Skip to main content

Functionalized Carbon Nanotubes-Based Electrospun Nano-Fiber Composite and Its Applications for Environmental Remediation

  • Chapter
  • First Online:
Book cover Electrospun Nanofibers

Abstract

Carbon Nanotubes (CNTs) have excellent properties such as high electrical and thermal conductivity and mechanical characteristic owing to their outstanding high specific surface area-to-volume ratio. However, there are restrictions for direct utilization of CNTs for processing and fabrication of devices because of their agglomeration tendency, difficulties in controlling morphology and leaching out problem from the composite material which lead to prevent its objective application with its inherent properties. The purpose of using functionalized CNTs (f-CNTs) to get homogeneous CNTs-based nano-composite which leads to enhancement of mechanical, chemical, electrical and thermal properties of composite materials. The surface area and pore size play an important role for removal and sensing of toxicants for environmental applications. Electrospinning is the most suitable technique for tuning the pore size and surface area of material as per requirement. The f-CNTs having various functional groups (hydroxyl, acetic, phenolic, polymer, etc.) improve their dispersion in matrix, water flux, scavenging of toxicants and attachment to the template for the fabrication of various significant devices such as filtration systems, sensors, high strength conducting fibers, etc. In this chapter, we are focusing on different techniques for the synthesis of f-CNTs, f-CNTs-based polymer nano-composites and fabrication of its nano-fibers using electrospun techniques for environmental remediation. The chapter concludes with the future prospect and challenges.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 159.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Iijima S (1991) Helical microtubules of graphitic carbon. Nature 354:56–58

    Google Scholar 

  2. Baughman RH, Zhakidov AA, de Heer WA et al (2002) Carbon nanotubes:the route toward applications. Science 297(5582):787–792

    Article  CAS  PubMed  Google Scholar 

  3. Gupta N, Gupta SM, Sharma SK et al (2019) Carbon nanotubes: synthesis, properties and engineering applications. Carbon Lett 29:419–447

    Article  Google Scholar 

  4. Kurwadkar S, Hoang TV, Malwade K et al (2019) Application of carbon nanotubes for removal of emerging contaminants of concern in engineered water and wastewater treatment systems. Nanotechnol Environ Eng 4:12

    Article  CAS  Google Scholar 

  5. Venkataraman A, Amadi EV, Chen Y et al (2019) Carbon Nanotube Assembly and Integration for Applications. Nanoscale Res Lett 14:220

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  6. Ajayan PM (1999) Nanotubes from carbon. Chem Rev 99(7):1787–1800

    Article  CAS  PubMed  Google Scholar 

  7. Manzetti S, Gabriel JP et al (2019) Methods for dispersing carbon nanotubes for nanotechnology applications: liquid nanocrystals, suspensions, polyelectrolytes, colloids and organization control. Int Nano Lett 9:31–49

    Google Scholar 

  8. Tucknott R, Yaliraki SN (2002) Aggregation properties of carbon nanotubes at interfaces. Chem Phys 281:455–463

    Article  CAS  Google Scholar 

  9. Le VT, Ngo CL, Le QT et al (2013) Surface modification and functionalization of carbon nanotube with some organic compounds. Adv Nat Sci Nanosci Nanotechnol 4:1–5

    Google Scholar 

  10. Ma P-C, Siddiqui N A, Marom G et al (2010) Dispersion and functionalization of carbon nanotubes for polymer-based nanocomposites: a review. Compos Part A 41:1345–1367.

    Google Scholar 

  11. Jun LY, Mubarak NM, Yee MJ et al (2018) An overview of functionalized carbon nanomaterial for organic pollutant removal. J Ind Eng Chem 67(2018):175–186

    Article  CAS  Google Scholar 

  12. Mottaghitalab V, Xi B, Gordon SGM et al (2006) Polyaniline fibres containing single walled carbon nanotubes: enhanced performance artificial muscles. Synth Met 156(11–13):796–803

    Article  CAS  Google Scholar 

  13. Bianco A, Kostarelos K, Prato M (2005) Applications of carbon nanotubes in drug delivery. Curr Opin Chem Biol 9(6):674–679

    Google Scholar 

  14. Miao F, Shao C, Li X et al (2016) Electrospun carbon nanofibers/carbon nanotubes/polyaniline ternary composites with enhanced electrochemical performance for flexible solid-state supercapacitors. ACS Sustain Chem Eng 4(3):1689–1696

    Google Scholar 

  15. Kumar S, Pavelyev V, Mishra P et al (2018) A review on chemooresistive gas sensors based on carbon nanotubes: device and technology transformations. Sens Actuators A 2831:174–186

    Article  CAS  Google Scholar 

  16. Du L, Quan X, Fan X et al (2019) Conductive CNT/nanofiber composite hollow fiber membranes with electrospun support layer for water purification. J Membr Sci. https://doi.org/10.1016/j.memsci.2019.117613

