Skip to main content

Strigolactones for Sustainable Plant Growth and Production Under Adverse Environmental Conditions

  • Chapter
  • First Online:
Plant Performance Under Environmental Stress

Abstract

Environmental factors impair plant growth and development, and cause a massive reduction in agricultural production globally. Naturally, plants are sessile and encounter various environmental stresses such as salinity, drought, temperature nutrient deficiency, and biotic soil environment. Plants have developed complex signaling mechanisms to cope with these stresses, consisting of several elements, including phytohormones. Recently, Strigolactones (SLs) have emerged as a driving force, regulating plant growth and developmental processes, and play a vital role in addressing environmental stresses. At first, SLs were identified as harmful agents for plants due to their restorative role in the seed development of parasitic plants; however, a beneficial role in plant growth and development was discovered later on. Therefore, SLs are considered as crucial hormones for maintaining plant architecture by modulating root and shoot generation in response to several stresses. Nevertheless, the engineering of regulation and biosynthesis of the SLs pathway makes it a more suitable hormone to develop genetically manipulated plants with improved environmental stress tolerance. Here, we have discussed the biosynthesis of SLs and their regulatory role in response to various stresses. Knowledge of the signaling mechanisms of SLs could be useful for future crop improvement programs.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

ABA:

Abscisic acid

AM:

Arbuscular mycorrhizal

AR:

Adventitious root

CAT:

Catalase

CCD:

CAROTENOID CLEAVAGE DIOXYGENASE

CKs:

Cytokinins

CL:

Carlactone

CLA:

Carlactonoic acid

CRISPR/Cas9:

Clustered regularly interspaced palindromic repeats

DMBQ:

2,6-dimethoxy-p-benzoquinone

DSBs:

Double-stranded breaks

ET:

Ethylene

FHY3:

FAR-RED ELONGATED HYPOCOTYL3

GAID1:

Gibberellic Acid Insisitive Dwarf 1

GR:

Glutathione reductase

GSH:

Glutathione

H2O2:

Hydrogen peroxide

HIFs:

Haustorium inducing factors

JA:

Jasmonic acid

KAI2:

KAR-insensitive 2

KARs:

Karrikins

LBO:

LATERAL BRANCHING OXIDOREDUCTASE

LJ:

Lamina joint

MeJA:

Methyl jasmonate

N:

Nitrogen

NAA:

N-acetylaspartate

NADPH:

Nicotinamide adenine dinucleotide phosphate

NPA:

N-1-naphthyphalmic acid

P:

Phosphorus

PAT:

Polar auxin transport

PGRs:

Plant growth regulators

POD:

Peroxidase

RBOH:

RESPIRATOTY BURST OXIDASE HOMOLOG

ROS:

Reactive oxygen species

S:

Sulfates

SA:

Salicylic acid

SCF:

SkpCullin-F-box

SLs:

Strigolactones

SOD:

Superoxide dismutase

TALENs:

Transcription activator-like effector nucleases

TF:

Transcription factors

TPL:

TOPLESS

TPR:

TPL RELATED

ZFNs:

Zinc finger nuclease

References

  • Abd-Elmabod SK, Muñoz-Rojas M, Jordán A, Anaya-Romero M, Phillips JD, Laurence J, Zhang Z, Pereira P, Fleskens L, van der Ploeg M (2020) Climate change impacts on agricultural suitability and yield reduction in a Mediterranean region. Geoderma 374:114453

    Article  Google Scholar 

  • Abe S, Sado A, Tanaka K, Kisugi T, Asami K, Ota S, Kim HI, Yoneyama K, Xie X, Ohnishi T (2014) Carlactone is converted to carlactonoic acid by MAX1 in Arabidopsis and its methyl ester can directly interact with AtD14 in vitro. Proc Natl Acad Sci U S A 111:18084–18089

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Ablazov A, Mi J, Jamil M, Jia K-P, Wang JY, Feng Q, Al-Babili S (2020) The apocarotenoid zaxinone is a positive regulator of strigolactone and abscisic acid biosynthesis in Arabidopsis roots. Front Plant Sci 11:578

    Article  PubMed  PubMed Central  Google Scholar 

  • Al-Babili S, Bouwmeester HJ (2015) Strigolactones, a novel carotenoid-derived plant hormone. Annu Rev Plant Biol 66:161–186

    Article  PubMed  CAS  Google Scholar 

  • Alder A, Jamil M, Marzorati M, Bruno M, Vermathen M, Bigler P, Ghisla S, Bouwmeester H, Beyer P, Al-Babili S (2012) The path from β-carotene to carlactone, a strigolactone-like plant hormone. Science 335:1348–1351

    Article  PubMed  CAS  Google Scholar 

  • Aliche EB, Screpanti C, De Mesmaeker A, Munnik T, Bouwmeester H (2020) Science and application of strigolactones. New Phytol 227(4):1001–1011. https://doi.org/10.1111/nph.16489

    Article  PubMed  PubMed Central  Google Scholar 

  • Andreo-Jimenez B, Ruyter-Spira C, Bouwmeester HJ, Lopez-Raez JA (2015) Ecological relevance of strigolactones in nutrient uptake and other abiotic stresses, and in plant-microbe interactions below-ground. Plant Soil 394:1–19

    Article  CAS  Google Scholar 

  • Arite T, Iwata H, Ohshima K, Maekawa M, Nakajima M, Kojima M, Sakakibara H, Kyozuka JJTPJ (2007) DWARF10, an RMS1/MAX4/DAD1 ortholog, controls lateral bud outgrowth in rice. Plant J 51:1019–1029

