Skip to main content

Immune Regulation of Adipose Tissue Browning

  • Chapter
  • First Online:
Essential Aspects of Immunometabolism in Health and Disease

Abstract

Adipose tissue is composed by adipocytes and stromal-vascular cells that include a wide variety of immune cells. The proportion of these cells in the tissue, their intrinsic characteristics, their degree of differentiation and activation, as well as their crosstalk determine the function of the fat depot and how it impacts the risk of metabolic diseases. While white adipocytes have the capacity to accumulate triglycerides and serve as a reservoir of energy for the organism, brown adipocytes have the potential to use large amounts of substrates like glucose and lipids to fuel uncoupled respiration and generate heat. Conversion of white fat into brown-like fat occurs mainly in subcutaneous adipose depots where beige adipocytes are recruited in response to cold, exercise, caloric restriction and other stimuli. This process is called browning. Immune cells and their secreted molecules have been shown to control the thermogenic capacity of brown adipose tissue and elicit white to beige adipocyte conversion in the white adipose tissue. In this chapter we discuss the studies that have described the association between immune cells, immune mediators and the induction of a thermogenic phenotype in adipose tissue.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Polyzos SA, Kountouras J, Mantzoros CS (2019) Obesity and nonalcoholic fatty liver disease: From pathophysiology to therapeutics. Metabolism 92:82–97

    Article  CAS  PubMed  Google Scholar 

  2. Lu FB et al (2018) The relationship between obesity and the severity of non-alcoholic fatty liver disease: systematic review and meta-analysis. Expert Rev Gastroenterol Hepatol 12(5):491–502

    Article  CAS  PubMed  Google Scholar 

  3. Luo L, Liu M (2016) Adipose tissue in control of metabolism. J Endocrinol 231(3):R77–R99

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Arner P, Langin D (2014) Lipolysis in lipid turnover, cancer cachexia, and obesity-induced insulin resistance. Trends Endocrinol Metab 25(5):255–262

    Article  CAS  PubMed  Google Scholar 

  5. Zhang Y et al (1994) Positional cloning of the mouse obese gene and its human homologue. Nature 372(6505):425–432

    Article  CAS  PubMed  Google Scholar 

  6. Halaas JL et al (1995) Weight-reducing effects of the plasma protein encoded by the obese gene. Science 269(5223):543–546

    Article  CAS  PubMed  Google Scholar 

  7. Hotamisligil GS, Shargill NS, Spiegelman BM (1993) Adipose expression of tumor necrosis factor-alpha: direct role in obesity-linked insulin resistance. Science 259(5091):87–91

    Article  CAS  PubMed  Google Scholar 

  8. Hotamisligil GS et al (1995) Increased adipose tissue expression of tumor necrosis factor-alpha in human obesity and insulin resistance. J Clin Invest 95(5):2409–2415

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Hotamisligil GS et al (1996) IRS-1-mediated inhibition of insulin receptor tyrosine kinase activity in TNF-alpha- and obesity-induced insulin resistance. Science 271(5249):665–668

    Article  CAS  PubMed  Google Scholar 

  10. Weisberg SP et al (2003) Obesity is associated with macrophage accumulation in adipose tissue. J Clin Invest 112(12):1796–1808

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Bapat SP et al (2015) Depletion of fat-resident Treg cells prevents age-associated insulin resistance. Nature 528(7580):137–141

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Catrysse L, van Loo G (2018) Adipose tissue macrophages and their polarization in health and obesity. Cell Immunol 330:114–119

    Article  CAS  PubMed  Google Scholar 

  13. Lee BC et al (2016) Adipose Natural Killer Cells Regulate Adipose Tissue Macrophages to Promote Insulin Resistance in Obesity. Cell Metab 23(4):685–698

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Moraes-Vieira PM et al (2014) RBP4 activates antigen-presenting cells, leading to adipose tissue inflammation and systemic insulin resistance. Cell Metab 19(3):512–526

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Schipper HS et al (2012) Natural killer T cells in adipose tissue prevent insulin resistance. J Clin Invest 122(9):3343–3354

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Wu D et al (2011) Eosinophils sustain adipose alternatively activated macrophages associated with glucose homeostasis. Science 332(6026):243–247

