates the CD4/CD8 T cell differentiation ratio. J Immunol 170:447–582

    Google Scholar 

  65. Jameson SC (2002) Maintaining the norm: T-cell homeostasis. Nat Rev Immunol 2:547–556

    Article  CAS  PubMed  Google Scholar 

  66. MacIver NJ, Michalek RD, Rathmell JC (2013) Metabolic regulation of T lymphocytes. Annu Rev Immunol 31:259–283

    Google Scholar 

  67. Cole M (1986) The myc oncogene: its role in transformation and differentiation. Annu Rev Genet 20:361–384

    Article  CAS  PubMed  Google Scholar 

  68. Warburg O (1925) The Metabolism of Carcinoma Cells. J Cancer Res 9:148–163

    Google Scholar 

  69. Wieman HL, Wofford JA, Rathmell JC (2007) Cytokine stimulation promotes glucose uptake via phosphatidylinositol-3 kinase/Akt regulation of Glut1 activity and trafficking. Mol Biol Cell 18:1437–1446

    Google Scholar 

  70. Pan Y, Kupper TS (2018) Metabolic reprogramming and longevity of tissue-resident memory T cells. Front Immunol 9

    Google Scholar 

  71. Cui G, Staron MM, Gray SM, Ho PC, Amezquita RA, Wu J, Kaech SM (2015) IL-7-induced glycerol transport and TAG synthesis promotes memory CD8 T cell longevity. Cell 161:750–761

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Yu Q, Erman B, Bhandoola A, Sharrow SO, Singer A (2003) In vitro evidence that cytokine receptor signals are required for differentiation of double positive thymocytes into functionally mature CD8 T cells. J Exp Med 197:475–487

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Anderson NM, Mucka P, Kern JG, Feng H (2017) The emerging role and targetability of the TCA cycle in cancer metabolism. Protein Cell 9:216–237

    Google Scholar 

  74. Gerriets VA, Kishton RJ, Nichols AG, Macintyre AN, Inoue M, Ilkayeva O, Winter PS, Liu X, Priyadharshini B, Slawinska ME, Haeberli L, Huck C, Turka LA, Wood KC, Hale LP, Smith PA, Schneider MA, MacIver NJ, Locasale JW, Newgard CB, Shinohara ML, Rathmell JC (2015) Metabolic programming and PDHK1 control CD4 T cell subsets and inflammation. J Clin Investig 125:194–207

    Google Scholar 

  75. Pepper M, Jenkins MK (2011) Origins of CD4( ) effector and central memory T cells. Nat Immunol 12:467–471

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. OSullivan D (2019) The metabolic spectrum of memory T cells. Immunol Cell Biol 97:636–646

    Google Scholar 

  77. Pearce EL, Walsh MC, Cejas PJ, Harms GM, Shen H, Wang LS, Jones RG, Choi Y (2009) Enhancing CD8 T-cell memory by modulating fatty acid metabolism. Nature 460:10–37

    Article  CAS  Google Scholar 

  78. Martin MD, Badovinac VP (2018) Defining Memory CD8 T Cell. Front Immunol 9

    Google Scholar 

  79. Nicoli F, Papagno L, Frere JJ, Piccin MPC, Clave E, Gostick E, Toubert A, Price DA, Caputo A, Appay V (2018) Nave CD8 T-cells engage a versatile metabolic program upon activation in humans and differ energetically from memory CD8 T-cells. Front Immunol 9

    Google Scholar 

  80. Forster R, Schubel A, Breitfeld D, Kremmer E, Muller IR, Wolf E, Lipp M (1999) CCR7 coordinates the primary immune response by establishing functional microenvironments in secondary lymphoid organs. Cell 99:23–33

    Article  CAS  PubMed  Google Scholar 

  81. Loschinski R, Bottcher M, Stoll A, Bruns H, Mackensen A, Mougiakakos D (2018) IL-21 modulates memory and exhaustion phenotype of T-cells in a fatty acid oxidation-dependent manner. Oncotarget 9:1312513138

    Article  Google Scholar 

  82. van der Windt GJW, Everts B, Chang C-H, Curtis JD, Freitas TC, Amiel E, Pearce EJ, Pearce EL (2012) Mitochondrial respiratory capacity is a critical regulator of CD8 T cell memory development. Immunity 36:6878

    Google Scholar 

  83. Windt GJWVD, Pearce EL (2012) Metabolic switching and fuel choice during T-cell differentiation and memory development. Immunol Rev 249:27–42

    Article  PubMed  PubMed Central  Google Scholar 

  84. Wu X, Wu P, Shen Y, Jiang X, Xu F (2018) CD8 Resident memory T cells and viral infection. Front Immunol 9

    Google Scholar 

  85. Pan Y, Tian T, Park CO, Lofftus SY, Mei S, Liu X, Luo C, OMalley JT, Gehad A, Teague JE, Divito SJ, Fuhlbrigge R, Puigserver P, Krueger JG, Hotamisligil GS, Clark RA, Kupper TS (2017) Survival of tissue-resident memory T cells requires exogenous lipid uptake and metabolism. Nature 543:252–256

    Google Scholar 

  86. Mueller SN, Mackay LK (2015) Tissue-resident memory T cells: local specialists in immune defence. Nat Rev Immunol 16:7989

    Google Scholar 

  87. Markman B, Atzori F, Garcia JP, Tabernero J, Baselga J (2009) Status of PI3K inhibition and biomarker development in cancer therapeutics. Ann Oncol 21:683–691

    Google Scholar 

  88. Han SJ, Zaretsky AG, Oliveira VA, Collins N, Dzutsev A, Shaik J, Fonseca DMD, Harrison OJ, Tamoutounour S, Byrd AL, Smelkinson M, Bouladoux N, Bliska JB, Brenchley JM, Brodsky IE, Belkaid Y (2017) White adipose tissue is a reservoir for memory T cells and promotes protective memory responses to infection. Immunity 47:1154-1168.e6

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Zhang Y, Kurupati R, Liu L, Zhou XY, Zhang G, Hudaihed A, Filisio F, Davis WG, Xu X, Karakousis GC, Schuchter LM, Xu W, Amaravadi R, Xiao M, Sadek N, Krepler C, Herlyn M, Freeman GJ, Rabinowitz JD, Ertl HC (2017) Enhancing CD8 T cell fatty acid catabolism withinnbsp; a metabolically challenging tumor microenvironment increases the efficacy of melanoma immunotherapy. Cancer Cell 32:377391.e9