  17. Sankararamakrishanan N, GuptaA VSR et al (2014) Enhanced arsenic removal at neutral pH using functionalized multiwalled carbon nanotubes. J Environ Chem Eng 2(2):802–810

    Article  CAS  Google Scholar 

  18. Salehi E, MadaeniS S, Rajabi L et al (2012) Novel chitosan/poly(vinyl) alcohol thin adsorptive membranes modified with amino functionalized multi-walled carbon nanotubes for Cu(II) removal from water: preparation, characterization, adsorption kinetics and thermodynamics. Sep Purif Technol 89:309–319

    Article  CAS  Google Scholar 

  19. Wongaree M, Chiarakorn S, Chuangchote S et al (2016) Photocatalytic performance of electrospun CNT/TiO2 nanofibers in a simulated air purifier under visible light irradiation. Environ Sci Pollut Res 23:21395–21406

    Article  CAS  Google Scholar 

  20. Dror Y, Salalha W, Khalfin RL et al (2003) Carbon nanotubes embedded in oriented polymer nanofibers by electrospinning. Langmuir 19(17):7012–7020

    Google Scholar 

  21. Ge JJ, Hou H, Li Q et al (2004) Assembly of well-aligned multiwalled carbon nanotubes in confined polyacrylonitrile environments: electrospun composite nanofiber sheets. J Am Chem Soc 126(48):15754–15761

    Google Scholar 

  22. Sobolciak P, Tanvir A, Popelka A et al (2018) Electrospun copolyamide mats modified by functionalized multiwall carbon nanotubes. Polym Compos 40(S2):E1451–E1460

    Google Scholar 

  23. Suja PS, Reshmi CR, Sagitha P et al (2017) Electrospun nanofibrous membranes for water purification. Polym Rev 57(3):467–504

    Article  CAS  Google Scholar 

  24. Wang J, Lin Y (2008) Functionalized carbon nanotubes and nanofibers for biosensing Applications. Trends Analyt Chem 27(7):619–626

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  25. Tahhan M, Truong VT, Spinks GM et al (2003) Carbon nanotube and polyaniline composite actuators. Smart Mater Struc 12:26–31

    Article  Google Scholar 

  26. Zong X, Kim K, Fang D et al (2002) Structure and process relationship of electrospun bioabsorbable nanofiber membranes. Polymer 43:4403–4412

    Article  CAS  Google Scholar 

  27. Yoon K, Hsiao BS, Chu B et al (2008) Functional nanofibers for environmental applications. J Mater Chem 18:5326–5334

    Google Scholar 

  28. Zhou Y, Fang Y, Ramasamy RP et al (2019) Non-covalent functionalized of carbon nanotubes for electrochemical biosensor development. Sensors 19(2):392

    Google Scholar 

  29. Kjellstrom T, Lodh M, McMichael T et al (2006) Air and water pollution: burden and strategies for control in disease control priorities in developing countries, 2nd ed, pp 817–832

    Google Scholar 

  30. Miller KA, Siscovick DS, Sheppard L et al (2007) Long-term exposure to air pollution and incidence of cardiovascular events in women. N Engl J Med 356:447–458

    Google Scholar 

  31. Brook RD, Rajagopalan S, Pope CA et al (2010) Particulate matter air pollution and cardiovascular disease. Circulation 121:2331–2378

    Google Scholar 

  32. Mannucci PM, Harari S, Martinelli I et al (2015) Effects on health of air pollution: a narrative review. Intern Emerg Med 10:657–662

    Article  PubMed  Google Scholar 

  33. Rahimpour A, Jahanshahi M, Khalili S et al (2012) Novel functionalized carbon nanotubes for improving the surface properties and performance of polyethersulfone (PES) membrane. Desalination 286:99–107

    Article  CAS  Google Scholar 

  34. Dyke CA, James MT (2004) Covalent functionalization of single-walled carbon nanotubes for materials applications. J Phys Chem A 108(51):11151–11159

    Article  CAS  Google Scholar 

  35. Liu L, Barber AH, Nuriel S et al (2005) Mechanical properties of functionalized single-walled carbon-nanotube/poly(vinyl alcohol) nanocomposites. Adv Func Mater 15:975–980

    Article  CAS  Google Scholar 

  36. Wang C, Zhou G, Liu H et al (2006) Chemical functionalization of carbon nanotubes by carboxyl groups on stone-wales defects: a density functional theory study. J Phys Chem B 110(21):10266–10271

    Google Scholar 

  37. Li H, Cheng F, Duft AM et al (2005) Functionalization of single-walled carbon nanotubes with well-defined polystyrene by click coupling. J Am Chem Soc 127(41):14518–14524

    Google Scholar 

  38. Mickelson ET, Huffman CB, Rinzler AG et al (1998) Fluorination of single-wall carbon nanotubes. Chem Phys Lett 296:188–194