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Rao RR et al (2014) Meteorin-like is a hormone that regulates immune-adipose interactions to increase beige fat thermogenesis. Cell 157(6):1279–1291

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Chevalier C et al (2015) Gut Microbiota Orchestrates Energy Homeostasis during Cold. Cell 163(6):1360–1374

    Article  CAS  PubMed  Google Scholar 

  19. Fabbiano S et al (2016) Caloric Restriction Leads to Browning of White Adipose Tissue through Type 2 Immune Signaling. Cell Metab 24(3):434–446

    Article  CAS  PubMed  Google Scholar 

  20. Townsend KL, Tseng YH (2014) Brown fat fuel utilization and thermogenesis. Trends Endocrinol Metab 25(4):168–177

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Lowell BB, Bachman ES (2003) Beta-Adrenergic receptors, diet-induced thermogenesis, and obesity. J Biol Chem 278(32):29385–29388

    Article  CAS  PubMed  Google Scholar 

  22. Stanford KI et al (2018) 12,13-diHOME: An Exercise-Induced Lipokine that Increases Skeletal Muscle Fatty Acid Uptake. Cell Metab 27(6):1357

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Leiria, L.O., et al., 12-Lipoxygenase Regulates Cold Adaptation and Glucose Metabolism by Producing the Omega-3 Lipid 12-HEPE from Brown Fat. Cell Metab, 2019.

    Google Scholar 

  24. Mori, M.A., et al., Extracellular miRNAs: From Biomarkers to Mediators of Physiology and Disease. Cell Metab, 2019.

    Google Scholar 

  25. Young P, Arch JR, Ashwell M (1984) Brown adipose tissue in the parametrial fat pad of the mouse. FEBS Lett 167(1):10–14

    Article  CAS  PubMed  Google Scholar 

  26. Schulz TJ et al (2011) Identification of inducible brown adipocyte progenitors residing in skeletal muscle and white fat. Proc Natl Acad Sci U S A 108(1):143–148

    Article  CAS  PubMed  Google Scholar 

  27. Long JZ et al (2014) A smooth muscle-like origin for beige adipocytes. Cell Metab 19(5):810–820

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Ikeda K, Maretich P, Kajimura S (2018) The Common and Distinct Features of Brown and Beige Adipocytes. Trends Endocrinol Metab 29(3):191–200

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Cypess AM et al (2009) Identification and importance of brown adipose tissue in adult humans. N Engl J Med 360(15):1509–1517

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. van Marken Lichtenbelt WD et al (2009) Cold-activated brown adipose tissue in healthy men. N Engl J Med 360(15):1500–1508

    Article  PubMed  Google Scholar 

  31. Virtanen KA et al (2009) Functional brown adipose tissue in healthy adults. N Engl J Med 360(15):1518–1525

    Article  CAS  PubMed  Google Scholar 

  32. Nguyen, M.T., et al., Regulation of chemokine and chemokine receptor expression by PPARgamma in adipocytes and macrophages. PLoS One, 2012. 7(4): p. e34976.

    Google Scholar 

  33. Fischer K et al (2017) Alternatively activated macrophages do not synthesize catecholamines or contribute to adipose tissue adaptive thermogenesis. Nat Med 23(5):623–630

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Pirzgalska RM et al (2017) Sympathetic neuron-associated macrophages contribute to obesity by importing and metabolizing norepinephrine. Nat Med 23(11):1309–1318

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Lee MW et al (2015) Activated type 2 innate lymphoid cells regulate beige fat biogenesis. Cell 160(1–2):74–87

    Article  CAS  PubMed  Google Scholar 

  36. Brestoff JR et al (2015) Group 2 innate lymphoid cells promote beiging of white adipose tissue and limit obesity. Nature 519(7542):242–246

    Article  CAS  PubMed  Google Scholar 

  37. Kohlgruber AC et al (2018) gammadelta T cells producing interleukin-17A regulate adipose regulatory T cell homeostasis and thermogenesis. Nat Immunol 19(5):464–474

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Sanchez-Gurmaches J, Hung CM, Guertin DA (2016) Emerging Complexities in Adipocyte Origins and Identity. Trends Cell Biol 26(5):313–326