    Article  PubMed  CAS  Google Scholar 

  • Arite T, Kameoka H, Kyozuka J (2012) Strigolactone positively controls crown root elongation in rice. J Plant Growth Regul 31:165–172

    Article  CAS  Google Scholar 

  • Aroca R, Ruiz-Lozano JM, Zamarreño ÁM, Paz JA, García-Mina JM, Pozo MJ, López-Ráez JA (2013) Arbuscular mycorrhizal symbiosis influences strigolactone production under salinity and alleviates salt stress in lettuce plants. J Plant Physiol 170:47–55

    Article  PubMed  CAS  Google Scholar 

  • Bakshi P, Handa N, Gautam V, Kaur P, Sareen S, Mir B, Bhardwaj R (2019) Role and regulation of plant hormones as a signal molecule in response to abiotic stresses. In: Plant signaling molecules. Elsevier, pp 303–317

    Chapter  Google Scholar 

  • Balla J, Medveďová Z, Kalousek P, Matiješčuková N, Friml J, Reinöhl V, Procházka S (2016) Auxin flow-mediated competition between axillary buds to restore apical dominance. Sci Rep 6:35955

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Banerjee A, Roychoudhury A (2018) Strigolactones: multi-level regulation of biosynthesis and diverse responses in plant abiotic stresses. Acta Physiol Plant 40:86

    Article  CAS  Google Scholar 

  • Barbier FF, Dun EA, Kerr SC, Chabikwa TG, Beveridge CA (2019) An update on the signals controlling shoot branching. Trends Plant Sci 24:220–236

    Article  PubMed  CAS  Google Scholar 

  • Barciszewska-Pacak M, Milanowska K, Knop K, Bielewicz D, Nuc P, Plewka P, Pacak AM, Vazquez F, Karlowski W, Jarmolowski A (2015) Arabidopsis microRNA expression regulation in a wide range of abiotic stress responses. Front Plant Sci 6:410

    Article  PubMed  PubMed Central  Google Scholar 

  • Bari R, Jones JD (2009) Role of plant hormones in plant defence responses. Plant Mol Biol 69:473–488

    Article  PubMed  CAS  Google Scholar 

  • Bari VK, Nassar JA, Kheredin SM, Gal-On A, Ron M, Britt A, Steele D, Yoder J, Aly R (2019) CRISPR/Cas9-mediated mutagenesis of CAROTENOID CLEAVAGE DIOXYGENASE 8 in tomato provides resistance against the parasitic weed Phelipanche aegyptiaca. Sci Rep 9:1–12

    Article  CAS  Google Scholar 

  • Basbouss-Serhal I, Leymarie J, Bailly C (2016) Fluctuation of Arabidopsis seed dormancy with relative humidity and temperature during dry storage. J Exp Bot 67:119–130

    Article  PubMed  CAS  Google Scholar 

  • Bettini P, Cosi E, Bindi D, Buiatti M (2008) Reactive oxygen species metabolism in plants: production, detoxification and signaling in stress response. Plant Stress 2:28–39

    Google Scholar 

  • Bonneau L, Huguet S, Wipf D, Pauly N, Truong HN (2013) Combined phosphate and nitrogen limitation generates a nutrient stress transcriptome favorable for arbuscular mycorrhizal symbiosis in Medicago truncatula. New Phytol 199:188–202

    Article  PubMed  CAS  Google Scholar 

  • Braun N, de Saint Germain A, Pillot J-P, Boutet-Mercey S, Dalmais M, Antoniadi I, Li X, Maia-Grondard A, Le Signor C, Bouteiller N (2012) The pea TCP transcription factor PsBRC1 acts downstream of strigolactones to control shoot branching. Plant Physiol 158:225–238

    Article  PubMed  CAS  Google Scholar 

  • Brewer PB, Dun EA, Ferguson BJ, Rameau C, Beveridge CA (2009) Strigolactone acts downstream of auxin to regulate bud outgrowth in pea and Arabidopsis. Plant Physiol 150:482–493

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Brewer PB, Dun EA, Gui R, Mason MG, Beveridge CA (2015) Strigolactone inhibition of branching independent of polar auxin transport. Plant Physiol 168:1820–1829

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Brewer PB, Yoneyama K, Filardo F, Meyers E, Scaffidi A, Frickey T, Akiyama K, Seto Y, Dun EA, Cremer JE (2016) LATERAL BRANCHING OXIDOREDUCTASE acts in the final stages of strigolactone biosynthesis in Arabidopsis. Proc Natl Acad Sci U S A 113:6301–6306

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Bruno M, Al-Babili S (2016) On the substrate specificity of the rice strigolactone biosynthesis enzyme DWARF27. Planta 243:1429–1440

    Article  PubMed  CAS  Google Scholar 

  • Bu Q, Lv T, Shen H, Luong P, Wang J, Wang Z, Huang Z, Xiao L, Engineer C, Kim TH (2014) Regulation of drought tolerance by the F-box protein MAX2 in Arabidopsis. Plant Physiol 164:424–439

    Article  PubMed  CAS  Google Scholar 

  • Butt H, Jamil M, Wang JY, Al-Babili S, Mahfouz M (2018) Engineering plant architecture via CRISPR/Cas9-mediated alteration of strigolactone biosynthesis. BMC Plant Biol 18:1–9

    Article  CAS  Google Scholar 

  • Carvalhais LC, Rincon-Florez VA, Brewer PB, Beveridge CA, Dennis PG, Schenk PM (2019) The ability of plants to produce strigolactones affects rhizosphere community composition of fungi but not bacteria. Rhizosphere 9:18–26

