Skip to main content

Energy Metabolism in Cardiomyocyte

  • Chapter
  • First Online:
Cardiomyocytes in Health and Disease

Abstract

Development, differentiation, and postnatal growth of cardiomyocyte are accompanied by substantial changes in its energy metabolism. These changes influence cardiomyocyte proliferation during the early phases of development of the heart and also terminal differentiation of the cardiomyocyte during later stages. In the early phase, glycolysis is a major source of energy for proliferating cardiomyocytes. After birth, there is an increase in the workload of the heart. The adult heart does not have energy reserves and hence has to ceaselessly produce energy in the form of adenosine triphosphate to meet the demands of uninterrupted contractile function. Cardiomyocyte improves its contractile capacity by shifting to a more efficient energy source (lipids) and by adapting to specialized systems for energy transfer. Metabolic maturation precedes the maturation of excitation–contraction coupling. The exact interacting mechanisms are unclear. As cardiomyocytes become terminally differentiated, its mitochondrial oxidative capacity increases and fatty acid β-oxidation is the major source of energy. Energy metabolism drives the post-natal development of cardiomyocyte and its complex architecture. The cell microenvironment modulates the cross-talk between cytoskeletal architecture and metabolism in cardiomyocytes.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 119.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 159.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 159.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Opie LH. Metabolism of the heart in health and disease. Part I Am Heart J. 1968;76(5):685–98.

    Article  CAS  Google Scholar 

  2. Opie LH. Metabolism of the heart in health and disease. Part II Am Heart J. 1969;77(1):100–22.

    Article  CAS  Google Scholar 

  3. Lopaschuk GD, Ussher JR, Folmes CD, Jaswal JS, Stanley WC. Myocardial fatty acid metabolism in health and disease. Physiol Rev. 2010;90(1):207–58.

    Article  CAS  PubMed  Google Scholar 

  4. Stanley WC, Recchia FA, Lopaschuk GD. Myocardial substrate metabolism in the normal and failing heart. Physiol Rev. 2005;85(3):1093–129.

    Article  CAS  PubMed  Google Scholar 

  5. Neely JR, Morgan HE. Relationship between carbohydrate and lipid metabolism and the energy balance of heart muscle. Annu Rev Physiol. 1974;36(1):413–59.

    Article  CAS  PubMed  Google Scholar 

  6. Chung S, Arrell DK, Faustino RS, Terzic A, Dzeja PP. Glycolytic network restructuring integral to the energetics of embryonic stem cell cardiac differentiation. J Mol Cell Cardiol. 2010; 48(4):725–34.

    Google Scholar 

  7. Chung S, Dzeja PP, Faustino RS, Perez-Terzic C, Behfar A, Terzic A. Mitochondrial oxidative metabolism is required for the cardiac differentiation of stem cells. Nat Clin Pract Cardiovasc Med. 2007;4(1):S60–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Cho YM, Kwon S, Pak YK, Seol HW, Choi YM, Park DJ, et al. Dynamic changes in mitochondrial biogenesis and antioxidant enzymes during the spontaneous differentiation of human embryonic stem cells. Biochem Biophys Res Commun. 2006;348(4):1472–8.

    Article  CAS  PubMed  Google Scholar 

  9. St. John JC, Ramalho-Santos J, Gray HL, Petrosko P, Rawe VY, Navara CS, et al. The expression of mitochondrial DNA transcription factors during early cardiomyocyte in vitro differentiation from human embryonic stem cells. Cloning Stem Cells. 2005; 7(3):141–53.

    Google Scholar 

  10. Vander Heiden MG, Cantley LC, Thompson CB. Understanding the Warburg effect: the metabolic requirements of cell proliferation. Science. 2009;324(5930):1029–33.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. DeBerardinis RJ, Lum JJ, Thompson CB. Phosphatidylinositol 3-kinase-dependent modulation of carnitine palmitoyltransferase 1A expression regulates lipid metabolism during hematopoietic cell growth. J Biol Chem. 2006;281(49):37372–80.

    Article  CAS  PubMed  Google Scholar 

  12. DeBerardinis RJ, Lum JJ, Hatzivassiliou G, Thompson CB. The biology of cancer: metabolic reprogramming fuels cell growth and proliferation. Cell Metab. 2008;7(1):11–20.

    Article  CAS  PubMed  Google Scholar 

  13. Baharvand H, Matthaei KI. The ultrastructure of mouse embryonic stem cells. Reprod Biomed Online. 2003;7(3):330–5.

    Article  PubMed  Google Scholar 

  14. Forristal CE, Wright KL, Hanley NA, Oreffo RO, Houghton FD. Hypoxia inducible factors regulate pluripotency and proliferation in human embryonic stem cells cultured at reduced oxygen tensions. Reproduction. 2010;139(1):85.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Ezashi T, Das P, Roberts RM. Low O2 tensions and the prevention of differentiation of hES cells. Proc Natl Acad Sci USA. 2005;102(13):4783–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Williamson JR, Ford C, Illingworth J, Safer B. Coordination of citric acid cycle activity with electron transport flux. Circ Res. 1976;38(5 Suppl 1):I39-51.

    CAS  PubMed  Google Scholar 

  17. Saks V, Favier R, Guzun R, Schlattner U, Wallimann T. Molecular system bioenergetics: regulation of substrate supply in response to heart energy demands. J Physiol. 2006;577(3):769–77.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Ventura-Clapier R, Garnier A, Veksler V, Joubert F. Bioenergetics of the failing heart. Biochimica et Biophysica Acta (BBA)-Mol Cell Res. 2011; 1813(7):1360–72.

    Google Scholar 

  19. Makinde A, Kantor PF, Lopaschuk GD. Maturation of fatty acid and carbohydrate metabolism in the newborn heart. Mol Cell Biochem. 1998; 188:49–56.

    Google Scholar 

  20. Lopaschuk GD, Spafford MA, Marsh DR. Glycolysis is predominant source of myocardial ATP production immediately after birth. Am J Physiol-Heart Circul Physiol. 1991;261(6):H1698–705.