    Article  CAS  Google Scholar 

  90. Corgnac S, Boutet M, Kfoury M, Naltet C, Chouaib FM (2018) The emerging role of CD8 tissue resident memory T (TRM) cells in antitumor immunity: a unique functional contribution of the CD103 integrin. Front Immunol 9

    Google Scholar 

  91. Konjar S, Frising UC, Ferreira C, Hinterleitner R, Mayassi T, Zhang Q, Blankenhaus B, Haberman N, Loo Y, Guedes J, Baptista M, Innocentin S, Stange J, Strathdee D, Jabri B, Veldhoen M (2018) Mitochondria maintain controlled activation state of epithelial-resident T lymphocytes. Sci Immunol 3

    Google Scholar 

  92. Teijeira A, Garasa S, Etxeberria I, Gato-Caas M, Melero I, Delgoffe GM (2018) Metabolic consequences of T-cell costimulation in anticancer immunity. Cancer Immunol Res

    Google Scholar 

  93. Rathmell J, Heiden MGV, Harris M, Frauwirth K, Thompson C (2000) In the absence of extrinsic signals, nutrient utilization by lymphocytes is insufficient to maintain either cell size or viability. Mol Cell 6:683–692

    Article  CAS  PubMed  Google Scholar 

  94. Lochner M, Berod L, Sparwasser T (2015) Fatty acid metabolism in the regulation of T cell function. Trends Immunol 36:81–91

    Article  CAS  PubMed  Google Scholar 

  95. Sinclair LV, Rolf J, Emslie E, Shi YB, Taylor PM, Cantrell DA (2013) Control of amino-acid transport by antigen receptors coordinates the metabolic reprogramming essential for T cell differentiation. Nat Immunol 14:500–508

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Fox CJ, Hammerman PS, Thompson CB (2005) Fuel feeds function: energy metabolism and the T-cell response. Nat Rev Immunol 5:844–852

    Article  CAS  PubMed  Google Scholar 

  97. Yusuf I, Fruman DA (2003) Regulation of quiescence in lymphocytes. Trends Immunol 24:380–386

    Article  CAS  PubMed  Google Scholar 

  98. Mller AM, Medvinsky A, Strouboulis J, Grosveld F, Dzierzak E (1994) Development of hematopoietic stem cell activity in the mouse embryo. Immunity 1:291–301

    Google Scholar 

  99. Melchers F (2005) The pre-B-cell receptor: selector of fitting immunoglobulin heavy chains for the B-cell repertoire. Nat Rev Immunol 5:578–584

    Google Scholar 

  100. Victora GD, Nussenzweig MC (2011) Germinal Centers. Annu. Rev. Immunol

    Google Scholar 

  101. Kojima H, Kobayashi A, Sakurai D, Kanno Y, Hase H, Takahashi R, Totsuka Y, Semenza GL, Sitkovsky MV, Kobata T (2010) Differentiation stage-specific requirement in hypoxia-inducible factor-1alpha-regulated glycolytic pathway during murine B cell development in bone marrow. J Immunol 184:154–163

    Google Scholar 

  102. Jellusova J (2018) Cross-talk between signal transduction and metabolism in B cells. Immunol Lett 201:113

    Article  CAS  Google Scholar 

  103. Stein M, Dtting S, Mougiakakos D, Bsl M, Fritsch K, Reimer D, Urbanczyk S, Steinmetz T, Schuh W, Bozec A, Winkler TH, Jck H-M, Mielenz D (2017) A defined metabolic state in pre B cells governs B-cell development and is counterbalanced by Swiprosin-2/EFhd1. Cell death Differ 24:1239–1252

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  104. Maldonado AC, Wang R, Nichols AG, Kuraoka M, Milasta S, Sun LD, Gavin AL, Abel ED, Kelsoe G, Green DR, Rathmell JC (2014) Metabolic reprogramming is required for antibody production that is suppressed in anergic but exaggerated in chronically BAFF-exposed B cells. J Immunol 192:3626–3636

    Google Scholar 

  105. Jayachandran N, Mejia EM, Sheikholeslami K, Sher AA, Hou S, Hatch GM, Marshall AJ (2018) TAPP adaptors control B cell metabolism by modulating the phosphatidylinositol 3-kinase signaling pathway: a novel regulatory circuit preventing autoimmunity. J Immunol 201:406–416

    Google Scholar 

  106. Diaz-Muoz MD, Bell SE, Fairfax K, Monzon-Casanova E, Cunningham AF, Gonzalez-Porta M, Andrews SR, Bunik VI, Zarnack K, Curk T, Heggermont WA, Heymans S, Gibson GE, Kontoyiannis DL, Ule J, Turner M (2015) The RNA-binding protein HuR is essential for the B cell antibody response. Nat Immunol 16:415–425

    Google Scholar 

  107. Jellusova J (2016) Metabolic control of B cell immune responses. [object Object]

    Google Scholar 

  108. Dufort FJ, Bleiman BF, Gumina MR, Blair D, Wagner DJ, Roberts MF, Abu-Amer Y, Chiles TC (2007) Cutting edge: IL-4-mediated protection of primary B lymphocytes from apoptosis via Stat6-dependent regulation of glycolytic metabolism. J Immunol 179:4953–4957

    Article  CAS  PubMed  Google Scholar 

  109. Li M, Lazorchak AS, Ouyang X, Zhang H, Liu H, Arojo OA, Yan L, Jin J, Han Y, Qu G, Fu Y, Xu X, Liu X, Zhang W, Yang Z, Ruan C, Wang Q, Liu D, Huang C, Lu L, Jiang S, Li F, Su B (2019) Sin1/mTORC2 regulate B cell growth and metabolism by activating mTORC1 and Myc. Cell Mol Immunol

    Google Scholar 

  110. Murphy TA, Dang CV, Young JD (2013) Isotopically nonstationary 13C flux analysis of Myc-induced metabolic reprogramming in B-cells. Metab Eng 15:206–217

    Google Scholar 

  111. Murphy TA, Dang CV, Young JD (2012) Isotopically nonstationary 13C flux analysis of Myc-induced metabolic reprogramming in B-cells. Metab Eng 15:206–217