    Article  Google Scholar 

  • Charnikhova TV, Gaus K, Lumbroso A, Sanders M, Vincken J-P, De Mesmaeker A, Ruyter-Spira CP, Screpanti C, Bouwmeester H (2017) Zealactones. Novel natural strigolactones from maize. Phytochemistry 137:123–131

    Article  PubMed  CAS  Google Scholar 

  • Cheng X, Floková K, Bouwmeester H, Ruyter-Spira C (2017) The role of endogenous strigolactones and their interaction with ABA during the infection process of the parasitic weed phelipanche ramosa in tomato plants. Front Plant Sci 8:392

    Article  PubMed  PubMed Central  Google Scholar 

  • Chiu RS, Pan S, Zhao R, Gazzarrini S (2016a) ABA-dependent inhibition of the ubiquitin proteasome system during germination at high temperature in Arabidopsis. Plant J 88:749–761

    Article  PubMed  CAS  Google Scholar 

  • Chiu RS, Saleh Y, Gazzarrini S (2016b) Inhibition of FUSCA3 degradation at high temperature is dependent on ABA signaling and is regulated by the ABA/GA ratio. Plant Signal Behav 11:e1247137

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Chiwocha SD, Dixon KW, Flematti GR, Ghisalberti EL, Merritt DJ, Nelson DC, Riseborough J-AM, Smith SM, Stevens JC (2009) Karrikins: a new family of plant growth regulators in smoke. Plant Sci 177:252–256

    Article  CAS  Google Scholar 

  • Choudhury FK, Rivero RM, Blumwald E, Mittler R (2017) Reactive oxygen species, abiotic stress and stress combination. Plant J 90:856–867

    Article  PubMed  CAS  Google Scholar 

  • Claassens AP, Hills PN (2018) Effects of strigolactones on plant roots. In: Root biology. Springer, pp 43–63

    Chapter  Google Scholar 

  • Conn CE, Nelson DC (2016) Evidence that KARRIKIN-INSENSITIVE2 (KAI2) receptors may perceive an unknown signal that is not karrikin or strigolactone. Front Plant Sci 6:1219

    Article  PubMed  PubMed Central  Google Scholar 

  • Cook C, Whichard LP, Turner B, Wall ME, Egley GH (1966) Germination of witchweed (Striga lutea Lour.): isolation and properties of a potent stimulant. Science 154:1189–1190

    Article  PubMed  CAS  Google Scholar 

  • Cooper JW, Hu Y, Beyyoudh L, Yildiz Dasgan H, Kunert K, Beveridge CA, Foyer CH (2018) Strigolactones positively regulate chilling tolerance in pea and in Arabidopsis. Plant Cell Environ 41:1298–1310

    Article  PubMed  CAS  Google Scholar 

  • De-la-Peña C, Nic-Can GI, Avilez-Montalvo J, Cetz-Chel JE, Loyola-Vargas VM (2017) The role of miRNAs in auxin signaling and regulation during plant development. In: Plant epigenetics. Springer, pp 23–48

    Chapter  Google Scholar 

  • Djennane S, Hibrand-Saint Oyant L, Kawamura K, Lalanne D, Laffaire M, Thouroude T, Chalain S, Sakr S, Boumaza R, Foucher F (2014) Impacts of light and temperature on shoot branching gradient and expression of strigolactone synthesis and signalling genes in rose. Plant Cell Environ 37:742–757

    Article  PubMed  CAS  Google Scholar 

  • Domagalska MA, Leyser O (2011) Signal integration in the control of shoot branching. Nat Rev Mol Cell Biol 12:211–221

    Article  PubMed  CAS  Google Scholar 

  • Dun EA, de Saint Germain A, Rameau C, Beveridge CA (2012) Antagonistic action of strigolactone and cytokinin in bud outgrowth control. Plant Physiol 158:487–498

    Article  PubMed  CAS  Google Scholar 

  • FAO, UNICEF, WFP, WHO (2018) The State of Food Security and Nutrition in the World 2017: Building Resilience for Peace and Food Security; Food and Agriculture Organization of the United Nations (FAO): Rome, Italy

    Google Scholar 

  • Felemban A, Braguy J, Zurbriggen MD, Al-Babili S (2019) Apocarotenoids involved in plant development and stress response. Front Plant Sci 10:1168

    Article  PubMed  PubMed Central  Google Scholar 

  • Flematti GR, Ghisalberti EL, Dixon KW, Trengove RD (2004) A compound from smoke that promotes seed germination. Science 305:977–977

    Article  PubMed  CAS  Google Scholar 

  • Flematti GR, Scaffidi A, Goddard-Borger ED, Heath CH, Nelson DC, Commander LE, Stick RV, Dixon KW, Smith SM, Ghisalberti EL (2010) Structure–activity relationship of karrikin germination stimulants. J Agric Food Chem 58:8612–8617

    Article  PubMed  CAS  Google Scholar 

  • Foo E, Blake SN, Fisher BJ, Smith JA, Reid JB (2016) The role of strigolactones during plant interactions with the pathogenic fungus Fusarium oxysporum. Planta 243:1387–1396

    Article  PubMed  CAS  Google Scholar 

  • Gamir J, Torres-Vera R, Rial C, Berrio E, de Souza Campos PM, Varela RM, Macías FA, Pozo MJ, Flors V, López-Ráez JA (2020) Exogenous strigolactones impact metabolic profiles and phosphate starvation signalling in roots. Plant Cell Environ 43(7):1655–1668. https://doi.org/10.1111/pce.13760