    Article  CAS  Google Scholar 

  21. Lopaschuk GD, Collins-Nakai RL, Itoi T. Developmental changes in energy substrate use by the heart. Cardiovasc Res. 1992;26(12):1172–80.

    Article  CAS  PubMed  Google Scholar 

  22. Werner JC, Whitman V, Musselman J, Schuler G. Perinatal changes in mitochondrial respiration of the rabbit heart. Neonatology. 1982;42(5–6):208–16.

    Article  CAS  Google Scholar 

  23. Minai L, Martinovic J, Chretien D, Dumez F, Razavi F, Munnich A, et al. Mitochondrial respiratory chain complex assembly and function during human fetal development. Mol Genet Metab. 2008;94(1):120–6.

    Article  CAS  PubMed  Google Scholar 

  24. Fisher DJ, Heymann MA, Rudolph AM. Myocardial oxygen and carbohydrate consumption in fetal lambs in utero and in adult sheep. Am J Physiol-Heart Circ Physiol. 1980;238(3):H399–405.

    Article  CAS  Google Scholar 

  25. Rolph T, Jones C. Regulation of glycolytic flux in the heart of the fetal guinea pig. J Dev Physiol. 1983;5(1):31–49.

    CAS  PubMed  Google Scholar 

  26. Warshaw JB. Cellular energy metabolism during fetal development: I. Oxidative phosphorylation in the fetal heart. J Cell Biology. 1969; 41(2):651.

    Google Scholar 

  27. Warshaw JB. Cellular energy metabolism during fetal development: IV. Fatty acid activation, acyl transfer and fatty acid oxidation during development of the chick and rat. Dev Biology. 1972; 28(4):537–44.

    Google Scholar 

  28. Dallman PR, Schwartz HC. Cytochrome c concentrations during rat and guinea pig development. Pediatrics. 1964;33(1):106–10.

    Article  CAS  PubMed  Google Scholar 

  29. Werner JC, Sicard RE. Lactate metabolism of isolated, perfused fetal, and newborn pig hearts. Pediatr Res. 1987;22(5):552–6.

    Article  CAS  PubMed  Google Scholar 

  30. Itoi T, Lopaschuk GD. The contribution of glycolysis, glucose oxidation, lactate oxidation, and fatty acid oxidation to ATP production in isolated biventricular working hearts from 2-week-old rabbits. Pediatr Res. 1993;34(6):735–41.

    Article  CAS  PubMed  Google Scholar 

  31. Lopaschuk GD, Jaswal JS. Energy metabolic phenotype of the cardiomyocyte during development, differentiation, and postnatal maturation. J Cardiovasc Pharmacol. 2010;56(2):130–40.

    Article  CAS  PubMed  Google Scholar 

  32. Werner JC, Sicard RE, Schuler HG. Palmitate oxidation by isolated working fetal and newborn pig hearts. Am J Physiol-Endocrinol Metab. 1989;256(2):E315–21.

    Article  CAS  Google Scholar 

  33. Jones CT, Rolph TP. Metabolism during fetal life: a functional assessment of metabolic development. Physiol Rev. 1985;65(2):357–430.

    Article  CAS  PubMed  Google Scholar 

  34. Bristow J, Bier D, Lange L. Regulation of adult and fetal myocardial phosphofructokinase. Relief of cooperativity and competition between fructose 2, 6-bisphosphate, ATP, and citrate. J Biol Chem. 1987; 262(5):2171–175.

    Google Scholar 

  35. Ascuitto RJ, Ross-Ascuitto NT. Substrate metabolism in the developing heart. Semin Perinatol. 1996;20:542–63.

    Article  CAS  PubMed  Google Scholar 

  36. Girard J, Ferre P, Pegorier J, Duee P. Adaptations of glucose and fatty acid metabolism during perinatal period and suckling-weaning transition. Physiol Rev. 1992;72(2):507–62.

    Article  CAS  PubMed  Google Scholar 

  37. Portman O, Behrman R, Soltys P. Transfer of free fatty acids across the primate placenta. Am J Physiol-Legacy Content. 1969;216(1):143–7.

    Article  CAS  Google Scholar 

  38. Bartelds B, Gratama J-WC, Knoester H, Takens J, Smid GB, Aarnoudse JG, et al. Perinatal changes in myocardial supply and flux of fatty acids, carbohydrates, and ketone bodies in lambs. Am J Physiol-Heart Circ Physiol. 1998; 274(6):H1962-H9.

    Google Scholar 

  39. Nakano H, Minami I, Braas D, Pappoe H, Wu X, Sagadevan A, et al. Glucose inhibits cardiac muscle maturation through nucleotide biosynthesis Elife. 2017; 6:e29330. https://doi.org/10.7554/eLife.29330.

  40. Bartelds B, Knoester H, Smid GB, Takens J, Visser GH, Penninga L, van der Leij FR, Beaufort-Krol GC, Zijlstra WG, Heymans HS, Kuipers JR. Perinatal changes in myocardial metabolism in lambs. Circulation. 2000;102:926–31.

    Article  CAS  PubMed  Google Scholar 

  41. Warshaw JB, Terry ML. Cellular energy metabolism during fetal development. Dev Biol. 1976;52(1):161–6.

    Article  CAS  PubMed  Google Scholar 

  42. Iruretagoyena J, Davis W, Bird C, Olsen J, Radue R, Teo Broman A, et al. Metabolic gene profile in early human fetal heart development. Mol Hum Reprod. 2014;20(7):690–700.

    Article  CAS  PubMed  Google Scholar 

  43. Park JH, Stoffers DA, Nicholls RD, Simmons RA. Development of type 2 diabetes following intrauterine growth retardation in rats is associated with progressive epigenetic silencing of Pdx1. J Clin Investig. 2008;118(6):2316–24.