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  112. Mambetsariev N, Lin WW, Wallis AM, Stunz LL, Bishop GA (2016) TRAF3 deficiency promotes metabolic reprogramming in B cells. Sci reports 6:353–349

    Google Scholar 

  113. Kurosaki T, Kometani K, Ise W (2015) Memory B cells. Nat Rev Immunol 15:149–159

    Google Scholar 

  114. Torigoe M, Iwata S, Nakayamada S, Sakata K, Zhang M, Hajime M, Miyazaki Y, Narisawa M, Ishii K, Shibata H, Tanaka Y (2017) Metabolic reprogramming commits differentiation of human CD27IgD B cells to plasmablasts or CD27IgD cells. J Immunol 199:425–434

    Google Scholar 

  115. Deng J, L S, Liu H, Liu B, Jiang C, Xu Q, Feng J, Wang X (2017) Homocysteine activates B cells via regulating PKM2-dependent metabolic reprogramming. J Immunol 198:170–183

    Google Scholar 

  116. Brynjolfsson SF, Persson Berg L, Olsen Ekerhult T, Rimkute I, Wick M-J, Mrtensson I-L, Grimsholm O (2018) Long-lived plasma cells in mice and men. Front Immunol 9:2673

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  117. Blink EJ, Light A, Kallies A, Nutt SL, Hodgkin PD, Tarlinton DM (2002) Early appearance of germinal center-derived memory B cells and plasma cells in blood after primary immunization. J Exp Med 201:545–554

    Google Scholar 

  118. Bemark M, Hazanov H, Strmberg A, Komban R, Holmqvist J, Kster S, Mattsson J, Sikora P, Mehr R, Lycke NY (2016) Limited clonal relatedness between gut IgA plasma cells and memory B cells after oral immunization. Nat Commun 7:126–198

    Article  CAS  Google Scholar 

  119. Kunisawa J (2017) Metabolic changes during B cell differentiation for the production of intestinal IgA antibody. Cell Mol life Sci CMLS 74:1503–1509

    Article  CAS  PubMed  Google Scholar 

  120. Kunisawa J, Sugiura Y, Wake T, Nagatake T, Suzuki H, Nagasawa R, Shikata S, Honda K, Hashimoto E, Suzuki Y, Setou M, Suematsu M, Kiyono H (2015) Mode of Bioenergetic Metabolism during B cell differentiation in the intestine determines the distinct requirement for vitamin B1. Cell Rep 13:122–131

    Google Scholar 

  121. Caro-Maldonado A, Wang R, Nichols AG, Kuraoka M, Milasta S, Sun LD, Gavin AL, Abel ED, Kelsoe G, Green DR, Rathmell JC (2014) Metabolic reprogramming is required for antibody production that is suppressed in anergic but exaggerated in chronically BAFF-exposed B cells. J Immunol 192:3626–3636

    Article  CAS  PubMed  Google Scholar 

  122. Frank RAW, Leeper FJ, Luisi BF (2007) Structure, mechanism and catalytic duality of thiamine-dependent enzymes. Cell Mol life Sci CMLS 64:892–905

    Google Scholar 

  123. Lam WY, Becker AM, Kennerly KM, Wong R, Curtis JD, Llufrio EM, McCommis KS, Fahrmann J, Pizzato HA, Nunley RM, Lee J, Wolfgang MJ, Patti GJ, Finck BN, Pearce EL, Bhattacharya D (2016) Mitochondrial pyruvate import promotes long-term survival of antibody-secreting plasma cells. Immunity 45:60–73

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  124. Nguyen DC, Joyner CJ, Sanz I, Lee FEH (2016) Factors affecting early antibody secreting cell maturation into long-lived plasma cells. [object Object]

    Google Scholar 

  125. Yanaba K, Bouaziz JD, Haas KM, Poe JC, Fujimoto M, Tedder TF (2008) A regulatory B cell subset with a unique CD1dhiCD5 phenotype controls T cell-dependent inflammatory responses. Immunity 28:639–650

    Article  CAS  PubMed  Google Scholar 

  126. Rosser EC, Mauri C (2015) Regulatory B cells: origin, phenotype, and function. Immunity 42:607–612

    Google Scholar 

  127. Mauri C, Bosma A (2012) Immune regulatory function of B cells. Annu Rev Immunol 30:221–241

    Google Scholar 

  128. Meng X, Grtsch B, Luo Y, Knaup KX, Wiesener MS, Chen X-X, Jantsch J, Fillatreau S, Schett G, Bozec A (2018) Hypoxia-inducible factor-1 is a critical transcription factor for IL-10-producing B cells in autoimmune disease. Nat Commun 9:251

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  129. Pearce EL, Pearce EJ (2013) Metabolic pathways in immune cell activation and quiescence. Immunity 38:633–643

    Google Scholar 

  130. Ricci J-E, Chiche J (2018) Metabolic reprogramming of non-hodgkins B-cell lymphomas and potential therapeutic strategies. Front Oncol 8:556

    Article  PubMed  PubMed Central  Google Scholar 

  131. Caro P, Kishan AU, Norberg E, Stanley IA, Chapuy B, Ficarro SB, Polak K, Tondera D, Gounarides J, Yin H, Zhou F, Green MR, Chen L, Monti S, Marto JA, Shipp MA, Danial NN (2012) Metabolic signatures uncover distinct targets in molecular subsets of diffuse large B cell lymphoma. Cancer cell 22:547–560

    Google Scholar 

  132. Afonso J, Pinto T, Simes-Sousa S, Schmitt F, Longatto-Filho A, Pinheiro C, Marques H, Baltazar F (2019) Clinical significance of metabolism-related biomarkers in non-Hodgkin lymphoma—MCT1 as potential target in diffuse large B cell lymphoma. Cell Oncol 42:303–318

    Google Scholar 

  133. Monti S, Savage KJ, Kutok JL, Feuerhake F, Kurtin P, Mihm M, Wu B, Pasqualucci L, Neuberg D, Aguiar RCT, Dal Cin P, Ladd C, Pinkus GS, Salles G, Harris NL, Dalla-Favera R, Habermann TM, Aster JC, Golub TR, Shipp MA (2005) Molecular profiling of diffuse large B-cell lymphoma identifies robust subtypes including one characterized by host inflammatory response. Blood 105:1851–1861