    Article  PubMed  CAS  Google Scholar 

  • Gao J, Zhang T, Xu B, Jia L, Xiao B, Liu H, Liu L, Yan H, Xia Q (2018) CRISPR/Cas9-mediated mutagenesis of carotenoid cleavage dioxygenase 8 (CCD8) in tobacco affects shoot and root architecture. Int J Mol Sci 19:1062

    Article  PubMed Central  CAS  Google Scholar 

  • Gardner M, Dalling K, Light M, Jäger A, Van Staden J (2001) Does smoke substitute for red light in the germination of light-sensitive lettuce seeds by affecting gibberellin metabolism? South Afr J Bot 67:636–640

    Article  Google Scholar 

  • Gobena D, Shimels M, Rich PJ, Ruyter-Spira C, Bouwmeester H, Kanuganti S, Mengiste T, Ejeta G (2017) Mutation in sorghum LOW GERMINATION STIMULANT 1 alters strigolactones and causes Striga resistance. Proc Natl Acad Sci U S A 114:4471–4476

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Goldwasser Y, Rodenburg J (2013) Integrated agronomic management of parasitic weed seed banks. In: Parasitic Orobanchaceae. Springer, pp 393–413

    Chapter  Google Scholar 

  • Gomez-Roldan V, Fermas S, Brewer PB, Puech-Pagès V, Dun EA, Pillot J-P, Letisse F, Matusova R, Danoun S, Portais J-C (2008) Strigolactone inhibition of shoot branching. Nature 455:189–194

    Article  PubMed  CAS  Google Scholar 

  • Großkinsky DK, van der Graaff E, Roitsch T (2016) Regulation of abiotic and biotic stress responses by plant hormones. In: Plant pathogen resistance biotechnology. p 131

    Google Scholar 

  • Guan L, Tayengwa R, Cheng ZM, Peer WA, Murphy AS, Zhao M (2019) Auxin regulates adventitious root formation in tomato cuttings. BMC Plant Biol 19:435

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Haider I, Andreo-Jimenez B, Bruno M, Bimbo A, Floková K, Abuauf H, Ntui VO, Guo X, Charnikhova T, Al-Babili S (2018) The interaction of strigolactones with abscisic acid during the drought response in rice. J Exp Bot 69:2403–2414

    PubMed  CAS  Google Scholar 

  • He, H., Lei, Y., Yi, Z. et al. (2021) Study on the mechanism of exogenous serotonin improving cold tolerance of rapeseed (Brassica napus L.) seedlings. Plant Growth Regul 94:161–170

    Google Scholar 

  • Herrera-Vásquez A, Carvallo L, Blanco F, Tobar M, Villarroel-Candia E, Vicente-Carbajosa J, Salinas P, Holuigue L (2015a) Transcriptional control of glutaredoxin GRXC9 expression by a salicylic acid-dependent and NPR1-independent pathway in Arabidopsis. Plant Mol Biol Rep 33:624–637

    Article  CAS  Google Scholar 

  • Herrera-Vásquez A, Salinas P, Holuigue L (2015b) Salicylic acid and reactive oxygen species interplay in the transcriptional control of defense genes expression. Front Plant Sci 6:171

    Article  PubMed  PubMed Central  Google Scholar 

  • Hossain A, Raza A, Maitra S, Asaduzzaman Md et al. (2021) Strigolactones: A Novel Carotenoid-Derived Phytohormone – Biosynthesis, Transporters, Signalling, and Mechanisms in Abiotic Stress. In: Aftab T., Hakeem K.R. (Eds). Plant Growth Regulators. Springer, Cham, pp 275–303

    Google Scholar 

  • Hu Q, Zhang S, Huang B (2018) Strigolactones and interaction with auxin regulating root elongation in tall fescue under different temperature regimes. Plant Sci 271:34–39

    Article  PubMed  CAS  Google Scholar 

  • Iseki M, Shida K, Kuwabara K, Wakabayashi T, Mizutani M, Takikawa H, Sugimoto Y (2018) Evidence for species-dependent biosynthetic pathways for converting carlactone to strigolactones in plants. J Exp Bot 69:2305–2318

    Article  PubMed  CAS  Google Scholar 

  • Jain A, Poling MD, Karthikeyan AS, Blakeslee JJ, Peer WA, Titapiwatanakun B, Murphy AS, Raghothama KG (2007) Differential effects of sucrose and auxin on localized phosphate deficiency-induced modulation of different traits of root system architecture in Arabidopsis. Plant Physiol 144:232–247

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Jia K-P, Baz L, Al-Babili S (2018) From carotenoids to strigolactones. J Exp Bot 69:2189–2204

    Article  PubMed  CAS  Google Scholar 

  • Jiang L, Liu X, Xiong G, Liu H, Chen F, Wang L, Meng X, Liu G, Yu H, Yuan Y (2013) DWARF 53 acts as a repressor of strigolactone signalling in rice. Nature 504:401–405

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Jiang L, Matthys C, Marquez-Garcia B, De Cuyper C, Smet L, De Keyser A, Boyer F-D, Beeckman T, Depuydt S, Goormachtig S (2016) Strigolactones spatially influence lateral root development through the cytokinin signaling network. J Exp Bot 67:379–389

    Article  PubMed  CAS  Google Scholar 

  • Jing X-Q, Shalmani A, Zhou M-R, Shi P-T, Muhammad I, Shi Y, Sharif R, Li W-Q, Liu W-T, Chen K-M (2020) Genome-wide identification of malectin/malectin-like domain containing protein family genes in rice and their expression regulation under various hormones, abiotic stresses, and heavy metal treatments. J Plant Growth Regul 39:492–506