    CAS  PubMed  PubMed Central  Google Scholar 

  44. Voloshyna I, Littlefield MJ, Reiss AB. Atherosclerosis and interferon-γ: new insights and therapeutic targets. Trends Cardiovasc Med. 2014;24(1):45–51.

    Article  CAS  PubMed  Google Scholar 

  45. Bitman J, Wood L, Hamosh M, Hamosh P, Mehta NR. Comparison of the lipid composition of breast milk from mothers of term and preterm infants. Am J Clin Nutr. 1983;38(2):300–12.

    Article  CAS  PubMed  Google Scholar 

  46. de Carvalho AETS, Bassaneze V, Forni MF, Keusseyan AA, Kowaltowski AJ, Krieger JE. Early postnatal cardiomyocyte proliferation requires high oxidative energy metabolism. Sci Rep. 2017;7(1):1–11.

    Article  CAS  Google Scholar 

  47. Hallman M. Changes in mitochondrial respiratory chain proteins during perinatal development. Evidence of the importance of environmental oxygen tension. Biochimica et Biophysica Acta (BBA)-Bioenergetics. 1971; 253(2):360–72.

    Google Scholar 

  48. Glatz J, Veerkamp J. Postnatal development of palmitate oxidation and mitochondrial enzyme activities in rat cardiac and skeletal muscle. Biochem Biophys Acta. 1982;711(2):327–35.

    Article  CAS  PubMed  Google Scholar 

  49. Taha M, Lopaschuk GD. Alterations in energy metabolism in cardiomyopathies. Ann Med. 2007;39(8):594–607.

    Article  CAS  PubMed  Google Scholar 

  50. Piquereau J, Novotova M, Fortin D, Garnier A, Ventura-Clapier R, Veksler V, et al. Postnatal development of mouse heart: formation of energetic microdomains. J Physiol. 2010;588(13):2443–54.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Martin OJ, Lai L, Soundarapandian MM, Leone TC, Zorzano A, Keller MP, et al. A role for peroxisome proliferator-activated receptor γ coactivator-1 in the control of mitochondrial dynamics during postnatal cardiac growth. Circ Res. 2014;114(4):626–36.

    Article  CAS  PubMed  Google Scholar 

  52. Pohjoismäki JL, Boettger T, Liu Z, Goffart S, Szibor M, Braun T. Oxidative stress during mitochondrial biogenesis compromises mtDNA integrity in growing hearts and induces a global DNA repair response. Nucleic Acids Res. 2012;40(14):6595–607.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  53. Pohjoismäki JL, Krüger M, Al-Furoukh N, Lagerstedt A, Karhunen PJ, Braun T. Postnatal cardiomyocyte growth and mitochondrial reorganization cause multiple changes in the proteome of human cardiomyocytes. Mol BioSyst. 2013;9(6):1210–9.

    Article  PubMed  CAS  Google Scholar 

  54. Barger P, Kelly DP. PPAR signaling in the control of cardiac energy metabolism. Trends Cardiovasc Med. 2000;10:238–45.

    Article  CAS  PubMed  Google Scholar 

  55. Lehman JJ, Barger PM, Kovacs A, Saffitz JE, Medeiros DM, Kelly DP. Peroxisome proliferator–activated receptor γ coactivator-1 promotes cardiac mitochondrial biogenesis. J Clin Investig. 2000;106(7):847–56.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Warren JS, Oka S-i, Zablocki D, Sadoshima J. Metabolic reprogramming via PPAR signaling in cardiac hypertrophy and failure: From metabolomics to epigenetics. Am J Physiol Heart Circ Physiol. 2017; 313: H584–H596.

    Google Scholar 

  57. Fukushima A, Alrob OA, Zhang L, Wagg CS, Altamimi T, Rawat S, et al. Acetylation and succinylation contribute to maturational alterations in energy metabolism in the newborn heart. Am J Physiol-Heart Circ Physiol. 2016;311(2):H347–63.

    Article  PubMed  Google Scholar 

  58. Das DK, Flansaas D, Engelman RM, Rousou JA, Breyer RH, Jones R, et al. Age-related development profiles of the antioxidative defense system and the peroxidative status of the pig heart. Neonatology. 1987;51(3):156–69.

    Article  CAS  Google Scholar 

  59. Bódi B, Tóth EP, Nagy L, Tóth A, Mártha L, Kovács Á, et al. Titin isoforms are increasingly protected against oxidative modifications in developing rat cardiomyocytes. Free Radical Biol Med. 2017;113:224–35.

    Article  CAS  Google Scholar 

  60. Taverne YJ, Bogers AJ, Dirk JD, Merkus D. Reactive oxygen species and the cardiovascular system. Oxidative Medicine and Cellular Longevity. 2013; Article ID 862423. https://doi.org/10.1155/2013/862423.

  61. Vega RB, Kelly DP. Cardiac nuclear receptors: architects of mitochondrial structure and function. J Clin Investig. 2017;127(4):1155–64.

    Article  PubMed  PubMed Central  Google Scholar 

  62. Soonpaa MH, Kim KK, Pajak L, Franklin M, Field LJ. Cardiomyocyte DNA synthesis and binucleation during murine development. Am J Physiol-Heart Circ Phys. 1996;271(5):H2183–9.

    Article  CAS  Google Scholar 

  63. Ahuja P, Sdek P, MacLellan WR. Cardiac myocyte cell cycle control in development, disease, and regeneration. Physiol Rev. 2007;87(2):521–44.

    Article  CAS  PubMed  Google Scholar 

  64. Lopaschuk GD, Spafford MA. Energy substrate utilization by isolated working hearts from newborn rabbits. Am J Physiol-Heart Circ Physiol. 1990;258(5):H1274–80.

    Article  CAS  Google Scholar 

  65. Medina J. The role of lactate as an energy substrate for the brain during the early neonatal period. Neonatology. 1985;48(4):237–44.

    Article  CAS  Google Scholar 

  66. Knopp RH, Warth MR, Charles D, Childs M, Li JR, Mabuchi H, et al. Lipoprotein metabolism in pregnancy, fat transport to the fetus, and the effects of diabetes. Neonatology. 1986;50(6):297–317.