    Article  CAS  Google Scholar 

  39. Yang A, X Wang T R, Lee S, et al (2007) Room temperature gas sensing properties of SnO2/multiwallcarbon-nanotube composite nanofibers. Appl Phys Lett 91:133110–133113

    Google Scholar 

  40. Liu L, Wang TX, Li JX et al (2003) Self-assembly of gold nanoparticles to carbon nanotubes using a thiol-terminated pyrene as interlinker. Chem Phys Lett 367(5–6):747–752

    Article  CAS  Google Scholar 

  41. Khabashesku VN, Billups WE, Margrave JL et al (2002) Fluorination of single-wall carbon nanotubes and subsequent derivatization reactions. Acc Chem Res 35:1087–1095

    Article  CAS  PubMed  Google Scholar 

  42. Touhara H, Inahara J, Mizuno T et al (2002) Fluorination of cup-stacked carbon nanotubes, structure and properties. Fluorine Chem 114:181–188

    Article  CAS  Google Scholar 

  43. Tagmatarchis N, Prato MJ (2004) Functionalization of carbon nanotubes via 1,3- dipolar cycloadditions. J Mater Chem 14:437–439

    Article  CAS  Google Scholar 

  44. Dyachkova TP, Rukhov AV, Tkachev AG et al (2018) Functionalization of carbon nanotubes: methods, mechanisms and technological realization. Adv Mater Technol 02:018–041

    Google Scholar 

  45. Balasubramanian K, Burghard M (2005) Chemically functionalized carbon nanotubes. Small 1:180–192

    Google Scholar 

  46. Hu H, Zhao B, Hamon MA et al (2003) Sidewall functionalization of single-walled carbon nanotubes by addition of dichlorocarbene. J Am Chem Soc 125:14893–14900

    Article  CAS  PubMed  Google Scholar 

  47. Holzinger M, Steinmetz J, Samaille D et al (2004) [2+1] Cycloaddition for cross linking SWCNTs. Carbon 42:941–947

    Article  CAS  Google Scholar 

  48. Kim KS, Bae DJ, Kim JR et al (2002) Modification of electronic structures of a carbon nanotube by hydrogen functionalization. Adv Mater 14:1818–1821

    Article  CAS  Google Scholar 

  49. Holzinger M, Abraham J, Whelan P et al (2003) Functionalization of single walled carbon nanotubes with (R-) oxycarbonyl nitrenes. J Am Chem Soc 125:8566–8580

    Article  CAS  PubMed  Google Scholar 

  50. Sahoo NG, Cheng HKF, Li L (2011) Covalent functionalization of carbon nanotubes for ultimate interfacial adhesion to liquid crystalline polymer.Soft Matter 7:9505–9514.

    Google Scholar 

  51. Hariharasubramanian A, Ravichandran YD, Rajesh R et al (2014) Covalent functionalization of single-walled carbon nanotubes with anthracene by green chemical approach and their temperature dependent magnetic and electrical conductivity studies. Mater Chem Phys 143:838–844

    Article  CAS  Google Scholar 

  52. Wang S, Richard L, Ben W et al (2008) Load-transfer in functionalized carbon nanotubes/polymer composites. Chem Phys Lett 457:371–375

    Article  CAS  Google Scholar 

  53. Huang J, Gao M, Pan T et al (2014) Effective thermal conductivity of epoxy matrix filled with poly(ethyleneimine) functionalized carbon nanotubes. Compos Sci Technol 95:16–20

    Article  CAS  Google Scholar 

  54. Hu A, Zhang T, Yuan S et al (2017) Functionalization of multi-walled carbon nanotubes with phenylenediamine for enhanced CO2 adsorption. Adsorption 23:3–85

    Article  CAS  Google Scholar 

  55. Qian D, Dickeya EC, Andrews R et al (2000) Load transfer and deformation mechanisms in carbon nanotube-polystyrene composite. Appl Phys Lett 76:2868–2870

    Google Scholar 

  56. Feng JJ (2002) The stretching of an electrified non-Newtonian jet: a model for electrospinning. Phys Fluids 14:3912–3926

    Article  CAS  Google Scholar 

  57. Yarin AL, Koombhongse S, Reneker DH et al (2001) Bending instability in electrospinning of nanofibers. J Appl Phys 89:3018–3026

    Article  CAS  Google Scholar 

  58. Bognitzki M, Czado W, Frese T et al (2001) Nanostructured fibers via electrospinning. Adv Mater 13:70–72

    Article  CAS  Google Scholar 

  59. Theron A, Zussman E, Yarin AL et al (2001) Electrostatic field-assisted alignment of electruspun nanofibres. Nanotechnology 12:384–390

    Article  Google Scholar 

  60. Megelski S, Stephens JS, Rabolt JF et al (2002) Micro and nanostructured surface morphology on electrospun polymer fibre. Macromolecules 35:8456–8466