    Article  CAS  Google Scholar 

  • Kapulnik Y, Delaux P-M, Resnick N, Mayzlish-Gati E, Wininger S, Bhattacharya C, Séjalon-Delmas N, Combier J-P, Bécard G, Belausov E (2011) Strigolactones affect lateral root formation and root-hair elongation in Arabidopsis. Planta 233:209–216

    Article  PubMed  CAS  Google Scholar 

  • Khraiwesh B, Zhu J-K, Zhu J (2012) Role of miRNAs and siRNAs in biotic and abiotic stress responses of plants. Biochim Biophys Acta 1819:137–148

    Article  PubMed  CAS  Google Scholar 

  • Kohlen W, Charnikhova T, Liu Q, Bours R, Domagalska MA, Beguerie S, Verstappen F, Leyser O, Bouwmeester H, Ruyter-Spira C (2011) Strigolactones are transported through the xylem and play a key role in shoot architectural response to phosphate deficiency in nonarbuscular mycorrhizal host Arabidopsis. Plant Physiol 155:974–987

    Article  PubMed  CAS  Google Scholar 

  • Koltai H (2011) Strigolactones are regulators of root development. New Phytol 190:545–549

    Article  PubMed  CAS  Google Scholar 

  • Koltai H (2014) Receptors, repressors, PINs: a playground for strigolactone signaling. Trends Plant Sci 19:727–733

    Article  PubMed  CAS  Google Scholar 

  • Koltai H, Cohen M, Chesin O, Mayzlish-Gati E, Bécard G, Puech V, Dor BB, Resnick N, Wininger S, Kapulnik Y (2011) Light is a positive regulator of strigolactone levels in tomato roots. J Plant Physiol 168:1993–1996

    Article  PubMed  CAS  Google Scholar 

  • Kong C-C, Ren C-G, Li R-Z, Xie Z-H, Wang J-P (2017) Hydrogen peroxide and strigolactones signaling are involved in alleviation of salt stress induced by arbuscular mycorrhizal fungus in Sesbania cannabina seedlings. J Plant Growth Regul 36:734–742

    Article  CAS  Google Scholar 

  • Kouzuma A, Watanabe K (2015) Exploring the potential of algae/bacteria interactions. Curr Opin Biotechnol 33:125–129

    Article  PubMed  CAS  Google Scholar 

  • Ku Y-S, Sintaha M, Cheung M-Y, Lam H-M (2018) Plant hormone signaling crosstalks between biotic and abiotic stress responses. Int J Mol Sci 19:3206

    Article  PubMed Central  CAS  Google Scholar 

  • Lakehal A, Bellini C (2019) Control of adventitious root formation: insights into synergistic and antagonistic hormonal interactions. Physiol Plant 165:90–100

    Article  PubMed  CAS  Google Scholar 

  • Lanfranco L, Fiorilli V, Venice F, Bonfante P (2018) Strigolactones cross the kingdoms: plants, fungi, and bacteria in the arbuscular mycorrhizal symbiosis. J Exp Bot 69:2175–2188

    Article  PubMed  CAS  Google Scholar 

  • Lechat M-M, Brun G, Montiel G, Véronési C, Simier P, Thoiron S, Pouvreau J-B, Delavault P (2015) Seed response to strigolactone is controlled by abscisic acid-independent DNA methylation in the obligate root parasitic plant, Phelipanche ramosa L. Pomel. J Exp Bot 66:3129–3140

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Lendzemo VW, Kuyper TW, Matusova R, Bouwmeester HJ, Van Ast A (2007) Colonization by arbuscular mycorrhizal fungi of sorghum leads to reduced germination and subsequent attachment and emergence of Striga hermonthica. Plant Signal Behav 2:58–62

    Article  PubMed  PubMed Central  Google Scholar 

  • Lenoir I, Sahraoui ALH, Fontaine J (2016) Arbuscular mycorrhizal fungal-assisted phytoremediation of soil contaminated with persistent organic pollutants: a review. Eur J Soil Sci 67:624–640

    Article  Google Scholar 

  • Leyser O (2018) Auxin signaling. Plant Physiol 176:465–479

    Article  PubMed  CAS  Google Scholar 

  • Li W, Tran L-SP (2015) Are karrikins involved in plant abiotic stress responses? Trends Plant Sci 20:535–538

    Article  PubMed  CAS  Google Scholar 

  • Li W, Nguyen KH, Tran CD, Watanabe Y, Tian C, Yin X, Li K, Yang Y, Guo J, Miao Y (2020) Negative roles of strigolactone-related SMXL6, 7 and 8 proteins in drought resistance in Arabidopsis. Biomolecules 10:607

    Article  PubMed Central  CAS  Google Scholar 

  • Lin R, Ding L, Casola C, Ripoll DR, Feschotte C, Wang H (2007) Transposase-derived transcription factors regulate light signaling in Arabidopsis. Science 318:1302–1305

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Ling F, Su Q, Jiang H, Cui J, He X, Wu Z, Zhang Z, Liu J, Zhao Y (2020) Effects of strigolactone on photosynthetic and physiological characteristics in salt-stressed rice seedlings. Sci Rep 10:1–8

    Article  CAS  Google Scholar 

  • Liu J, He H, Vitali M, Visentin I, Charnikhova T, Haider I, Schubert A, Ruyter-Spira C, Bouwmeester HJ, Lovisolo C (2015) Osmotic stress represses strigolactone biosynthesis in Lotus japonicus roots: exploring the interaction between strigolactones and ABA under abiotic stress. Planta 241:1435–1451

    Article  PubMed  CAS  Google Scholar 

  • López-Ráez JA (2016) How drought and salinity affect arbuscular mycorrhizal symbiosis and strigolactone biosynthesis? Planta 243:1375–1385