    Article  CAS  PubMed  Google Scholar 

  134. Ersching J, Efeyan A, Mesin L, Jacobsen JT, Pasqual G, Grabiner BC, Sola DD, Sabatini DM, Victora GD (2017) Germinal center selection and affinity maturation require dynamic regulation of mTORC1 Kinase. Immunity 46:1045-1058.e6

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  135. Murray PJ, Wynn TA (2011) Protective and pathogenic functions of macrophage subsets. Nat Rev Immunol 11:723–737

    Google Scholar 

  136. Sica A, Mantovani A (2012) Macrophage plasticity and polarization: in vivo veritas. J Clin Investig 122:787–795

    Google Scholar 

  137. Mosser DM, Edwards JP (2008) Exploring the full spectrum of macrophage activation. Nat Rev Immunol 8:958–969

    Google Scholar 

  138. Lawrence T, Natoli G (2011) Transcriptional regulation of macrophage polarization: enabling diversity with identity. Nat Rev Immunol 11:750–761

    Google Scholar 

  139. Murray PJ, Wynn TA (2011) Obstacles and opportunities for understanding macrophage polarization. J Leukoc Biol 89:557–563

    Google Scholar 

  140. Mills CD, Kincaid K, Alt JM, Heilman MJ, Hill AM (2000) M-1/M-2 macrophages and the Th1/Th2 paradigm. J Immunol 164:6166–6173

    Article  CAS  PubMed  Google Scholar 

  141. Rszer T (2015) Understanding the Mysterious M2 Macrophage through Activation Markers and Effector Mechanisms. Mediat Inflamm 2015:8164–8160

    Google Scholar 

  142. Palma A, Jarrah AS, Tieri P, Cesareni G, Castiglione F (2018) Gene regulatory network modeling of macrophage differentiation corroborates the continuum hypothesis of polarization states. Front Physiol 9:16–59

    Article  Google Scholar 

  143. Wang L-X, Zhang S-X, Wu H-J, Rong X-L, Guo J (2018) M2b macrophage polarization and its roles in diseases. J Leukoc Biol

    Google Scholar 

  144. Suzuki H, Hisamatsu T, Chiba S, Mori K, Kitazume MT, Shimamura K, Nakamoto N, Matsuoka K, Ebinuma H, Naganuma M, Kanai T (2016) Glycolytic pathway affects differentiation of human monocytes to regulatory macrophages. Immunol Lett 176:18–27

    Article  CAS  PubMed  Google Scholar 

  145. Ecker J, Liebisch G, Englmaier M, Grandl M, Robenek H, Schmitz G (2010) Induction of fatty acid synthesis is a key requirement for phagocytic differentiation of human monocytes. Proc Natl Acad Sci United States Am 107:7817–7822

    Article  CAS  Google Scholar 

  146. Agha-Jaffar D, Lillycrop KA, Shearmen CP, Calder PC, Burdge GC (2010) Polyunsaturated fatty acid metabolism in monocyte differentiation. Proc Nutr Soc 72

    Google Scholar 

  147. Raulien N, Friedrich K, Strobel S, Rubner S, Baumann S, von Bergen M, Krner A, Krueger M, Rossol M, Wagner U (2017) Fatty acid oxidation compensates for lipopolysaccharide-induced Warburg effect in glucose-deprived monocytes. Front Immunol 8:609

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  148. Diskin C, Plsson-McDermott EM (2018) Metabolic modulation in macrophage effector function. Front Immunol 9:270

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  149. Torres-Castro I, Arroyo-Camarena D, Martnez-Reyes CP, Gmez-Arauz AY, Dueas-Andrade Y, Hernndez-Ruiz J, Bjar YL, Zaga-Clavellina V, Morales-Montor J, Terrazas LI, Kzhyshkowska J, Escobedo G (2016) Human monocytes and macrophages undergo M1-type inflammatory polarization in response to high levels of glucose. Immunol Lett 176:81–89

    Article  CAS  PubMed  Google Scholar 

  150. Vats D, Mukundan L, Odegaard JI, Zhang L, Smith KL, Morel CR, Wagner RA, Greaves DR, Murray PJ, Chawla A (2006) Oxidative metabolism and PGC-1 attenuate macrophage-mediated inflammation. Cell Metab 4

    Google Scholar 

  151. Rodrguez-Prados J-C, Travs PG, Cuenca J, Rico D, Aragons J, Martn-Sanz P, Cascante M, Bosc L, Substrate fate in activated macrophages: a comparison between innate, classic, and alternative activation

    Google Scholar 

  152. Rodrguez-Prados J-C, Travs PG, Cuenca J, Rico D, Aragons J, Martn-Sanz P, Cascante M, Bosc L (2010) Substrate fate in activated macrophages: a comparison between innate, classic, and alternative activation. J Immunol 185:605–614

    Google Scholar 

  153. West AP, Brodsky IE, Rahner C, Woo DK, Erdjument-Bromage H, Tempst P, Walsh MC, Choi Y, Shadel GS, Ghosh S (2011) TLR signalling augments macrophage bactericidal activity through mitochondrial ROS. Nature 472:476–480

    Google Scholar 

  154. Huang SC-C, Everts B, Ivanova Y, OSullivan D, Nascimento M, Smith AM, Beatty W, Love-Gregory L, Lam WY, ONeill CM, Yan C, Du H, Abumrad NA, Urban JF, Artyomov MN, Pearce EL, Pearce EJ (2014) Cell-intrinsic lysosomal lipolysis is essential for alternative activation of macrophages. Nat Immunol 15:846–855

    Google Scholar 

  155. Zarrinpar A, Bensinger SJ (2017) The therapeutic potential of T cell metabolism. Am J Transpl: Off J Am Soc Transpl Am Soc Transpl Surg 17:17051712

    Article  CAS  Google Scholar 

  156. ONeill LAJ, Kishton RJ, Rathmell J (2016) A guide to immunometabolism for immunologists. Nat Rev Immunol 16:553–565

    Google Scholar 

  157. Hard GC (1970) Some biochemical aspects of the immune macrophage. Br J Exp Pathol 51:97–105

    CAS  PubMed  PubMed Central  Google Scholar 

  158. Freemerman AJ, Johnson AR, Sacks GN, Milner JJ, Kirk EL, Troester MA, Macintyre AN, Goraksha-Hicks P, Rathmell JC, Makowski L (2014) Metabolic reprogramming of macrophages: glucose transporter 1 (GLUT1)-mediated glucose metabolism drives a proinflammatory phenotype. J Biol Chem 289:7884–7896