    Article  CAS  Google Scholar 

  61. Tian X, He Y, Song Y et al (2020) Flexible cross-linked electrospun carbon nanofiber mats derived from pitch as dual-functional materials for supercapacitors. Energy Fuels. https://doi.org/10.1021/acs.energyfuels.0c02847

    Article  Google Scholar 

  62. Kim J-S, Reneker DH (1999) Mechanical properties of composites using ultrafine electrospun fibers. Polym Compos 20:124–131

    Article  CAS  Google Scholar 

  63. Koombhongse S, Liu WX, Reneker DH et al (2001) Flat polymer ribbons and other shapes by electrospinning. J Polym Sci Part B Polym Phys 39:2598–2606

    Article  CAS  Google Scholar 

  64. Matthews J, Wnek GE, Simpson DG et al (2002) Electrospinning of collagen nanofibers. Biomacromol 3(2):232–238

    Article  CAS  Google Scholar 

  65. Fong H, Chun I, Reneker DH et al (1999) Beaded nanofibers formed during electrospinning. Polymer 40:4585–4592

    Article  CAS  Google Scholar 

  66. Breuer O, Sundararaj U (2004) Big returns from small fibers: a review of polymer/carbon nanotube composites. Polym Comp 25:630–645

    Article  CAS  Google Scholar 

  67. Dersch R, Steinhart M, Boudriot U et al (2005) Nanoprocessing of polymers: applications in medicine, sensors, catalysis, photonics. Polym Adv Technol 16:276–282

    Article  CAS  Google Scholar 

  68. Curran SA, Ajayan PA, Blau WJ et al (1998) A composite from poly(m-phenylenevinylene-co-2,5-dioctoxyp-phenylenevinylene) and carbon nanotubes: a novel material for molecular optoelectronics. Adv Mater 10:1091–1093

    Article  CAS  Google Scholar 

  69. Bradley K, Gabriel JCP, Gruner G et al (2003) Flexible nanotube electronics. Nano Lett 3:1353–1355

    Article  CAS  Google Scholar 

  70. Kymakis E, Amaratunga GAJ (2004) Optical properties of polymer-nanotube composites. Synth Met 142:161–167

    Article  CAS  Google Scholar 

  71. Smith JG Jr, Connell JW, Delozier DM et al (2004) Space durable polymer/carbon nanotube films for electrostatic charge mitigation. Polymer 45:825–836

    Article  CAS  Google Scholar 

  72. Wnek G, Carr ME, Simpson DG et al (2003) Electrospinning of nanofiber fibrinogen structures. Nano Lett 3:213–216

    Article  CAS  Google Scholar 

  73. Joshi PP, Merchant SA, Wang Y et al (2005) Amperometric biosensors based on redox polymer–carbon nanotube–enzyme composites. Anal Chem 77:3183–3188

    Article  CAS  PubMed  Google Scholar 

  74. Safadi B, Andrews R, Grulke EA et al (2002) Multiwalled carbon nanotube polymer composites: synthesis and characterization of thin films. J Appl Polym Sci 84:2660–2669

    Article  CAS  Google Scholar 

  75. Haggenmueller R, Gommans HH, Rinzler AG et al (2000) Aligned single-wall carbon nanotubes in composites by melt processing methods. Chem Phys Lett 330:219–225

    Article  CAS  Google Scholar 

  76. Andrews R, Jacques D, Minot M et al (2002) Fabrication of carbon multiwall nanotube/polymer composites by shear mixing. Macromol Mater Eng 287:395–403

    Article  CAS  Google Scholar 

  77. Jia Z, Wang Z, Xu C et al (1999) Study on poly(methyl methacrylate)/carbon nanotube composites. Mater Sci Eng A 271:395–400

    Article  Google Scholar 

  78. Wu P K, Fitz-Gerald J, Pique A et al Deposition of nanotubes and nanotube composites using matrix-assisted pulsed laser evaporation. Mater Res Soc Proc 617:J2.3.1–6.

    Google Scholar 

  79. Kaur N, Kumar V, Dhakate SR et al (2016) Synthesis and characterization of multiwalled CNT–PAN based composite carbon nanofibers via electrospinning. Springerplus 5:483

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  80. Kaitao W, Mingbo G, Jian-jun W et al (2012) Functionalized carbon nanotube/polyacrylonitrile composite nanofibers: fabrication and properties. Polym Adv Technol 23. https://doi.org/10.1002/pat.1866

  81. Ko F, Gogotsi Y, Ali A et al (2003) Electrospinning of continuous carbon nanotube-filled nanofiber yarns. Adv Mater 15:1161–1165

    Article  CAS  Google Scholar 

  82. Ye H, Lam H, Titchenal N et al (2004) Reinforcement and rupture behavior of carbon nanotubes–polymer nanofibers. Appl Phys Lett 85:1775–1777