    Article  PubMed  CAS  Google Scholar 

  • López-Ráez JA, Shirasu K, Foo E (2017) Strigolactones in plant interactions with beneficial and detrimental organisms: the Yin and Yang. Trends Plant Sci 22:527–537

    Article  PubMed  CAS  Google Scholar 

  • Luo L, Wang H, Liu X, Hu J, Zhu X, Pan S, Qin R, Wang Y, Zhao P, Fan XJPS (2018) Strigolactones affect the translocation of nitrogen in rice. Plant Sci 270:190–197

    Article  PubMed  CAS  Google Scholar 

  • Lv S, Zhang Y, Li C, Liu Z, Yang N, Pan L, Wu J, Wang J, Yang J, Lv Y (2018) Strigolactone-triggered stomatal closure requires hydrogen peroxide synthesis and nitric oxide production in an abscisic acid-independent manner. New Phytol 217:290–304

    Article  PubMed  CAS  Google Scholar 

  • Ma N, Hu C, Wan L, Hu Q, Xiong J, Zhang C (2017) Strigolactones improve plant growth, photosynthesis, and alleviate oxidative stress under salinity in rapeseed (Brassica napus L.) by regulating gene expression. Front Plant Sci 8:1671

    Article  PubMed  PubMed Central  Google Scholar 

  • Manandhar S, Funnell K, Woolley D, Cooney J (2018) Interaction between strigolactone and cytokinin on axillary and adventitious bud development in Zantedeschia. J Plant Physiol Pathol 6:1

    Google Scholar 

  • Marino D, Dunand C, Puppo A, Pauly N (2012) A burst of plant NADPH oxidases. Trends Plant Sci 17:9–15

    Article  PubMed  CAS  Google Scholar 

  • Marzec M (2016) Strigolactones as part of the plant defence system. Trends Plant Sci 21:900–903

    Article  PubMed  CAS  Google Scholar 

  • Marzec M, Melzer M (2018) Regulation of root development and architecture by strigolactones under optimal and nutrient deficiency conditions. Int J Mol Sci 19:1887

    Article  PubMed Central  CAS  Google Scholar 

  • Marzec M, Muszynska A (2015) In silico analysis of the genes encoding proteins that are involved in the biosynthesis of the RMS/MAX/D pathway revealed new roles of strigolactones in plants. Int J Mol Sci 16:6757–6782

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Matusova R, Rani K, Verstappen FW, Franssen MC, Beale MH, Bouwmeester HJ (2005) The strigolactone germination stimulants of the plant-parasitic Striga and Orobanche spp. are derived from the carotenoid pathway. Plant Physiol 139:920–934

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Min Z, Li R, Chen L, Zhang Y, Li Z, Liu M, Ju Y, Fang Y (2019) Alleviation of drought stress in grapevine by foliar-applied strigolactones. Plant Physiol Biochem 135:99–110

    Article  PubMed  CAS  Google Scholar 

  • Mishra S, Upadhyay S, Shukla RK (2017) The role of strigolactones and their potential cross-talk under hostile ecological conditions in plants. Front Physiol 7:691

    Article  PubMed  PubMed Central  Google Scholar 

  • Mohemed N, Charnikhova T, Fradin EF, Rienstra J, Babiker AG, Bouwmeester HJ (2018) Genetic variation in Sorghum bicolor strigolactones and their role in resistance against Striga hermonthica. J Exp Bot 69:2415–2430

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Mostofa MG, Li W, Nguyen KH, Fujita M, Tran LSP (2018) Strigolactones in plant adaptation to abiotic stresses: an emerging avenue of plant research. Plant Cell Environ 41:2227–2243

    Article  PubMed  CAS  Google Scholar 

  • Mubarik MS, Khan SH, Sajjad M, Raza A, et al. (2021) A manipulative interplay between positive and negative regulators of phytohormones: A way forward for improving drought tolerance in plants. Physiol Plant 172:1269–1290

    Google Scholar 

  • Muhammad I, Li W-Q, Jing X-Q, Zhou M-R, Shalmani A, Ali M, Wei X-Y, Sharif R, Liu W-T, Chen K-M (2019) A systematic in silico prediction of Gibberellic acid stimulated GASA family members: a novel small peptide contributes to floral architecture and transcriptomic changes induced by external stimuli in rice. J Plant Physiol 234:117–132

    Article  PubMed  CAS  Google Scholar 

  • Nazir F, Fariduddin Q, Khan TA (2020) Hydrogen peroxide as a signalling molecule in plants and its crosstalk with other plant growth regulators under heavy metal stress. Chemosphere 252:126486

    Article  PubMed  CAS  Google Scholar 

  • Nelson DC, Scaffidi A, Dun EA, Waters MT, Flematti GR, Dixon KW, Beveridge CA, Ghisalberti EL, Smith SM (2011) F-box protein MAX2 has dual roles in karrikin and strigolactone signaling in Arabidopsis thaliana. Proc Natl Acad Sci U S A 108:8897–8902

    Article  PubMed  PubMed Central  Google Scholar 

  • Ouyang X, Li J, Li G, Li B, Chen B, Shen H, Huang X, Mo X, Wan X, Lin R (2011) Genome-wide binding site analysis of FAR-RED ELONGATED HYPOCOTYL3 reveals its novel function in Arabidopsis development. Plant Cell 23:2514–2535

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Pandey A, Sharma M, Pandey GK (2016) Emerging roles of strigolactones in plant responses to stress and development. Front Plant Sci 7:434