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  159. Pavlou S, Wang L, Xu H, Chen M (2017) Higher phagocytic activity of thioglycollate-elicited peritoneal macrophages is related to metabolic status of the cells. J Inflamm 14:4

    Article  CAS  Google Scholar 

  160. Tan Z, Xie N, Cui H, Moellering DR, Abraham E, Thannickal VJ, Liu G (2015) Pyruvate dehydrogenase kinase 1 participates in macrophage polarization via regulating glucose metabolism. J Immunol 194:6082–6089

    Article  CAS  PubMed  Google Scholar 

  161. Cheon SY, Kim EJ, Kim JM, Kam EH, Ko BW, Koo B-N (2017) Regulation of microglia and macrophage polarization via apoptosis signal-regulating kinase 1 silencing after ischemic/hypoxic injury. Front Mol Neurosci 10:261

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  162. Huang SC-C, Smith AM, Everts B, Colonna M, Pearce EL, Schilling JD, Pearce EJ (2016) Metabolic reprogramming mediated by the mTORC2-IRF4 signaling axis is essential for macrophage alternative activation. Immunity 45:817–830

    Google Scholar 

  163. Wang F, Zhang S, Vuckovic I, Jeon R, Lerman A, Folmes CD, Dzeja PP, Herrmann J (2018) Glycolytic stimulation is not a requirement for M2 macrophage differentiation. Cell Metab 28:463-475.e4

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  164. Liberti MV, Locasale JW (2016) The warburg effect: how does it benefit cancer cells? Trends Biochem Sci 41:211–218

    Google Scholar 

  165. Colegio OR, Chu N-Q, Szabo AL, Chu T, Rhebergen AM, Jairam V, Cyrus N, Brokowski CE, Eisenbarth SC, Phillips GM, Cline GW, Phillips AJ, Medzhitov R (2014) Functional polarization of tumour-associated macrophages by tumour-derived lactic acid. Nature 513:559–563

    Google Scholar 

  166. Zhang D, Tang Z, Huang H, Zhou G, Cui C, Weng Y, Liu W, Kim S, Lee S, Perez-Neut M, Czyz D, Hu R, Ye Z, He M, Zheng YG, Shuman H, Ding J, Dai L, Ren B, Roeder RG, Becker L, Zhao Y Metabolic regulation of gene expression by histone lactylation

    Google Scholar 

  167. Jha AK, Huang SC-C, Sergushichev A, Lampropoulou V, Ivanova Y, Loginicheva E, Chmielewski K, Stewart KM, Ashall J, Everts B, Pearce EJ, Driggers EM, Artyomov MN (2015) Network integration of parallel metabolic and transcriptional data reveals metabolic modules that regulate macrophage polarization. Immunity 42:419–430

    Google Scholar 

  168. Palsson-McDermott EM, Curtis AM, Goel G, Lauterbach MAR, Sheedy FJ, Gleeson LE, van den Bosch MWM, Quinn SR, Domingo-Fernandez R, Johnston DGW, Jiang J-K, Jiang J-K, Israelsen WJ, Keane J, Thomas C, Clish C, Vander Heiden M, Vanden Heiden M, Xavier RJ, ONeill LAJ, (2015) Pyruvate kinase M2 regulates Hif-1 activity and IL-1 induction and is a critical determinant of the warburg effect in LPS-activated macrophages. Cell Metab 21:65–80

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  169. Viola A, Munari F, Snchez-Rodrguez R, Scolaro T, Castegna A (2019) The metabolic signature of macrophage responses. Front Immunol 10:1462

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  170. Infantino V, Iacobazzi V, Menga A, Avantaggiati ML, Palmieri F (2014) A key role of the mitochondrial citrate carrier (SLC25A1) in TNF- and IFN-triggered inflammation. Biochim et Biophys Acta 1839:1217–1225

    Article  CAS  Google Scholar 

  171. Infantino V, Convertini P, Cucci L, Panaro MA, Di Noia MA, Calvello R, Palmieri F, Iacobazzi V (2011) The mitochondrial citrate carrier: a new player in inflammation. Biochem J 438:433–436

    Google Scholar 

  172. Infantino V, Iacobazzi V, Palmieri F, Menga A (2013) ATP-citrate lyase is essential for macrophage inflammatory response. Biochem Biophys Res Commun 440:105–111

    Google Scholar 

  173. Michelucci A, Cordes T, Ghelfi J, Pailot A, Reiling N, Goldmann O, Binz T, Wegner A, Tallam A, Rausell A, Buttini M, Linster CL, Medina E, Balling R, Hiller K (2013) Immune-responsive gene 1 protein links metabolism to immunity by catalyzing itaconic acid production. Proc Natl Acad Sci United States Am 110:7820–7825

    Article  CAS  Google Scholar 

  174. Li Y, Zhang P, Wang C, Han C, Meng J, Liu X, Xu S, Li N, Wang Q, Shi X, Cao X (2013) Immune responsive gene 1 (IRG1) promotes endotoxin tolerance by increasing A20 expression in macrophages through reactive oxygen species. J Biol Chem 288:16225–16234

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  175. Cordes T, Wallace M, Michelucci A, Divakaruni AS, Sapcariu SC, Sousa C, Koseki H, Cabrales P, Murphy AN, Hiller K, Metallo CM (2016) Immunoresponsive Gene 1 and Itaconate inhibit succinate dehydrogenase to modulate intracellular succinate levels. J Biol Chem 291:14274–14284

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  176. Tannahill GM, Curtis AM, Adamik J, Palsson-McDermott EM, McGettrick AF, Goel G, Frezza C, Bernard NJ, Kelly B, Foley NH, Zheng L, Gardet A, Tong Z, Jany SS, Corr SC, Haneklaus M, Caffrey BE, Pierce K, Walmsley S, Beasley FC, Cummins E, Nizet V, Whyte M, Taylor CT, Lin H, Masters SL, Gottlieb E, Kelly VP, Clish C, Auron PE, Xavier RJ, ONeill LAJ (2013) Succinate is an inflammatory signal that induces IL-1 through HIF-1. Nature 496:238–242

    Google Scholar 

  177. Lampropoulou V, Sergushichev A, Bambouskova M, Nair S, Vincent EE, Loginicheva E, Cervantes-Barragan L, Ma X, Huang SC-C, Griss T, Weinheimer CJ, Khader S, Randolph GJ, Pearce EJ, Jones RG, Diwan A, Diamond MS, Artyomov MN (2016) Itaconate links inhibition of succinate dehydrogenase with macrophage metabolic remodeling and regulation of inflammation. Cell Metab 24:158–166