    Article  CAS  Google Scholar 

  83. Liu J, Wang T, Uchida T et al (2005) Carbon nanotube core–polymer shell nanofibers. J Appl Polym Sci 96:1992–1995

    Article  CAS  Google Scholar 

  84. Kim YA, Hayashi T, Fukai Y et al (2002) Effect of ball milling on morphology of cup-stacked carbon nanotubes. Chem Phys Lett 355:279–284

    Article  CAS  Google Scholar 

  85. Yamamoto K, Akita S, Nakayama Y et al (1998) Orientation and purification of carbon nanotubes using ac electrophoresis. J Phys D Appl Phys 31:L34–L36

    Article  CAS  Google Scholar 

  86. O’Connell MJ, Boul P, Ericson LM et al (2001) Reversible water-solubilization of single-walled nanotubes by polymer wrapping. Chem Phys Lett 342:265–271

    Article  Google Scholar 

  87. Fane AG, Wang R, Hu MX et al (2015) Synthetic membranes for water purification: status and future. Angew Chem Int Ed 54:3368–3386

    Article  CAS  Google Scholar 

  88. Xunda F, Tousley ME, Cowan MG et al (2014) Scalable fabrication of polymer membranes with vertically aligned 1 nm pores by magnetic field directed self assembly. ACS Nano 8:11977–11986

    Article  CAS  Google Scholar 

  89. Ma H, Hsiao BS, Chu B et al (2013) Electrospun nanofibrous membrane for heavy metal ion adsorption. Curr Org Chem 17:1361–1370

    Article  CAS  Google Scholar 

  90. Pereao OK, Bode-Aluko C, Ndayambaje G et al (2017) Electrospinning: polymer nanofibre adsorbent applications for metal ion removal. J Polym Environ 25(4):1175–1189

    Article  CAS  Google Scholar 

  91. Nouri L, Ghodbane I, Hamdaoui O et al Batch sorption dynamics and equilibrium for the removal of cadmium ions from aqueous phase using wheat bran. J Hazard Mater 149(1):115–125.

    Google Scholar 

  92. Ogata T, Narita H, Tanaka M et al (2015) Adsorption behavior of rare earth elements on silica gel modified with diglycol amic acid. Hydrometallurgy 152:178–182

    Article  CAS  Google Scholar 

  93. Shannon MA, Bohn PW, Elimelech M et al (2008) Science and technology for water purification in the coming decades. Nature 452:301–310

    Article  CAS  PubMed  Google Scholar 

  94. Wang EN, Karnik R (2012) Water desalination: graphene cleans up water. Nat Nanotechnol 7:552–554

    Article  CAS  PubMed  Google Scholar 

  95. Yan K-K, Jiao L, Lin S et al (2018) Superhydrophobic electrospun nanofiber membrane coated by carbon nanotubes network for membrane distillation. Desalination 437:26–33

    Article  CAS  Google Scholar 

  96. Du L, Quan X, Fan X et al (2020) Conductive CNT/nanofiber composite hollow fiber membranes with electrospun support layer for water purification.J Membr Sci 596:117613. https://doi.org/10.1016/j.memsci.2019.117613.

  97. Ahmed FE, Lalia BS, Hashaikeh R et al (2015) A review on electrospinning for membrane fabrication: challenges and applications. Desalination 356:15–30

    Article  CAS  Google Scholar 

  98. Wang X, Hsiao BS (2016) Electrospun nanofiber membranes. Curr Opin Chem Eng 12:62–81

    Article  Google Scholar 

  99. Wu J, Wang N, Wang L et al (2012) Electrospun porous structure fibrous film with high oil adsorption capacity. ACS Appl Mater Interfaces 4(6):3207–3212

    Google Scholar 

  100. Jiang Z, Tijing LD, Amarjargal A et al (2015) Removal of oil from water using magnetic bicomponent composite nanofibers fabricated by electrospinning. Compos B Eng 77:311–318

    Article  CAS  Google Scholar 

  101. Ye T, Durkin DP, Maocong Hu et al (2016) Enhancement of nitrite reduction kinetics on electrospun Pd-carbon nanomaterial catalysts for water purification. ACS Appl Mater Interf 8:17739–17744

    Google Scholar 

  102. Rasheed T, Bilal M, Nabeel F et al (2019) Environmentally-related contaminants of high concern: potential sources and analytical modalities for detection, quantification, and treatment. Environ Int 122:52–66

    Article  CAS  PubMed  Google Scholar 

  103. Almasian A, Jalali M, Chizari L et al (2017) Surfactant grafted PDA-PAN nanofiber: optimization of synthesis, characterization and oil absorption property. Chem Eng J 326:1232–1241

    Article  CAS  Google Scholar 

  104. Katheresan V, Kansedo J, Lau SY et al (2018) Efficiency of various recent waste water dye removal methods: a review. J Environ Chem Eng 6(4):4676–4697

    Article  CAS  Google Scholar 

  105. Malwal D, Gopinath P (2016) Fabrication and applications of ceramic nanofibers in water remediation: a review. Crit Rev Environ Sci Technol 46(5):500–534