    PubMed  PubMed Central  Google Scholar 

  • Pandey V, Bhatt ID, Nandi SK (2019) Role and regulation of auxin signaling in abiotic stress tolerance. In: Plant signaling molecules. Elsevier, pp 319–331

    Chapter  Google Scholar 

  • Parker C (2009) Observations on the current status of Orobanche and Striga problems worldwide. Pest Manag Sci 65:453–459

    Article  PubMed  CAS  Google Scholar 

  • Piisilä M, Keceli MA, Brader G, Jakobson L, Jõesaar I, Sipari N, Kollist H, Palva ET, Kariola T (2015) The F-box protein MAX2 contributes to resistance to bacterial phytopathogens in Arabidopsis thaliana. BMC Plant Biol 15:53

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Prerostova S, Kramna B, Dobrev PI, Gaudinova A, Marsik P, Fiala R, Knirsch V, Vanek T, Kuresova G, Vankova R (2018) Organ–specific hormonal cross-talk in phosphate deficiency. Environ Exp Bot 153:198–208

    Article  CAS  Google Scholar 

  • Prodhan MY, Munemasa S, Nahar MN-E-N, Nakamura Y, Murata Y (2018) Guard cell salicylic acid signaling is integrated into abscisic acid signaling via the Ca2+/CPK-dependent pathway. Plant Physiol 178:441–450

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Raja V, Majeed U, Kang H, Andrabi KI, John R (2017) Abiotic stress: interplay between ROS, hormones and MAPKs. Environ Exp Bot 137:142–157

    Article  CAS  Google Scholar 

  • Rasmussen A, Mason MG, De Cuyper C, Brewer PB, Herold S, Agusti J, Geelen D, Greb T, Goormachtig S, Beeckman T (2012) Strigolactones suppress adventitious rooting in Arabidopsis and pea. Plant Physiol 158:1976–1987

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Rasmussen A, Depuydt S, Goormachtig S, Geelen D (2013) Strigolactones fine-tune the root system. Planta 238:615–626

    Article  PubMed  CAS  Google Scholar 

  • Rasmussen A, Hu Y, Depaepe T, Vandenbussche F, Boyer F-D, Van Der Straeten D, Geelen D (2017) Ethylene controls adventitious root initiation sites in Arabidopsis hypocotyls independently of strigolactones. J Plant Growth Regul 36:897–911

    Article  CAS  Google Scholar 

  • Raza A, Mehmood SS, Tabassum J, Batool R (2019a) Targeting plant hormones to develop abiotic stress resistance in wheat. In: Wheat production in changing environments. Springer, pp 557–577

    Chapter  Google Scholar 

  • Raza A, Razzaq A, Mehmood SS, Zou X, Zhang X, Lv Y, Xu J (2019b) Impact of climate change on crops adaptation and strategies to tackle its outcome: a review. Plants (Basel) 8:34

    Article  PubMed Central  CAS  Google Scholar 

  • Raza A (2020) Eco-physiological and Biochemical Responses of Rapeseed (Brassica napus L.) to Abiotic Stresses: Consequences and Mitigation Strategies. J Plant Growth Regul https://doi.org/10.1007/s00344-020-10231-z

  • Raza A, Ashraf F, Zou X, Zhang X, Tosif H (2020) Plant adaptation and tolerance to environmental stresses: mechanisms and perspectives. In: Plant ecophysiology and adaptation under climate change: mechanisms and perspectives I. Springer, pp 117–145

    Google Scholar 

  • Raza A, Tabassum J, Kudapa H, Varshney (2021) Can omics deliver temperature resilient ready-to-grow crops? Crit Rev Biotechnol https://doi.org/10.1080/07388551.2021.1898332

  • Razzaq A, Saleem F, Kanwal M, Mustafa G, Yousaf S, Imran Arshad HM, Hameed MK, Khan MS, Joyia FA (2019) Modern trends in plant genome editing: an inclusive review of the CRISPR/Cas9 toolbox. Int J Mol Sci 20:4045

    Article  PubMed Central  CAS  Google Scholar 

  • Ren C-G, Kong C-C, Xie Z-H (2018) Role of abscisic acid in strigolactone-induced salt stress tolerance in arbuscular mycorrhizal Sesbania cannabina seedlings. BMC Plant Biol 18:1–10

    Article  CAS  Google Scholar 

  • Rozpądek P, Domka AM, Nosek M, Ważny R, Jędrzejczyk RJ, Wiciarz M, Turnau K (2018) The role of strigolactone in the cross-talk between Arabidopsis thaliana and the endophytic fungus Mucor sp. Front Microbiol 9:441

    Article  PubMed  PubMed Central  Google Scholar 

  • Rubiales D, Fernández-Aparicio M (2012) Innovations in parasitic weeds management in legume crops. A review. Agron Sustain Dev 32:433–449

    Article  CAS  Google Scholar 

  • Ruiz-Lozano JM, Aroca R, Zamarreño ÁM, Molina S, Andreo-Jiménez B, Porcel R, García-Mina JM, Ruyter-Spira C, López-Ráez JA (2016) Arbuscular mycorrhizal symbiosis induces strigolactone biosynthesis under drought and improves drought tolerance in lettuce and tomato. Plant Cell Environ 39:441–452

    Article  PubMed  CAS  Google Scholar 

  • Ruyter-Spira C, Kohlen W, Charnikhova T, van Zeijl A, van Bezouwen L, de Ruijter N, Cardoso C, Lopez-Raez JA, Matusova R, Bours R (2011) Physiological effects of the synthetic strigolactone analog GR24 on root system architecture in Arabidopsis: another belowground role for strigolactones? Plant Physiol 155:721–734