    Google Scholar 

  178. Mills EL, Ryan DG, Prag HA, Dikovskaya D, Menon D, Zaslona Z, Jedrychowski MP, Costa ASH, Higgins M, Hams E, Szpyt J, Runtsch MC, King MS, McGouran JF, Fischer R, Kessler BM, McGettrick AF, Hughes MM, Carroll RG, Booty LM, Knatko EV, Meakin PJ, Ashford MLJ, Modis LK, Brunori G, Svin DC, Fallon PG, Caldwell ST, Kunji ERS, Chouchani ET, Frezza C, Dinkova-Kostova AT, Hartley RC, Murphy MP, ONeill LA (2018) Itaconate is an anti-inflammatory metabolite that activates Nrf2 via alkylation of KEAP1. Nature 556:113–117

    Google Scholar 

  179. Rubic T, Lametschwandtner G, Jost S, Hinteregger S, Kund J, Carballido-Perrig N, Schwrzler C, Junt T, Voshol H, Meingassner JG, Mao X, Werner G, Rot A, Carballido JM (2008) Triggering the succinate receptor GPR91 on dendritic cells enhances immunity. Nat Immunol 9:1261–1269

    Article  CAS  PubMed  Google Scholar 

  180. He W, Miao FJ-P, Lin DC-H, Schwandner RT, Wang Z, Gao J, Chen J-L, Tian H, Ling L (2004) Citric acid cycle intermediates as ligands for orphan G-protein-coupled receptors. Nature 429:188–193

    Google Scholar 

  181. Kelly B, ONeill LAJ (2015) Metabolic reprogramming in macrophages and dendritic cells in innate immunity. Cell Res 25:771–784

    Google Scholar 

  182. Littlewood-Evans A, Sarret S, Apfel V, Loesle P, Dawson J, Zhang J, Muller A, Tigani B, Kneuer R, Patel S, Valeaux S, Gommermann N, Rubic-Schneider T, Junt T, Carballido JM (2016) GPR91 senses extracellular succinate released from inflammatory macrophages and exacerbates rheumatoid arthritis. J Exp Med 213:1655–1662

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  183. van Diepen JA, Robben JH, Hooiveld GJ, Carmone C, Alsady M, Boutens L, Bekkenkamp-Grovenstein M, Hijmans A, Engelke UFH, Wevers RA, Netea MG, Tack CJ, Stienstra R, Deen PMT (2017) SUCNR1-mediated chemotaxis of macrophages aggravates obesity-induced inflammation and diabetes. Diabetologia 60:1304–1313

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  184. Mills EL, Kelly B, Logan A, Costa ASH, Varma M, Bryant CE, Tourlomousis P, Dbritz JHM, Gottlieb E, Latorre I, Corr SC, McManus G, Ryan D, Jacobs HT, Szibor M, Xavier RJ, Braun T, Frezza C, Murphy MP, ONeill LA (2016) Succinate dehydrogenase supports metabolic repurposing of mitochondria to drive inflammatory macrophages. Cell 167:457–470.e13

    Google Scholar 

  185. Cameron AM, Castoldi A, Sanin DE, Flachsmann LJ, Field CS, Puleston DJ, Kyle RL, Patterson AE, Hssler F, Buescher JM, Kelly B, Pearce EL, Pearce EJ (2019) Inflammatory macrophage dependence on NAD salvage is a consequence of reactive oxygen species-mediated DNA damage. Nat Immunol 20:420–432

    Google Scholar 

  186. Feng J, Li L, Ou Z, Li Q, Gong B, Zhao Z, Qi W, Zhou T, Zhong J, Cai W, Yang X, Zhao A, Gao G, Yang Z (2018) IL-25 stimulates M2 macrophage polarization and thereby promotes mitochondrial respiratory capacity and lipolysis in adipose tissues against obesity. Cell Mol Immunol 15:493–505

    Google Scholar 

  187. Ip WKE, Hoshi N, Shouval DS, Snapper S, Medzhitov R (2017) Anti-inflammatory effect of IL-10 mediated by metabolic reprogramming of macrophages. Science 356:513–519

    Google Scholar 

  188. Carneiro FRG, Lepelley A, Seeley JJ, Hayden MS, Ghosh S (2018) An essential role for ECSIT in mitochondrial complex I assembly and mitophagy in macrophages. Cell Rep 22:26542666

    Article  CAS  Google Scholar 

  189. Ray PD, Huang B-W, Tsuji Y (2012) Reactive oxygen species (ROS) homeostasis and redox regulation in cellular signaling. Cell Signal 24:981–990

    Google Scholar 

  190. Baardman J, Verberk SGS, Prange KHM, van Weeghel M, van der Velden S, Ryan DG, Wst RCI, Neele AE, Speijer D, Denis SW, Witte ME, Houtkooper RH, Oneill LA, Knatko EV, Dinkova-Kostova AT, Lutgens E, de Winther MPJ, Van den Bossche J (2018) A defective pentose phosphate pathway reduces inflammatory macrophage responses during hypercholesterolemia. Cell Rep 25:2044-2052.e5

    Article  CAS  PubMed  Google Scholar 

  191. Haschemi A, Kosma P, Gille L, Evans CR, Burant CF, Starkl P, Knapp B, Haas R, Schmid JA, Jandl C, Amir S, Lubec G, Park J, Esterbauer H, Bilban M, Brizuela L, Pospisilik JA, Otterbein LE, Wagner O (2012) The sedoheptulose kinase CARKL directs macrophage polarization through control of glucose metabolism. Cell Metab 15:813–826

    Google Scholar 

  192. Gonzalez AB, Vidal R, Criollo A, Carreno LJ (2016) New insights on the role of lipid metabolism in the metabolic reprogramming of macrophages. Front Immunol

    Google Scholar 

  193. Feingold KR, Shigenaga JK, Kazemi MR, McDonald CM, Patzek SM, Cross AS, Moser A, Grunfeld C (2012) Mechanisms of triglyceride accumulation in activated macrophages. J Leukoc Biol 92:829–839