    Article  Google Scholar 

  106. Gopal P, Mira P, Hak-Yong K et al (2015) Electrospun ZnO hybrid nanofibers for photo degradation of wastewater containing organic dyes: a review. J Ind Eng Chem 21:26–35

    Article  CAS  Google Scholar 

  107. Peng C, Zhang J, Xiong Z et al (2015) Fabrication of porous hollow g-Al2O3 nanofibers by facile electrospinning and its application for water remediation. Microporous Mesoporous Mater 215:133–142

    Article  CAS  Google Scholar 

  108. Gupta VK, Suhas (2009) Application of low-cost adsorbents for dye removal : a review. J Environ Manag 90(8):2313–2342

    Google Scholar 

  109. Wei L, Bingnan M, Yiqi Y et al (2019) Feasibility of industrial-scale treatment of dye wastewater via bio-adsorption technology. Bioresour Technol 277:157–170

    Article  CAS  Google Scholar 

  110. Simate GS, Iyuke SE, Ndlovu S et al (2012) Human Health Effects of Residual Carbon Nanotubes and Traditional Water Treatment Chemicals in Drinking Water. Environ Int 39(1):38–49

    Article  CAS  PubMed  Google Scholar 

  111. Sun Y, Wang Y, Dong Q et al (2014) Electrolysis removal of methyl orange dye from water by electrospun activated carbon fibers modified with carbon nanotubes. Chem Eng J 253(1):73–77

    Article  CAS  Google Scholar 

  112. Jadhav AH (2015) Preparation, characterization, and kinetic study of end opened carbon nanotubes incorporated polyacrylonitrile electrospun nanofibers for the adsorption of pyrene from aqueous solution. Chem Eng J 259:348–356

    Article  CAS  Google Scholar 

  113. Dai Y (2016) enhanced performance of immobilized laccase in electrospun fibrous membranes by carbon nanotubes modification and its application for bisphenol A removal from water. J Hazard Mater 317:485–493

    Article  CAS  PubMed  Google Scholar 

  114. Peter AT, Vargo JD, Rupasinghe TP et al (2016) Synthesis, optimization, and performance demonstration of electrospun carbon nanofiber-carbon nanotubes composite sorbents for point of use water treatment. ACS Appl Mater Interfaces 8(18):11431–11440

    Article  CAS  PubMed  Google Scholar 

  115. Zhu H, Qiu S, Jiang W et al (2011) Evaluation of electrospun polyvinyl chloride/polystyrene fibers as sorbent materials for oil spill cleanup. Environ Sci Technol 45(10):4527–4531

    Article  CAS  PubMed  Google Scholar 

  116. Xianfeng W, Jianyong Y, Sun G et al (2016) Electrospun nanofibrous materials: a versatile medium for effective oil/water separation. Mater Today 19(7):403–414

    Article  CAS  Google Scholar 

  117. Jianliang X, Weiyang L, Yihu S et al (2018) Graphene/nanofiber aerogels: performance regulation towards multiple applications in dye adsorption and oil/water separation. Chem Eng J 338:202–210

    Article  CAS  Google Scholar 

  118. Dorneanu PP, Cojocaru C, Olaru N et al (2017) Electrospun PVDF fibers and a novel PVDF/CoFe2O4 fibrous composite as nanostructured sorbent materials for oil spill cleanup. Appl Surf Sci 424:389–396

    Article  CAS  Google Scholar 

  119. Dorneanu PP, Cojocaru C, Samoila P et al (2018) Novel fibrous composites based on electrospun PSF and PVDF ultrathin fibers reinforced with inorganic nanoparticles: evaluation as oil spill sorbents. Polym Adv Technol 29(5):1435–1446

    Article  CAS  Google Scholar 

  120. Jin L, Hu B, Kuddannaya S et al (2018) A three-dimensional carbon nanotube nanofiber composite foam for selective adsorption of oils and organic liquids. Polym Compos 39(S1):E271–E277

    Article  CAS  Google Scholar 

  121. Bandegi A, Moghbeli MR (2018) Effect of solvent quality and humidity on the porous formation and oil absorbency of SAN electrospun nanofibers. J Appl Polym Sci 135(1):45586

    Article  CAS  Google Scholar 

  122. Khalaf DM, Elkatlawy SM, Sakr A-HA et al (2020) Enhanced oil/water separation via electrospun poly(acrylonitrile-co-vinyl acetate)/single-wall carbon nanotubes fibrous nanocomposite membrane. J Appl Polym Sci 137:49033

    Article  CAS  Google Scholar 

  123. Tian L, Zhang C, He X et al (2017) Novel reusable porous polyimide fibers for hot-oil adsorption. J Hazard Mater 340:67–76

    Article  CAS  PubMed  Google Scholar 

  124. Wang K, Zhang T C, Wei B et al (2020) Durable CNTs reinforced porous electrospun superhydrophobic membrane for efficient gravity driven oil/water separation. Colloids Surf A Physicochem Eng Aspects. https://doi.org/10.1016/j.colsurfa.2020.125342