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Zwick RK et al (2018) Anatomical, Physiological, and Functional Diversity of Adipose Tissue. Cell Metab 27(1):68–83

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Meza-Perez S, Randall TD (2017) Immunological Functions of the Omentum. Trends Immunol 38(7):526–536

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Abate N et al (1995) Relationships of generalized and regional adiposity to insulin sensitivity in men. J Clin Invest 96(1):88–98

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Park KS et al (1991) Intra-abdominal fat is associated with decreased insulin sensitivity in healthy young men. Metabolism 40(6):600–603

    Article  CAS  PubMed  Google Scholar 

  43. Yamashita S et al (1996) Insulin resistance and body fat distribution. Diabetes Care 19(3):287–291

    Article  CAS  PubMed  Google Scholar 

  44. Tchkonia T et al (2005) Abundance of two human preadipocyte subtypes with distinct capacities for replication, adipogenesis, and apoptosis varies among fat depots. Am J Physiol Endocrinol Metab 288(1):E267–E277

    Article  CAS  PubMed  Google Scholar 

  45. Alkhouri N et al (2010) Adipocyte apoptosis, a link between obesity, insulin resistance, and hepatic steatosis. J Biol Chem 285(5):3428–3438

    Article  CAS  PubMed  Google Scholar 

  46. Sell H, Habich C, Eckel J (2012) Adaptive immunity in obesity and insulin resistance. Nat Rev Endocrinol 8(12):709–716

    Article  CAS  PubMed  Google Scholar 

  47. Lumeng CN et al (2011) Aging is associated with an increase in T cells and inflammatory macrophages in visceral adipose tissue. J Immunol 187(12):6208–6216

    Article  CAS  PubMed  Google Scholar 

  48. Mauer J et al (2014) Signaling by IL-6 promotes alternative activation of macrophages to limit endotoxemia and obesity-associated resistance to insulin. Nat Immunol 15(5):423–430

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Qiu Y et al (2014) Eosinophils and type 2 cytokine signaling in macrophages orchestrate development of functional beige fat. Cell 157(6):1292–1308

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Lizcano F et al (2017) Human ADMC-Derived Adipocyte Thermogenic Capacity Is Regulated by IL-4 Receptor. Stem Cells Int 2017:2767916

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  51. Molofsky AB et al (2013) Innate lymphoid type 2 cells sustain visceral adipose tissue eosinophils and alternatively activated macrophages. J Exp Med 210(3):535–549

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Fitzgibbons TP et al (2011) Similarity of mouse perivascular and brown adipose tissues and their resistance to diet-induced inflammation. Am J Physiol Heart Circ Physiol 301(4):H1425–H1437

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Herrero L et al (2010) Inflammation and adipose tissue macrophages in lipodystrophic mice. Proc Natl Acad Sci U S A 107(1):240–245

    Article  CAS  PubMed  Google Scholar 

  54. Bae J et al (2014) Activation of pattern recognition receptors in brown adipocytes induces inflammation and suppresses uncoupling protein 1 expression and mitochondrial respiration. Am J Physiol Cell Physiol 306(10):C918–C930

    Article  CAS  PubMed  Google Scholar 

  55. McGregor RA et al (2013) Time-course microarrays reveal modulation of developmental, lipid metabolism and immune gene networks in intrascapular brown adipose tissue during the development of diet-induced obesity. Int J Obes (Lond) 37(12):1524–1531

    Article  CAS  Google Scholar 

  56. Sakamoto T et al (2013) Inflammation induced by RAW macrophages suppresses UCP1 mRNA induction via ERK activation in 10T1/2 adipocytes. Am J Physiol Cell Physiol 304(8):C729–C738

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Sakamoto T et al (2016) Macrophage infiltration into obese adipose tissues suppresses the induction of UCP1 level in mice. Am J Physiol Endocrinol Metab 310(8):E676–E687

    Article  PubMed  Google Scholar 

  58. Ricardo-Gonzalez RR et al (2010) IL-4/STAT6 immune axis regulates peripheral nutrient metabolism and insulin sensitivity. Proc Natl Acad Sci U S A 107(52):22617–22622

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Nguyen KD et al (2011) Alternatively activated macrophages produce catecholamines to sustain adaptive thermogenesis. Nature 480(7375):104–108

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Cereijo, R., et al., CXCL14, a Brown Adipokine that Mediates Brown-Fat-to-Macrophage Communication in Thermogenic Adaptation. Cell Metab, 2018. 28(5): p. 750–763 e6.