    Article  CAS  Google Scholar 

  67. Kudo N, Gillespie JG, Kung L, Witters LA, Schulz R, Clanachan AS, et al. Characterization of 5′ AMP-activated protein kinase activity in the heart and its role in inhibiting acetyl-CoA carboxylase during reperfusion following ischemia. Biochimica et Biophysica Acta (BBA)-Lipids Lipid Metab. 1996; 1301(1–2):67–75.

    Google Scholar 

  68. Fisher DJ, Heymann MA, Rudolph AM. Regional myocardial blood flow and oxygen delivery in fetal, newborn, and adult sheep. Am J Physiol-Heart Circ Physiol. 1982;243(5):H729–31.

    Article  CAS  Google Scholar 

  69. Lopaschuk GD, Spafford MA. Differences in myocardial ischemic tolerance between 1-and 7-day-old rabbits. Can J Physiol Pharmacol. 1992;70(10):1315–23.

    Article  CAS  PubMed  Google Scholar 

  70. Kunau W-H, Dommes V, Schulz H. β-Oxidation of fatty acids in mitochondria, peroxisomes, and bacteria: a century of continued progress. Prog Lipid Res. 1995;34(4):267–342.

    Article  CAS  PubMed  Google Scholar 

  71. Lopaschuk GD, Belke DD, Gamble J, Toshiyuki I, Schönekess BO. Regulation of fatty acid oxidation in the mammalian heart in health and disease. Biochimica et Biophysica Acta (BBA)-Lipids Lipid Metab. 1994; 1213(3):263–76.

    Google Scholar 

  72. McGarry JD, Woeltje KF, Kuwajima M, Foster DW. Regulation of ketogenesis and the renaissance of carnitine palmitoyltransferase. Diabetes Metab Rev. 1989;5(3):271–84.

    Article  CAS  PubMed  Google Scholar 

  73. Van der Vusse G, Glatz J, Stam H, Reneman RS. Fatty acid homeostasis in the normoxic and ischemic heart. Physiol Rev. 1992;72(4):881–940.

    Article  PubMed  Google Scholar 

  74. Lopaschuk GD, Witters LA, Itoi T, Barr R, Barr A. Acetyl-CoA carboxylase involvement in the rapid maturation of fatty acid oxidation in the newborn rabbit heart. J Biol Chem. 1994;269(41):25871–8.

    Article  CAS  PubMed  Google Scholar 

  75. Lopaschuk GD, Gamble J. The 1993 Merck Frosst Award. Acetyl-CoA carboxylase: an important regulator of fatty acid oxidation in the heart. Can J Physiol Pharmacol. 1994; 72(10):1101–109.

    Google Scholar 

  76. Dyck JR, Barr AJ, Barr RL, Kolattukudy PE, Lopaschuk GD. Characterization of cardiac malonyl-CoA decarboxylase and its putative role in regulating fatty acid oxidation. Am J Physiol-Heart Circ Physiol. 1998;275(6):H2122–9.

    Article  CAS  Google Scholar 

  77. Saddik M, Gamble J, Witters L, Lopaschuk G. Acetyl-CoA carboxylase regulation of fatty acid oxidation in the heart. J Biol Chem. 1993;268(34):25836–45.

    Article  CAS  PubMed  Google Scholar 

  78. Bianchi A, Evans JL, Iverson AJ, Nordlund A-C, Watts TD, Witters L. Identification of an isozymic form of acetyl-CoA carboxylase. J Biol Chem. 1990;265(3):1502–9.

    Article  CAS  PubMed  Google Scholar 

  79. Hardie DG. Regulation of fatty acid synthesis via phosphorylation of acetyl-CoA carboxylase. Prog Lipid Res. 1989;28(2):117–46.

    Article  CAS  PubMed  Google Scholar 

  80. Hardie DG. Regulation of fatty acid and cholesterol metabolism by the AMP-activated protein kinase. Biochimica et Biophysica Acta (BBA)-Lipids Lipid Metab. 1992; 1123(3):231–38.

    Google Scholar 

  81. Hardie DG. An emerging role for protein kinases: the responses to nutritional and environmental stress. Cell Signal. 1994;6(8):813–21.

    Article  CAS  PubMed  Google Scholar 

  82. Hawley SA, Davison M, Woods A, Davies SP, Beri RK, Carling D, et al. Characterization of the AMP-activated protein kinase kinase from rat liver and identification of threonine 172 as the major site at which it phosphorylates AMP-activated protein kinase. J Biol Chem. 1996;271(44):27879–87.

    Article  CAS  PubMed  Google Scholar 

  83. Makinde A-O, Gamble J, Lopaschuk GD. Upregulation of 5′-AMP–activated protein kinase is responsible for the increase in myocardial fatty acid oxidation rates following birth in the newborn rabbit. Circ Res. 1997;80(4):482–9.

    Article  CAS  PubMed  Google Scholar 

  84. Yatscoff MA, Jaswal JS, Grant MR, Greenwood R, Lukat T, Beker DL, et al. Myocardial hypertrophy and the maturation of fatty acid oxidation in the newborn human heart. Pediatr Res. 2008;64(6):643–7.

    Article  CAS  PubMed  Google Scholar 

  85. Cheng L, Ding G, Qin Q, Huang Y, Lewis W, He N, et al. Cardiomyocyte-restricted peroxisome proliferator-activated receptor-δ deletion perturbs myocardial fatty acid oxidation and leads to cardiomyopathy. Nat Med. 2004;10(11):1245–50.

    Article  CAS  PubMed  Google Scholar 

  86. Schuler M, Ali F, Chambon C, Duteil D, Bornert J-M, Tardivel A, et al. PGC1α expression is controlled in skeletal muscles by PPARβ, whose ablation results in fiber-type switching, obesity, and type 2 diabetes. Cell Metab. 2006;4(5):407–14.