  125. Li P, Wang C, Zhang Y et al (2014) Air filtration in the free molecular flow regime: a review of high-efficiency particulate air filters based on carbon nanotubes. Small 10:4543–4561

    Article  CAS  PubMed  Google Scholar 

  126. Givehchi R, Tan Z (2015) The effect of capillary force on airborne nanoparticle filtration. J Aerosol Sci 83:12–24

    Article  CAS  Google Scholar 

  127. Park H-S, Park YO (2005) Filtration properties of electrospun ultrafine fiber webs. Korean J Chem Eng 22:165–172

    Article  CAS  Google Scholar 

  128. Kosmider K, Scott J (2002) Polymeric nanofibres exhibit an enhanced air filtration performance. Filtr Sep 39:20–22.

    Google Scholar 

  129. Sridhar R, Lakshminarayanan R, Madhaiyan K et al (2015) Electrosprayed nanoparticles and electrospun nanofibers based on natural materials: applications in tissue regeneration, drug delivery and pharmaceuticals. Chem Soc Rev 44:790–814

    Article  CAS  PubMed  Google Scholar 

  130. Lu P, Ding B (2008) Applications of electrospun fibers. Recent Pat Nanotechnol 2:169–182

    Article  CAS  PubMed  Google Scholar 

  131. Bhardwaj N, Kundu SC (2010) Electrospinning: a fascinating fiber fabrication technique. Biotechnol Adv 28:325–347

    Article  CAS  PubMed  Google Scholar 

  132. Qin XH, Wang SY (2006) Filtration properties of electrospinning nanofibers. J Appl Polym Sci 102:1285–1290

    Article  CAS  Google Scholar 

  133. Matulevicius J, Kliucininkas L, Martuzevicius D et al (2014) Design and characterization of electrospun polyamide nanofiber media for air filtration applications. J Nanomater. https://doi.org/10.1155/2014/859656

  134. Vitchuli N, Shi Q, Nowak J et al (2010) Electrospun ultrathin nylon fibers for protective applications. J Appl Polym Sci 116:2181–2187

    CAS  Google Scholar 

  135. Li L, Frey MW, GreenT B et al (2006) Modification of air filter media with nylon-6 nanofibers. J Eng Fibers Fabr 1:1–22

    Google Scholar 

  136. Desai K, Kit K, Li J et al (2009) Nanofibrous chitosan non-wovens for filtration applications. Polymer 50:3661–3669

    Article  CAS  Google Scholar 

  137. Chattopadhyay S, Hatton TA, Rutledge GC et al (2016) Aerosol filtration using electrospun cellulose acetate fibers. J Mater Sci 51:204–217

    Article  CAS  Google Scholar 

  138. Babu DJ, Puthusseri D, Kühl FG et al (2018) SO2 gas adsorption on carbon nanomaterials: a comparative study. Beilstein J Nanotechnol 9:1782–1792

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  139. Babaei M, Anbia M, Kazemipour M (2019) study of the effect of functionalization of carbon naotubes on gas separation. Braz J Chem Eng 36:1613–1620

    Article  CAS  Google Scholar 

  140. Babaei M, Anbia M, Kazemipour M (2016) Synthesis of zeolite/carbon nanotube composite for gas separation. Can J Chem. https://doi.org/10.1139/cjc-2016-0305

  141. Li Y, Zhu Z, Yu J et al (2015) Carbon nanotubes enhanced fluorinated polyurethane macroporous membranes for waterproof and breathable application. ACS Appl Mater Interf 7:13538–13546

    Google Scholar 

  142. Iqbal N, Wang X, Yu J et al (2017) Robust and flexible carbon nanofibers doped with amine functionalized carbon nanotubes for efficient CO2 capture. Adv Sustain Syst 1:1600028

    Google Scholar 

  143. Zhang X, Yin J, Yoon J et al (2014) Recent advances in development of chiral fluorescent and colorimetric sensors. Chem Rev 114:4918–4959

    Article  CAS  PubMed  Google Scholar 

  144. Zhou Y, Zhang JF, Yoon J et al (2014) Fluorescence and colorimetric chemosensors for fluoride-ion detection. Chem Rev 114:5511–5571

    Article  CAS  PubMed  Google Scholar 

  145. Chen X, Zhou G, Peng X et al (2012) Biosensors and chemosensors based on the optical responses of polydiacetylenes. Chem Soc Rev 41:4610–4630

    Article  CAS  PubMed  Google Scholar 

  146. Kim HN, Ren WX, Kim JS et al (2012) Fluorescent and colorimetric sensors for detection of lead, cadmium, and mercury ions. Chem Soc Rev 41:3210–3244

    Article  CAS  PubMed  Google Scholar 

  147. Ko SK, Chen X, Yoon J et al (2011) Zebrafish as a good vertebrate model for molecular imaging using fluorescent probes. Chem Soc Rev 40:2120–2130