    Google Scholar 

  61. Wolf Y et al (2017) Brown-adipose-tissue macrophages control tissue innervation and homeostatic energy expenditure. Nat Immunol 18(6):665–674

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Talukdar S et al (2012) Neutrophils mediate insulin resistance in mice fed a high-fat diet through secreted elastase. Nat Med 18(9):1407–1412

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Liu J et al (2009) Genetic deficiency and pharmacological stabilization of mast cells reduce diet-induced obesity and diabetes in mice. Nat Med 15(8):940–945

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Zhang, X., et al., Functional Inactivation of Mast Cells Enhances Subcutaneous Adipose Tissue Browning in Mice. Cell Rep, 2019. 28(3): p. 792–803 e4.

    Google Scholar 

  65. Finlin BS et al (2017) Mast Cells Promote Seasonal White Adipose Beiging in Humans. Diabetes 66(5):1237–1246

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Winer DA et al (2014) B Lymphocytes in obesity-related adipose tissue inflammation and insulin resistance. Cell Mol Life Sci 71(6):1033–1043

    Article  CAS  PubMed  Google Scholar 

  67. Nishimura S et al (2009) CD8+ effector T cells contribute to macrophage recruitment and adipose tissue inflammation in obesity. Nat Med 15(8):914–920

    Article  CAS  PubMed  Google Scholar 

  68. Feuerer M et al (2009) Lean, but not obese, fat is enriched for a unique population of regulatory T cells that affect metabolic parameters. Nat Med 15(8):930–939

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Vasanthakumar A et al (2015) The transcriptional regulators IRF4, BATF and IL-33 orchestrate development and maintenance of adipose tissue-resident regulatory T cells. Nat Immunol 16(3):276–285

    Article  CAS  PubMed  Google Scholar 

  70. Odegaard JI et al (2017) Perinatal Licensing of Thermogenesis by IL-33 and ST2. Cell 171(7):1707

    Article  CAS  PubMed  Google Scholar 

  71. Eller K et al (2011) Potential role of regulatory T cells in reversing obesity-linked insulin resistance and diabetic nephropathy. Diabetes 60(11):2954–2962

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Chen X, Wu Y, Wang L (2013) Fat-resident Tregs: an emerging guard protecting from obesity-associated metabolic disorders. Obes Rev 14(7):568–578

    Article  CAS  PubMed  Google Scholar 

  73. Medrikova, D., et al., Brown adipose tissue harbors a distinct sub-population of regulatory T cells. PLoS One, 2015. 10(2): p. e0118534.

    Google Scholar 

  74. Kalin, S., et al., A Stat6/Pten Axis Links Regulatory T Cells with Adipose Tissue Function. Cell Metab, 2017. 26(3): p. 475–492 e7.

    Google Scholar 

  75. DeFuria J et al (2013) B cells promote inflammation in obesity and type 2 diabetes through regulation of T-cell function and an inflammatory cytokine profile. Proc Natl Acad Sci U S A 110(13):5133–5138

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Peterson KR, Flaherty DK, Hasty AH (2017) Obesity Alters B Cell and Macrophage Populations in Brown Adipose Tissue. Obesity (Silver Spring) 25(11):1881–1884

    Article  CAS  Google Scholar 

  77. Kin NW, Sanders VM (2006) It takes nerve to tell T and B cells what to do. J Leukoc Biol 79(6):1093–1104

    Article  CAS  PubMed  Google Scholar 

  78. Saze Z et al (2013) Adenosine production by human B cells and B cell-mediated suppression of activated T cells. Blood 122(1):9–18

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Lynch L et al (2012) Adipose tissue invariant NKT cells protect against diet-induced obesity and metabolic disorder through regulatory cytokine production. Immunity 37(3):574–587

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Lynch L et al (2016) iNKT Cells Induce FGF21 for Thermogenesis and Are Required for Maximal Weight Loss in GLP1 Therapy. Cell Metab 24(3):510–519

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Molofsky AB, Savage AK, Locksley RM (2015) Interleukin-33 in Tissue Homeostasis, Injury, and Inflammation. Immunity 42(6):1005–1019

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Mahlakoiv, T., et al., Stromal cells maintain immune cell homeostasis in adipose tissue via production of interleukin-33. Sci Immunol, 2019. 4(35).