    Article  CAS  PubMed  Google Scholar 

  87. Yoda-Murakami M, Taniguchi M, Takahashi K, Kawamata S, Saito K, Choi-Miura N-H, et al. Change in expression of GBP28/adiponectin in carbon tetrachloride-administrated mouse liver. Biochem Biophys Res Commun. 2001;285(2):372–7.

    Article  CAS  PubMed  Google Scholar 

  88. Lee GY, Kim NH, Zhao Z-S, Cha BS, KIM YS. Peroxisomal-proliferator-activated receptor alpha activates transcription of the rat hepatic malonyl-CoA decarboxylase gene: a key regulation of malonyl-CoA level. Biochem J. 2004; 378(3):983–90.

    Google Scholar 

  89. Li Y, Cheng L, Qin Q, Liu J, Lo W-k, Brako LA, et al. High-fat feeding in cardiomyocyte-restricted PPARδ knockout mice leads to cardiac overexpression of lipid metabolic genes but fails to rescue cardiac phenotypes. J Mol Cell Cardiol. 2009; 47(4):536–43.

    Google Scholar 

  90. Holness M, Sugden M. Regulation of pyruvate dehydrogenase complex activity by reversible phosphorylation. Biochem Soc Trans. 2003;31(6):1143–51.

    Article  CAS  PubMed  Google Scholar 

  91. Sugden MC, Holness MJ. Recent advances in mechanisms regulating glucose oxidation at the level of the pyruvate dehydrogenase complex by PDKs. Am J Physiol-Endocrinol Metab. 2003;284(5):E855–62.

    Article  CAS  PubMed  Google Scholar 

  92. McCORMACK JG, Denton RM. The activation of pyruvate dehydrogenase in the perfused rat heart by adrenaline and other inotropic agents. Biochem J. 1981;194(2):639–43.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Unitt JF, McCormack JG, Reid D, MacLachlan L, England P. Direct evidence for a role of intramitochondrial Ca2+ in the regulation of oxidative phosphorylation in the stimulated rat heart. Studies using31P nmr and ruthenium red. Biochem J. 1989; 262(1):293–301.

    Google Scholar 

  94. Stepanov V, Mateo P, Gillet B, Beloeil J, Lechene P, Hoerter J. Kinetics of creatine kinase in an experimental model of low phosphocreatine and ATP in the normoxic heart. Am J Physiol Cell Physiol. 1997;273(4):C1397–408.

    Article  CAS  Google Scholar 

  95. Hue L, Taegtmeyer H. The Randle cycle revisited: a new head for an old hat. Am J Physiol-Endocrinol Metab. 2009;297(3):E578–91.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Iyer NV, Kotch LE, Agani F, Leung SW, Laughner E, Wenger RH, et al. Cellular and developmental control of O2 homeostasis by hypoxia-inducible factor 1α. Genes Dev. 1998;12(2):149–62.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Ryan HE, Lo J, Johnson RS. HIF-1α is required for solid tumor formation and embryonic vascularization. EMBO J. 1998;17(11):3005–15.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Wood SM, Wiesener MS, Yeates KM, Okada N, Pugh CW, Maxwell PH, et al. Selection and analysis of a mutant cell line defective in the hypoxia-inducible factor-1 α-subunit (HIF-1α): Characterization of HIF-1α-dependent and-independent hypoxia-inducible gene expression. J Biol Chem. 1998;273(14):8360–8.

    Article  CAS  PubMed  Google Scholar 

  99. Kim J-W, Tchernyshyov I, Semenza GL, Dang CV. HIF-1-mediated expression of pyruvate dehydrogenase kinase: a metabolic switch required for cellular adaptation to hypoxia. Cell Metab. 2006; 3(3):177–85.

    Google Scholar 

  100. Papandreou I, Cairns RA, Fontana L, Lim AL, Denko NC. HIF-1 mediates adaptation to hypoxia by actively downregulating mitochondrial oxygen consumption. Cell Metab. 2006;3(3):187–97.

    Article  CAS  PubMed  Google Scholar 

  101. Huss JM, Kelly DP. Nuclear receptor signaling and cardiac energetics. Circ Res. 2004;95(6):568–78.

    Article  CAS  PubMed  Google Scholar 

  102. Finck BN. The PPAR regulatory system in cardiac physiology and disease. Cardiovasc Res. 2007;73(2):269–77.

    Article  CAS  PubMed  Google Scholar 

  103. van der Lee KA, Vork MM, De Vries JE, Willemsen PH, Glatz JF, Reneman RS, et al. Long-chain fatty acid-induced changes in gene expression in neonatal cardiac myocytes. J Lipid Res. 2000;41(1):41–7.

    Article  PubMed  Google Scholar 

  104. Brandt JM, Djouadi F, Kelly DP. Fatty acids activate transcription of the muscle carnitine palmitoyltransferase I gene in cardiac myocytes via the peroxisome proliferator-activated receptor α. J Biol Chem. 1998;273(37):23786–92.

    Article  CAS  PubMed  Google Scholar 

  105. Mascaró C, Acosta E, Ortiz JA, Marrero PF, Hegardt FG, Haro D. Control of human muscle-type carnitine palmitoyltransferase I gene transcription by peroxisome proliferator-activated receptor. J Biol Chem. 1998;273(15):8560–3.

    Article  PubMed  Google Scholar 

  106. Gulick T, Cresci S, Caira T, Moore DD, Kelly DP. The peroxisome proliferator-activated receptor regulates mitochondrial fatty acid oxidative enzyme gene expression. Proc Natl Acad Sci USA. 1994;91(23):11012–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  107. Leone TC, Weinheimer CJ, Kelly DP. A critical role for the peroxisome proliferator-activated receptor α (PPARα) in the cellular fasting response: the PPARα-null mouse as a model of fatty acid oxidation disorders. Proc Natl Acad Sci USA. 1999;96(13):7473–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  108. Panadero M, Herrera E, Bocos C. Peroxisome proliferator-activated receptor-α expressionin rat liver during postnatal development. Biochimie. 2000;82(8):723–6.