    Article  CAS  PubMed  Google Scholar 

  148. Bencic-Nagale S, Sternfeld T, Walt DR et al (2006) Microbead chemical switches: an approach to detection of reactive organophosphate chemical warfare agent vapors. J Am Chem Soc 128:5041–5048

    Article  CAS  PubMed  Google Scholar 

  149. Diaz de Grenu B, Moreno D, Torroba T et al (2014) Fluorescent discrimination between traces of chemical warfare agents and their mimics. J Am Chem Soc 136:4125–4128

    Article  CAS  PubMed  Google Scholar 

  150. Lei Z, Yang Y (2014) A concise colorimetric and fluorimetric probe for sarin related threats designed via the covalent-assembly approach. J Am Chem Soc 136:6594–6597

    Article  CAS  PubMed  Google Scholar 

  151. Ishida M, Kim P, Choi J et al (2013) Benzimidazole-embedded N-fused aza-indacenes: synthesis and deprotonation-assisted optical detection of carbon dioxide. Chem Commun 49:6950–6952

    Article  CAS  Google Scholar 

  152. Tomas-Barbera FA, Gil MI, Cremin P et al (2001) HPLC−DAD−ESIMS analysis of phenolic compounds in nectarines, peaches, and plums. J Agric Food Chem 49:4748–4760

    Google Scholar 

  153. Ashley DL, Bonin MA, Cardinali FL et al (1992) Determining volatile organic compounds in human blood from a large sample population by using purge and trap gas chromatography/mass spectrometry. Anal Chem 64:1021–1029

    Article  CAS  PubMed  Google Scholar 

  154. Han L, Andrady AL, Ensor DS et al (2013) Chemical sensing using electrospun polymer/carbon nanotube composite nanofibers with printed-on electrodes. Sensors Actuators B 186:52–55

    Google Scholar 

  155. Zhang P, Zhao X, Zhang X et al (2014) Electrospun doping of carbon nanotubes and platinum nanoparticles into the β-phase polyvinylidene difluoride nanofibrous membrane for biosensor and catalysis applications. ACS Appl Mater Interf 6:7563–7571

    Google Scholar 

  156. Gusmao AP, Rosenberger AG, Muniz EC et al (2021) Characterization of microfibers of carbon nanotubes obtained by electrospinning for use in electrochemical sensor. J Polym Environ 29:1551–1565

    Google Scholar 

  157. Mercante LA, Pavinatto A, Iwaki Le EO et al (2015) Electrospun polyamide 6/poly(allylamine hydrochloride) nanofibers functionalized with carbon nanotubes for electrochemical detection of dopamine. ACS Appl Mater Interf https://doi.org/10.1021/am508709c

  158. Khuspe GD, Navale ST, Bandgar DK et al (2014) SnO2 nanoparticles-modified polyaniline films as highly selective, sensitive, reproducible and stable ammonia sensors. Electron Mater Lett 10:191–197

    Article  CAS  Google Scholar 

  159. Mehrani Z, Ebrahimzadeh H, Asgharinezhad AA et al (2019) Determination of copper in food and water sources using poly m-phenylenediamine/CNT electrospun nanofiber. Microchem J 149:103975. https://doi.org/10.1016/j.microc.2019.103975

    Article  CAS  Google Scholar 

  160. Ouyang Z, Li J, Wang J et al (2013) Fabrication, characterization and sensor application of electrospun polyurethane nanofibers filled with carbon nanotubes and silver nanoparticles. J Mater Chem B 1:2415–2424

    Google Scholar 

  161. Lala N, Thavasi V, Ramakrishna S et al (2009) Preparation of surface adsorbed and impregnated multiwalled carbon nanotube/nylon-6 nanofiber composites and investigation of their gas sensing ability. Sensors 9:86–101

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  162. Wang Z-G, Wang Y, Xu H et al (2009) Carbon nanotube-filled nanofibrous membranes electrospun from poly(acrylonitrile-co-acrylic acid for glucose biosensor. J Phys Chem C 113, 2955–2960

    Google Scholar 

  163. Patil PT, Anwane RS, Kondawar SB et al (2015) Development of electrospun polyaniline/ZnO composite nanofibers for LPG sensing. Proc Mater Sci 10:195–204

    Google Scholar 

Download references

Acknowledgements

We would like to thank Director, CFEES for his constant support and encouragement during the work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bharti .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Bharti, Kumar, P., Rai, P.K. (2021). Functionalized Carbon Nanotubes-Based Electrospun Nano-Fiber Composite and Its Applications for Environmental Remediation. In: Tiwari, S.K., Sharma, K., Sharma, V., Kumar, V. (eds) Electrospun Nanofibers. Springer Series on Polymer and Composite Materials. Springer, Cham. https://doi.org/10.1007/978-3-030-79979-3_13

Download citation

Publish with us

Policies and ethics