    Google Scholar 

  83. Shan B et al (2017) The metabolic ER stress sensor IRE1alpha suppresses alternative activation of macrophages and impairs energy expenditure in obesity. Nat Immunol 18(5):519–529

    Article  CAS  PubMed  Google Scholar 

  84. Hui X et al (2015) Adiponectin Enhances Cold-Induced Browning of Subcutaneous Adipose Tissue via Promoting M2 Macrophage Proliferation. Cell Metab 22(2):279–290

    Article  CAS  PubMed  Google Scholar 

  85. Luo Y et al (2017) Myeloid adrenergic signaling via CaMKII forms a feedforward loop of catecholamine biosynthesis. J Mol Cell Biol 9(5):422–434

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Rajbhandari, P., et al., IL-10 Signaling Remodels Adipose Chromatin Architecture to Limit Thermogenesis and Energy Expenditure. Cell, 2018. 172(1–2): p. 218–233 e17.

    Google Scholar 

  87. de-Lima-Junior, J.C., et al., Abnormal brown adipose tissue mitochondrial structure and function in IL10 deficiency. EBioMedicine, 2019. 39: p. 436–447.

    Google Scholar 

  88. Ding X et al (2016) IL-33-driven ILC2/eosinophil axis in fat is induced by sympathetic tone and suppressed by obesity. J Endocrinol 231(1):35–48

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Cayrol C, Girard JP (2018) Interleukin-33 (IL-33): A nuclear cytokine from the IL-1 family. Immunol Rev 281(1):154–168

    Article  CAS  PubMed  Google Scholar 

  90. Odegaard JI et al (2016) Perinatal Licensing of Thermogenesis by IL-33 and ST2. Cell 166(4):841–854

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Su CW et al (2018) Helminth infection protects against high fat diet-induced obesity via induction of alternatively activated macrophages. Sci Rep 8(1):4607

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  92. Moro K et al (2010) Innate production of T(H)2 cytokines by adipose tissue-associated c-Kit(+)Sca-1(+) lymphoid cells. Nature 463(7280):540–544

    Article  CAS  PubMed  Google Scholar 

  93. Goto T et al (2016) Proinflammatory cytokine interleukin-1beta suppresses cold-induced thermogenesis in adipocytes. Cytokine 77:107–114

    Article  CAS  PubMed  Google Scholar 

  94. Nisoli E et al (2000) Tumor necrosis factor alpha mediates apoptosis of brown adipocytes and defective brown adipocyte function in obesity. Proc Natl Acad Sci U S A 97(14):8033–8038

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Pazos P et al (2015) Divergent responses to thermogenic stimuli in BAT and subcutaneous adipose tissue from interleukin 18 and interleukin 18 receptor 1-deficient mice. Sci Rep 5:17977

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Knudsen, J.G., et al., Role of IL-6 in exercise training- and cold-induced UCP1 expression in subcutaneous white adipose tissue. PLoS One, 2014. 9(1): p. e84910.

    Google Scholar 

  97. Petruzzelli M et al (2014) A switch from white to brown fat increases energy expenditure in cancer-associated cachexia. Cell Metab 20(3):433–447

    Article  CAS  PubMed  Google Scholar 

  98. Wedell-Neergaard, A.S., et al., Exercise-Induced Changes in Visceral Adipose Tissue Mass Are Regulated by IL-6 Signaling: A Randomized Controlled Trial. Cell Metab, 2019. 29(4): p. 844–855 e3.