    Article  CAS  PubMed  Google Scholar 

  109. Škárka L, Bardová K, Brauner P, Flachs P, Jarkovská D, Kopecký J, et al. Expression of mitochondrial uncoupling protein 3 and adenine nucleotide translocase 1 genes in developing rat heart: putative involvement in control of mitochondrial membrane potential. J Mol Cell Cardiol. 2003;35(3):321–30.

    Article  PubMed  CAS  Google Scholar 

  110. Wang Y-X, Lee C-H, Tiep S, Ruth TY, Ham J, Kang H, et al. Peroxisome-proliferator-activated receptor δ activates fat metabolism to prevent obesity. Cell. 2003;113(2):159–70.

    Article  CAS  PubMed  Google Scholar 

  111. Gilde AJ, van der Lee KA, Willemsen PH, Chinetti G, van der Leij FR, van der Vusse GJ, et al. Peroxisome proliferator-activated receptor (PPAR) α and PPARβ/δ, but not PPARγ, modulate the expression of genes involved in cardiac lipid metabolism. Circ Res. 2003;92(5):518–24.

    Article  CAS  PubMed  Google Scholar 

  112. Hondares E, Pineda-Torra I, Iglesias R, Staels B, Villarroya F, Giralt M. PPARδ, but not PPARα, activates PGC-1α gene transcription in muscle. Biochem Biophys Res Commun. 2007;354(4):1021–7.

    Article  CAS  PubMed  Google Scholar 

  113. Pellieux C, Montessuit C, Papageorgiou I, Lerch R. Angiotensin II downregulates the fatty acid oxidation pathway in adult rat cardiomyocytes via release of tumour necrosis factor-α. Cardiovasc Res. 2009;82(2):341–50.

    Article  CAS  PubMed  Google Scholar 

  114. Planavila A, Laguna JC, Vázquez-Carrera M. Nuclear factor-κB activation leads to down-regulation of fatty acid oxidation during cardiac hypertrophy. J Biol Chem. 2005;280(17):17464–71.

    Article  CAS  PubMed  Google Scholar 

  115. Burkart EM, Sambandam N, Han X, Gross RW, Courtois M, Gierasch CM, et al. Nuclear receptors PPARβ/δ and PPARα direct distinct metabolic regulatory programs in the mouse heart. J Clin Investig. 2007;117(12):3930–9.

    CAS  PubMed  PubMed Central  Google Scholar 

  116. Razeghi P, Young ME, Abbasi S, Taegtmeyer H. Hypoxia in vivo decreases peroxisome proliferator-activated receptor α-regulated gene expression in rat heart. Biochem Biophys Res Commun. 2001;287(1):5–10.

    Article  CAS  PubMed  Google Scholar 

  117. Belanger AJ, Luo Z, Vincent KA, Akita GY, Cheng SH, Gregory RJ, et al. Hypoxia-inducible factor 1 mediates hypoxia-induced cardiomyocyte lipid accumulation by reducing the DNA binding activity of peroxisome proliferator-activated receptor α/retinoid X receptor. Biochem Biophys Res Commun. 2007;364(3):567–72.

    Article  CAS  PubMed  Google Scholar 

  118. Ventura-Clapier R, Kuznetsov A, Veksler V, Boehm E, Anflous K. Functional coupling of creatine kinases in muscles: Species and tissue specificity. Bioenergetics of the Cell: Quantitative Aspects: Springer; 1998. p. 231–47.

    Google Scholar 

  119. Saks V, Beraud N, Wallimann T. Metabolic compartmentation–a system level property of muscle cells. Int J Mol Sci. 2008;9(5):751–67.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  120. Bessman SP, Yang WC, Geiger PJ, Erickson-Viitanen S. Intimate coupling of creatine phosphokinase and myofibrillar adenosinetriphosphatase. Biochem Biophys Res Commun. 1980;96(3):1414–20.

    Article  CAS  PubMed  Google Scholar 

  121. Wallimann T, Wyss M, Brdiczka D, Nicolay K, Eppenberger H. Intracellular compartmentation, structure and function of creatine kinase isoenzymes in tissues with high and fluctuating energy demands: the’phosphocreatine circuit’for cellular energy homeostasis. Biochem J. 1992;281(Pt 1):21.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  122. Wallimann T, Eppenberger HM. Localization and function of M-line-bound creatine kinase. In: Shay JW, editor.Cell and Muscle Motility. Boston: Springer;1985. pp. 239–85. https://doi.org/10.1007/978-1-4757-4723-2_8.

  123. Rossi A, Eppenberger H, Volpe P, Cotrufo R, Wallimann T. Muscle-type MM creatine kinase is specifically bound to sarcoplasmic reticulum and can support Ca2+ uptake and regulate local ATP/ADP ratios. J Biol Chem. 1990;265(9):5258–66.

    Article  CAS  PubMed  Google Scholar 

  124. Schnyder T, Rojo M, Furter R, Wallimann T. The structure of mitochondrial creatine kinase and its membrane binding properties. Mol Cell Biochem. 1994;133:115–23.

    Article  PubMed  Google Scholar 

  125. Saks V, Khuchua Z, Vasilyeva E, Belikova OY, Kuznetsov A. Metabolic compartmentation and substrate channelling in muscle cells. Mol Cell Biochem. 1994;133(1):155–92.

    Article  PubMed  Google Scholar 

  126. Saks V, Dzeja P, Schlattner U, Vendelin M, Terzic A, Wallimann T. Cardiac system bioenergetics: metabolic basis of the Frank-Starling law. J Physiol. 2006;571(2):253–73.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  127. Saks VA, Belikova YO, Kuznetsov AV. In vivo regulation of mitochondrial respiration in cardiomyocytes: specific restrictions for intracellular diffusion of ADP. Biochimica et Biophysica Acta (BBA)-Gen Subj. 1991; 1074(2):302–11.