    Google Scholar 

  194. Odegaard JI, Chawla A (2008) Alternative macrophage activation and metabolism. Annu Rev Pathol 6:275–297

    Google Scholar 

  195. Malandrino MI, Fucho R, Weber M, Calderon-Dominguez M, Mir JF, Valcarcel L, Escot X, Gmez-Serrano M, Peral B, Salvad L, Fernndez-Veledo S, Casals N, Vzquez-Carrera M, Villarroya F, Vendrell JJ, Serra D, Herrero L (2015) Enhanced fatty acid oxidation in adipocytes and macrophages reduces lipid-induced triglyceride accumulation and inflammation. Am J Physiol Endocrinol Metab 308:E756–E769

    Google Scholar 

  196. Huang Y, Morales-Rosado J, Ray J, Myers TG, Kho T, Lu M, Munford RS (2014) Toll-like receptor agonists promote prolonged triglyceride storage in macrophages. J Biol Chem 289:3001–3012

    Article  CAS  PubMed  Google Scholar 

  197. Castoldi A, Monteiro LB, Bakker NVT, Sanin DE, Rana N, Corrado M, Cameron AM, Hassler F, Matsushita M, Caputa G, Geltink RIK, Buscher J, Hicks JE, Pearce EL, Pearce EJ (2020) Triacylglycerol synthesis enhances macrophage inflammatory function. Nat Commun 11

    Google Scholar 

  198. Newsholme P, Curi R, Gordon S, Newsholme EA (1986) Metabolism of glucose, glutamine, long-chain fatty acids and ketone bodies by murine macrophages. Biochem J 239:121–125

    Google Scholar 

  199. Newsholme P, Gordon S, Newsholme EA (1987) Rates of utilization and fates of glucose, glutamine, pyruvate, fatty acids and ketone bodies by mouse macrophages. Biochem J 242:631–636

    Google Scholar 

  200. Stunault MI, Bories G, Guinamard RR, Ivanov S (2018) Metabolism plays a key role during macrophage activation. Mediat Inflamm 2018:242–6138

    Article  CAS  Google Scholar 

  201. Morris SM (2002) Regulation of enzymes of the urea cycle and arginine metabolism. Annu Rev Nutr 22:87–105

    Article  CAS  PubMed  Google Scholar 

  202. Hardbower DM, Asim M, Luis PB, Singh K, Barry DP, Yang C, Steeves MA, Cleveland JL, Schneider C, Piazuelo MB, Gobert AP, Wilson KT (2017) Ornithine decarboxylase regulates M1 macrophage activation and mucosal inflammation via histone modifications. Proc Natl Acad Sci United States Am 114:E751–E760

    Google Scholar 

  203. Pesce JT, Ramalingam TR, Mentink-Kane MM, Wilson MS, El Kasmi KC, Smith AM, Thompson RW, Cheever AW, Murray PJ, Wynn TA (2009) Arginase-1-expressing macrophages suppress Th2 cytokine-driven inflammation and fibrosis. PLoS Pathog 5:e1000–e1371

    Google Scholar 

  204. Murray PJ (2016) Amino acid auxotrophy as a system of immunological control nodes. Nat Immunol 17:132–139

    Google Scholar 

  205. Curi R, de Siqueira MR, de Campos Crispin LA, Norata GD, Sampaio SC, Newsholme P (2017) A past and present overview of macrophage metabolism and functional outcomes. Clin Sci 131:1329–1342

    Article  CAS  Google Scholar 

  206. Meiser J, Krmer L, Sapcariu SC, Battello N, Ghelfi J, DHerouel AF, Skupin A, Hiller K (2016) Pro-inflammatory macrophages sustain pyruvate oxidation through pyruvate dehydrogenase for the synthesis of itaconate and to enable cytokine expression. J Biol Chem 291:3932–3946

    Google Scholar 

  207. Liu P-S, Wang H, Li X, Chao T, Teav T, Christen S, Di Conza G, Cheng W-C, Chou C-H, Vavakova M, Muret C, Debackere K, Mazzone M, Huang H-D, Fendt S-M, Ivanisevic J, Ho P-C (2017) Ketoglutarate orchestrates macrophage activation through metabolic and epigenetic reprogramming. Nat Immunol 18:985–994

    Google Scholar 

  208. Palmieri EM, Menga A, Martn-Prez R, Quinto A, Riera-Domingo C, De Tullio G, Hooper DC, Lamers WH, Ghesquire B, McVicar DW, Guarini A, Mazzone M, Castegna A (2017) Pharmacologic or genetic targeting of glutamine synthetase skews macrophages toward an M1-like phenotype and inhibits tumor metastasis. Cell Rep 20:1654–1666

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  209. Wang X-F, Wang H-S, Wang H, Zhang F, Wang K-F, Guo Q, Zhang G, Cai S-H, Du J (2014) The role of indoleamine 2,3-dioxygenase (IDO) in immune tolerance: focus on macrophage polarization of THP-1 cells. Cell Immunol 289:42–48

    Article  CAS  PubMed  Google Scholar 

  210. Patente TA, Pelgrom LR, Everts B (2019) Dendritic cells are what they eat: how their metabolism shapes T helper cell polarization. Curr Opin Immunol 58:16–23

    Article  CAS  PubMed  Google Scholar 

  211. Giovanelli P, Sandoval TA, Cubillos-Ruiz JR (2019) Dendritic cell metabolism and function in tumors. Trends Immunol

    Google Scholar 

  212. Wculek SK, Cueto FJ, Mujal AM, Melero I, Krummel MF, Sancho D (2020) Dendritic cells in cancer immunology and immunotherapy

    Google Scholar 

  213. Segura E (2013) Review of mouse and human dendritic cell subsets. Methods Mol Biol 1423:315

    Google Scholar 

  214. Patente TA, Pinho MP, Oliveira AA, Evangelista GCM, Bergami-Santos PC, Barbuto JAM (2018) Human dendritic cells: their heterogeneity and clinical application potential in cancer immunotherapy. Front Immunol 9:31–76

    Article  CAS  Google Scholar 

  215. Collin M, Bigley V (2018) Human dendritic cell subsets: an update. Immunology 154:3–20

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  216. Schlitzer A, McGovern N, Ginhoux F (2015) Dendritic cells and monocyte-derived cells: two complementary and integrated functional systems. Semin cell Dev Biol 41:9–22