    Google Scholar 

  99. Kristof E et al (2019) Interleukin-6 released from differentiating human beige adipocytes improves browning. Exp Cell Res 377(1–2):47–55

    Article  CAS  PubMed  Google Scholar 

  100. Stanford KI et al (2013) Brown adipose tissue regulates glucose homeostasis and insulin sensitivity. J Clin Invest 123(1):215–223

    Article  CAS  PubMed  Google Scholar 

  101. https://doi.org/10.1371/journal.pbio.3001348

  102. Klein-Wieringa IR et al (2013) Adipocytes modulate the phenotype of human macrophages through secreted lipids. J Immunol 191(3):1356–1363

    Article  CAS  PubMed  Google Scholar 

  103. Schulz TJ et al (2016) Loss of BMP receptor type 1A in murine adipose tissue attenuates age-related onset of insulin resistance. Diabetologia 59(8):1769–1777

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  104. Ying, W., et al., Adipose Tissue Macrophage-Derived Exosomal miRNAs Can Modulate In Vivo and In Vitro Insulin Sensitivity. Cell, 2017. 171(2): p. 372–384 e12.

    Google Scholar 

  105. Liu T et al (2019) Adipose tissue macrophage-derived exosomal miR-29a regulates obesity-associated insulin resistance. Biochem Biophys Res Commun 515(2):352–358

    Article  CAS  PubMed  Google Scholar 

  106. Pan Y et al (2019) Adipocyte-secreted exosomal microRNA-34a inhibits M2 macrophage polarization to promote obesity-induced adipose inflammation. J Clin Invest 129(2):834–849

    Article  PubMed  PubMed Central  Google Scholar 

  107. Mills EL et al (2018) Accumulation of succinate controls activation of adipose tissue thermogenesis. Nature 560(7716):102–106

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  108. Keiran N et al (2019) SUCNR1 controls an anti-inflammatory program in macrophages to regulate the metabolic response to obesity. Nat Immunol 20(5):581–592

    Article  CAS  PubMed  Google Scholar 

  109. Garcia-Alonso V et al (2013) Coordinate functional regulation between microsomal prostaglandin E synthase-1 (mPGES-1) and peroxisome proliferator-activated receptor gamma (PPARgamma) in the conversion of white-to-brown adipocytes. J Biol Chem 288(39):28230–28242

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  110. Madsen, L., et al., UCP1 induction during recruitment of brown adipocytes in white adipose tissue is dependent on cyclooxygenase activity. PLoS One, 2010. 5(6): p. e11391.

    Google Scholar 

  111. Vegiopoulos A et al (2010) Cyclooxygenase-2 controls energy homeostasis in mice by de novo recruitment of brown adipocytes. Science 328(5982):1158–1161

    Article  CAS  PubMed  Google Scholar 

  112. Paschos GK et al (2018) Cold-Induced Browning of Inguinal White Adipose Tissue Is Independent of Adipose Tissue Cyclooxygenase-2. Cell Rep 24(4):809–814

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  113. Thomou T et al (2017) Adipose-derived circulating miRNAs regulate gene expression in other tissues. Nature 542(7642):450–455

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  114. Fu T et al (2014) MicroRNA 34a inhibits beige and brown fat formation in obesity in part by suppressing adipocyte fibroblast growth factor 21 signaling and SIRT1 function. Mol Cell Biol 34(22):4130–4142. https://doi.org/10.1126/sciadv.abc6250

    Article  PubMed  PubMed Central  CAS  Google Scholar 

Download references

Acknowledgements

A.L.R., L.O.L., and M.A.M. are funded by Fundação de Amparo à Pesquisa do Estado de São Paulo (2017/01184-9, 2017/07975-8, 2016/12294-7 and 2017/08264-8). T.J.S. is supported by the German Research Foundation (DFG; SCHU 2445/5-1 and SCHU 2445/6-2), the German Ministry of Education and Research (BMBF) and the State of Brandenburg (DZD grant # 82DZD00302 and FKZ 82DZD0038G).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marcelo A. Mori .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Rocha, A.L., Leiria, L.O., Schulz, T.J., Mori, M.A. (2022). Immune Regulation of Adipose Tissue Browning. In: Camara, N.O.S., Alves-Filho, J.C., Moraes-Vieira, P.M.M.d., Andrade-Oliveira, V. (eds) Essential Aspects of Immunometabolism in Health and Disease. Springer, Cham. https://doi.org/10.1007/978-3-030-86684-6_11

Download citation

Publish with us

Policies and ethics