    Google Scholar 

  128. Dzeja PP, Terzic A. Phosphotransfer networks and cellular energetics. J Exp Biol. 2003;206(12):2039–47.

    Article  CAS  PubMed  Google Scholar 

  129. Jacobus WE. Theoretical support for the heart phosphocreatine energy transport shuttle based on the intracellular diffusion limited mobility of ADP. Biochem Biophys Res Ccommun. 1985;133(3):1035–41.

    Article  CAS  Google Scholar 

  130. Kaasik A, Veksler V, Boehm E, Novotova M, Minajeva A, Ventura-Clapier R. Energetic crosstalk between organelles: architectural integration of energy production and utilization. Circ Res. 2001;89:153–9.

    Article  CAS  PubMed  Google Scholar 

  131. Ventura-Clapier R, Kaasik A, Veksler V. Structural and functional adaptations of striated muscles to CK deficiency. Mol Cell Biochem. 2004;256:29–41.

    Article  PubMed  Google Scholar 

  132. Tylková L. Architectural and functional remodeling of cardiac and skeletal muscle cells in mice lacking specific isoenzymes of creatine kinase. Gen Physiol Biophys. 2009;28(3):219.

    Article  PubMed  CAS  Google Scholar 

  133. Hoerter JA, Kuznetsov A, Ventura-Clapier R. Functional development of the creatine kinase system in perinatal rabbit heart. Circ Res. 1991;69(3):665–76.

    Article  CAS  PubMed  Google Scholar 

  134. Hoerter JA, Ventura-Clapier R, Kuznetsov A. Compartmentation of creatine kinases during perinatal development of mammalian heart. 1994; 133:277–-86.

    Google Scholar 

  135. Tiivel T, Kadaya L, Kuznetsov A, Käämbre T, Peet N, Sikk P, et al. Developmental changes in regulation of mitochondrial respiration by ADP and creatine in rat heart in vivo. Mol Cell Biochem. 2000;208(1):119–28.

    Article  CAS  PubMed  Google Scholar 

  136. Brooks S, Storey KB. Where is the glycolytic complex? A critical evaluation of present data from muscle tissue. FEBS Lett. 1991;278(2):135–8.

    Article  CAS  PubMed  Google Scholar 

  137. Hirschy A, Schatzmann F, Ehler E, Perriard J-C. Establishment of cardiac cytoarchitecture in the developing mouse heart. Dev Biol. 2006;289(2):430–41.

    Article  CAS  PubMed  Google Scholar 

  138. Lozyk MD, Papp S, Zhang X, Nakamura K, Michalak M, Opas M. Ultrastructural analysis of development of myocardium in calreticulin-deficient mice. BMC Dev Biol. 2006;6(1):1–16.

    Article  CAS  Google Scholar 

  139. Fischer A, Ten Hove M, Sebag-Montefiore L, Wagner H, Clarke K, Watkins H, et al. Changes in creatine transporter function during cardiac maturation in the rat. BMC Dev Biol. 2010;10(1):1–9.

    Article  CAS  Google Scholar 

  140. Anmann T, Varikmaa M, Timohhina N, Tepp K, Shevchuk I, Chekulayev V, et al. Formation of highly organized intracellular structure and energy metabolism in cardiac muscle cells during postnatal development of rat heart. Biochimica et Biophysica Acta (BBA)-Bioenergetics. 2014; 1837(8):1350–61.

    Google Scholar 

  141. Chien KR, Domian IJ, Parker KK. Cardiogenesis and the complex biology of regenerative cardiovascular medicine. Science. 2008;322(5907):1494–7.

    Article  CAS  PubMed  Google Scholar 

  142. Dabiri GA, Turnacioglu KK, Sanger JM, Sanger JW. Myofibrillogenesis visualized in living embryonic cardiomyocytes. Proc Natl Acad Sci USA. 1997;94(17):9493–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  143. Grosberg A, Kuo P-L, Guo C-L, Geisse NA, Bray M-A, Adams WJ, et al. Self-organization of muscle cell structure and function. Plos Comput Biol. 2011; 7(2):e1001088.

    Google Scholar 

  144. Pasqualini FS, Sheehy SP, Agarwal A, Aratyn-Schaus Y, Parker KK. Structural phenotyping of stem cell-derived cardiomyocytes. Stem Cell Reports. 2015;4(3):340–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  145. Parker KK, Tan J, Chen CS, Tung L. Myofibrillar architecture in engineered cardiac myocytes. Circ Res. 2008;103(4):340–2.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  146. Dasbiswas K, Majkut S, Discher D, Safran SA. Substrate stiffness-modulated registry phase correlations in cardiomyocytes map structural order to coherent beating. Nat Commun. 2015;6(1):1–8.

    Article  CAS  Google Scholar 

  147. McCain ML, Yuan H, Pasqualini FS, Campbell PH, Parker KK. Matrix elasticity regulates the optimal cardiac myocyte shape for contractility. Am J Physiol-Heart Circ Physiol. 2014;306(11):H1525–39.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  148. McCain ML, Lee H, Aratyn-Schaus Y, Kléber AG, Parker KK. Cooperative coupling of cell-matrix and cell–cell adhesions in cardiac muscle. Proc Natl Acad Sci USA. 2012;109(25):9881–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  149. McCain ML, Sheehy SP, Grosberg A, Goss JA, Parker KK. Recapitulating maladaptive, multiscale remodeling of failing myocardium on a chip. Proc Natl Acad Sci USA. 2013;110(24):9770–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  150. McCain ML, Agarwal A, Nesmith HW, Nesmith AP, Parker KK. Micromolded gelatin hydrogels for extended culture of engineered cardiac tissues. Biomaterials. 2014;35(21):5462–71.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  151. Wang G, McCain ML, Yang L, He A, Pasqualini FS, Agarwal A, et al. Modeling the mitochondrial cardiomyopathy of Barth syndrome with induced pluripotent stem cell and heart-on-chip technologies. Nat Med. 2014;20(6):616–23.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  152. McCain ML, Parker KK. Mechanotransduction: the role of mechanical stress, myocyte shape, and cytoskeletal architecture on cardiac function. Pflügers Archiv-Eur J Physiol. 2011;462(1):89–104.