    Article  CAS  PubMed  Google Scholar 

  217. Pearce EJ, Everts B (2015) Dendritic cell metabolism. Nat Rev Immunol 15:18–29

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  218. ONeill LAJ, Pearce EJ (2016) Immunometabolism governs dendritic cell and macrophage function. J Exp Med 213:15–23

    Google Scholar 

  219. Du X, Chapman NM, Chi H (2018) Emerging roles of cellular metabolism in regulating dendritic cell subsets and function. Front cell Dev Biol 6:152

    Article  PubMed  PubMed Central  Google Scholar 

  220. Everts B, Amiel E, van der Windt GJW, Freitas TC, Chott R, Yarasheski KE, Pearce EL, Pearce EJ (2012) Commitment to glycolysis sustains survival of NO-producing inflammatory dendritic cells. Blood 120:1422–1431

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  221. Everts B, Amiel E, Huang SC-C, Smith AM, Chang C-H, Lam WY, Redmann V, Freitas TC, Blagih J, van der Windt GJW, Artyomov MN, Jones RG, Pearce EL, Pearce EJ (2014) TLR-driven early glycolytic reprogramming via the kinases TBK1-IKK supports the anabolic demands of dendritic cell activation. Nat Immunol 15:323–332

    Google Scholar 

  222. Krawczyk CM, Holowka T, Sun J, Blagih J, Amiel E, DeBerardinis RJ, Cross JR, Jung E, Thompson CB, Jones RG, Pearce EJ (2010) Toll-like receptor-induced changes in glycolytic metabolism regulate dendritic cell activation. Blood 115:4742–4749

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  223. Ganeshan K, Chawla A (2011) Metabolic regulation of immune responses. Annu Rev Immunol 32:609–634

    Google Scholar 

  224. Ibrahim J, Nguyen AH, Rehman A, Ochi A, Jamal M, Graffeo CS, Henning JR, Zambirinis CP, Fallon NC, Barilla R, Badar S, Mitchell A, Rao RS, Acehan D, Frey AB, Miller G (2012) Dendritic cell populations with different concentrations of lipid regulate tolerance and immunity in mouse and human liver. Gastroenterology 143:1061–1072

    Article  CAS  PubMed  Google Scholar 

  225. Maroof A, English NR, Bedford PA, Gabrilovich DI, Knight SC (2005) Developing dendritic cells become lacy cells packed with fat and glycogen. Immunology 115:473–483

    Google Scholar 

  226. Bougnres L, Helft J, Tiwari S, Vargas P, Chang BH-J, Chan L, Campisi L, Lauvau G, Hugues S, Kumar P, Kamphorst AO, Dumenil A-ML, Nussenzweig M, MacMicking JD, Amigorena S, Guermonprez P (2009) A role for lipid bodies in the cross-presentation of phagocytosed antigens by MHC class I in dendritic cells. Immunity 31:232–244

    Google Scholar 

  227. Cao W, Ramakrishnan R, Tuyrin VA, Veglia F, Condamine T, Amoscato A, Mohammadyani D, Johnson JJ, Zhang LM, Klein-Seetharaman J, Celis E, Kagan VE, Gabrilovich DI (2014) Correction: oxidized lipids block antigen cross-presentation by dendritic cells in cancer. J Immunol 192:4935

    Article  CAS  Google Scholar 

  228. Cubillos-Ruiz JR, Silberman PC, Rutkowski MR, Chopra S, Perales-Puchalt A, Song M, Zhang S, Bettigole SE, Gupta D, Holcomb K, Ellenson LH, Caputo T, Lee A-H, Conejo-Garcia JR, Glimcher LH (2015) ER stress sensor XBP1 controls anti-tumor immunity by disrupting dendritic cell homeostasis. Cell 161:1527–1538

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  229. Stelzner K, Herbert D, Popkova Y, Lorz A, Schiller J, Gericke M, Klting N, Blher M, Franz S, Simon JC, Saalbach A (2016) Free fatty acids sensitize dendritic cells to amplify TH1/TH17-immune responses. Eur J Immunol 46:2043–2053

    Article  CAS  PubMed  Google Scholar 

  230. Wu D, Sanin DE, Everts B, Chen Q, Qiu J, Buck MD, Patterson A, Smith AM, Chang C-H, Liu Z, Artyomov MN, Pearce EL, Cella M, Pearce EJ (2016) Type 1 interferons induce changes in core metabolism that are critical for immune function. Immunity 44:1325–1336

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  231. Malinarich F, Duan K, Hamid RA, Bijin A, Lin WX, Poidinger M, Fairhurst A-M, Connolly JE (2015) High mitochondrial respiration and glycolytic capacity represent a metabolic phenotype of human tolerogenic dendritic cells. J Immunol 194:5174–5186

    Article  CAS  PubMed  Google Scholar 

  232. Thapa B, Lee K (2019) Metabolic influence on macrophage polarization and pathogenesis. BMB Rep 52:360–372

    Google Scholar 

  233. Buck MD, OSullivan D, Pearce EL (2015) T cell metabolism drives immunity. J Cell Biol 210

    Google Scholar 

  234. Kim J (2018) Regulation of immune cell functions by metabolic reprogramming. J Immunol Res 2018

    Google Scholar 

  235. Biswas SK (2015) Metabolic reprogramming of immune cells in cancer progression. Immunity 43:435–449

    Article  CAS  PubMed  Google Scholar 

  236. Wculek SK, Khouili SC, Priego E, Murillo IH, Sancho D (2019) Metabolic control of dendritic cell functions: digesting information. Front Immunol 10

    Google Scholar 

  237. Franchina DG, Grusdat M, Brenner D (2017) B-cell metabolic remodeling and cancer. Trends Cancer

    Google Scholar 

Download references

Acknowledgements

This study was supported by Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP): grant number: 2019/14755-0. Vinicius Andrade-Oliveira is also a fellow of Pew Latin American Fellow program of the Pew Foundation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vinicius Andrade-Oliveira .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Alves, R.W., da Silva, E.M., Doretto-Silva, L., Andrade-Oliveira, V. (2022). Metabolic Pathways in Immune Cells Commitment and Fate. In: Camara, N.O.S., Alves-Filho, J.C., Moraes-Vieira, P.M.M.d., Andrade-Oliveira, V. (eds) Essential Aspects of Immunometabolism in Health and Disease. Springer, Cham. https://doi.org/10.1007/978-3-030-86684-6_4

Download citation

Publish with us

Policies and ethics