    Article  CAS  Google Scholar 

  153. Horton RE, Yadid M, McCain ML, Sheehy SP, Pasqualini FS, Park S-J, et al. Angiotensin II induced cardiac dysfunction on a chip. PLoS One. 2016; 11(1):e0146415.

    Google Scholar 

  154. Gerdes AM. Cardiac myocyte remodeling in hypertrophy and progression to failure. J Cardiac Fail. 2002;8(6):S264–8.

    Article  Google Scholar 

  155. Pasqualini FS, Nesmith AP, Horton RE, Sheehy SP, Parker KK. Mechanotransduction and metabolism in cardiomyocyte microdomains. BioMed Res Int. 2016; Article ID 4081638. https://doi.org/10.1155/2016/4081638.

  156. Kaasik A, Kuum M, Joubert F, Wilding J, Ventura-Clapier R, Veksler V. Mitochondria as a source of mechanical signals in cardiomyocytes. Cardiovasc Res. 2010;87(1):83–91.

    Article  CAS  PubMed  Google Scholar 

  157. Yaniv Y, Juhaszova M, Wang S, Fishbein KW, Zorov DB, Sollott SJ. Analysis of mitochondrial 3D-deformation in cardiomyocytes during active contraction reveals passive structural anisotropy of orthogonal short axes. PLoS One. 2011; 6(7):e21985.

    Google Scholar 

  158. Ramdas NM, Shivashankar G. Cytoskeletal control of nuclear morphology and chromatin organization. J Mol Biol. 2015;427(3):695–706.

    Article  CAS  PubMed  Google Scholar 

  159. Hom JR, Quintanilla RA, Hoffman DL, de Mesy Bentley KL, Molkentin JD, Sheu S-S, et al. The permeability transition pore controls cardiac mitochondrial maturation and myocyte differentiation. Dev Cell. 2011;21(3):469–78.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  160. Zangi L, Lui KO, Von Gise A, Ma Q, Ebina W, Ptaszek LM, et al. Modified mRNA directs the fate of heart progenitor cells and induces vascular regeneration after myocardial infarction. Nat Biotechnol. 2013;31(10):898–907.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  161. Saks VA, Kaambre T, Sikk P, Eimre M, Orlova E, Paju K, et al. Intracellular energetic units in red muscle cells. Biochem J. 2001;356(2):643–57.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  162. Appaix F, Kuznetsov AV, Usson Y, Kay L, Andrienko T, Olivares J, et al. Possible role of cytoskeleton in intracellular arrangement and regulation of mitochondria. Exp Physiol. 2003;88(1):175–90.

    Article  CAS  PubMed  Google Scholar 

  163. Anmann T, Guzun R, Beraud N, Pelloux S, Kuznetsov AV, Kogerman L, et al. Different kinetics of the regulation of respiration in permeabilized cardiomyocytes and in HL-1 cardiac cells: importance of cell structure/organization for respiration regulation. Biochimica et Biophysica Acta (BBA)-Bioenergetics. 2006; 1757(12):1597–606.

    Google Scholar 

  164. Elhanany-Tamir H, Yu YV, Shnayder M, Jain A, Welte M, Volk T. Organelle positioning in muscles requires cooperation between two KASH proteins and microtubules. J Cell Biol. 2012;198(5):833–46.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  165. Boldogh IR, Pon LA. Interactions of mitochondria with the actin cytoskeleton. Biochimica et Biophysica Acta (BBA)-Molecular Cell Research. 2006; 1763(5–6):450–62.

    Google Scholar 

  166. Voeltz GK, Prinz WA. Sheets, ribbons and tubules—how organelles get their shape. Nat Rev Mol Cell Biol. 2007;8(3):258–64.

    Article  CAS  PubMed  Google Scholar 

  167. Tang HL, Lung HL, Wu KC, Le A-HP, Tang HM, Fung MC. Vimentin supports mitochondrial morphology and organization. Biochem J. 2008; 410(1):141–6.

    Google Scholar 

  168. Kumazawa A, Katoh H, Nonaka D, Watanabe T, Saotome M, Urushida T, et al. Microtubule disorganization affects the mitochondrial permeability transition pore in cardiac myocytes. Circ J. 2014;78(5):1206–15.

    Article  CAS  PubMed  Google Scholar 

  169. Rostovtseva TK, Sheldon KL, Hassanzadeh E, Monge C, Saks V, Bezrukov SM, et al. Tubulin binding blocks mitochondrial voltage-dependent anion channel and regulates respiration. Proc Natl Acad Sci USA. 2008;105(48):18746–51.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  170. de Cavanagh EM, Ferder M, Inserra F, Ferder L. Angiotensin II, mitochondria, cytoskeletal, and extracellular matrix connections: an integrating viewpoint. Am J Physiol-Heart Circ Physiol. 2009;296(3):H550–8.

    Article  PubMed  CAS  Google Scholar 

  171. Schlaepfer DD, Hunter T. Signal transduction from the extracellular matrix-a role for the focal adhesion protein-tyrosine kinase FAK. Cell Struct Funct. 1996;21(5):445–50.

    Article  CAS  PubMed  Google Scholar 

  172. Werner E, Werb Z. Integrins engage mitochondrial function for signal transduction by a mechanism dependent on Rho GTPases. J Cell Biol. 2002;158(2):357–68.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chandrasekharan C. Kartha .

Rights and permissions

Reprints and permissions

Copyright information

© 2021 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Kartha, C.C. (2021). Energy Metabolism in Cardiomyocyte. In: Cardiomyocytes in Health and Disease. Springer, Cham. https://doi.org/10.1007/978-3-030-85536-9_7

Download citation

Publish with us

Policies and ethics