    Article  PubMed  CAS  Google Scholar 

  • Saddiq MS, Iqbal S, Hafeez MB, Ibrahim AMH, Raza A, Fatima EM, Baloch H, Jahanzaib, Woodrow P, Ciarmiello LF (2021) Effect of Salinity Stress on Physiological Changes in Winter and Spring Wheat. Agronomy 11:1193

    Google Scholar 

  • Saeed W, Naseem S, Ali Z (2017) Strigolactones biosynthesis and their role in abiotic stress resilience in plants: a critical review. Front Plant Sci 8:1487

    Article  PubMed  PubMed Central  Google Scholar 

  • Sagi M, Fluhr R (2006) Production of reactive oxygen species by plant NADPH oxidases. Plant Physiol 141:336–340

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Sah SK, Reddy KR, Li J (2016) Abscisic acid and abiotic stress tolerance in crop plants. Front Plant Sci 7:571

    Article  PubMed  PubMed Central  Google Scholar 

  • Salim N, Raza A (2020) Nutrient use efficiency (NUE) for sustainable wheat production: a review. J Plant Nutr 43:297–315

    Article  CAS  Google Scholar 

  • Santner A, Calderon-Villalobos LIA, Estelle M (2009) Plant hormones are versatile chemical regulators of plant growth. Nat Chem Biol 5:301–307

    Article  PubMed  CAS  Google Scholar 

  • Schlemper TR, Leite MF, Lucheta AR, Shimels M, Bouwmeester HJ, van Veen JA, Kuramae EE (2017) Rhizobacterial community structure differences among sorghum cultivars in different growth stages and soils. FEMS Microbiol Ecol 93

    Google Scholar 

  • Screpanti C, Yoneyama K, Bouwmeester HJ (2016) Strigolactones and parasitic weed management 50 years after the discovery of the first natural strigolactone strigol: status and outlook. Pest Manag Sci 72:2013–2015

    Article  PubMed  CAS  Google Scholar 

  • Sedeek KE, Mahas A, Mahfouz M (2019) Plant genome engineering for targeted improvement of crop traits. Front Plant Sci 10:114

    Article  PubMed  PubMed Central  Google Scholar 

  • Seto Y, Sado A, Asami K, Hanada A, Umehara M, Akiyama K, Yamaguchi S (2014) Carlactone is an endogenous biosynthetic precursor for strigolactones. Proc Natl Acad Sci U S A 111:1640–1645

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Sharif R, Xie C, Zhang H, Arnao MB, Ali M, Ali Q, Muhammad I, Shalmani A, Nawaz MA, Chen P (2018) Melatonin and its effects on plant systems. Molecules 23:2352

    Article  PubMed Central  CAS  Google Scholar 

  • Sharif R, Xie C, Wang J, Cao Z, Zhang H, Chen P, Yuhong L (2020) Genome wide identification, characterization and expression analysis of HD-ZIP gene family in Cucumis sativus L. under biotic and various abiotic stresses. Int J Biol Macromol 158:502–520

    Article  CAS  Google Scholar 

  • Sharifi P, Bidabadi SS (2020) Strigolactone could enhances gas-exchange through augmented antioxidant defense system in Salvia nemorosa L. plants subjected to saline conditions stress. Ind Crop Prod 151:112460

    Article  CAS  Google Scholar 

  • Sharma E, Sharma R, Borah P, Jain M, Khurana JP (2015) Emerging roles of auxin in abiotic stress responses. In: Elucidation of abiotic stress signaling in plants. Springer, pp 299–328

    Chapter  Google Scholar 

  • Shi T-Q, Peng H, Zeng S-Y, Ji R-Y, Shi K, Huang H, Ji X-J (2017) Microbial production of plant hormones: opportunities and challenges. Bioengineered 8:124–128

    Article  PubMed  CAS  Google Scholar 

  • Shindo M, Yamamoto S, Shimomura K, Umehara M (2020) Strigolactones decrease leaf angle in response to nutrient deficiencies in rice. Front Plant Sci 11:135

    Article  PubMed  PubMed Central  Google Scholar 

  • Shinohara N, Taylor C, Leyser O (2013) Strigolactone can promote or inhibit shoot branching by triggering rapid depletion of the auxin efflux protein PIN1 from the plasma membrane. PLoS Biol 11:e1001474

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Shuai H, Meng Y, Luo X, Chen F, Zhou W, Dai Y, Qi Y, Du J, Yang F, Liu J, Yang W (2017) Exogenous auxin represses soybean seed germination through decreasing the gibberellin/abscisic acid (GA/ABA) ratio. Sci Rep 7:12620

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Siddiqi KS, Husen A (2017) Plant response to strigolactones: current developments and emerging trends. Appl Soil Ecol 120:247–253

    Article  Google Scholar 

  • Song X, Lu Z, Yu H, Shao G, Xiong J, Meng X, Jing Y, Liu G, Xiong G, Duan J (2017) IPA1 functions as a downstream transcription factor repressed by D53 in strigolactone signaling in rice. Cell Res 27:1128–1141

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Song X, Zhao Y, Han B, Li T, Zhao P, Xu J-W, Yu X (2020) Strigolactone mediates jasmonic acid-induced lipid production in microalga Monoraphidium sp. QLY-1 under nitrogen deficiency conditions. Bioresour Technol 306:123107

    Article  PubMed  CAS  Google Scholar 

  • Soundappan I, Bennett T, Morffy N, Liang Y, Stanga JP, Abbas A, Leyser O, Nelson DC (2015) SMAX1-LIKE/D53 family members enable distinct MAX2-dependent responses to strigolactones and karrikins in Arabidopsis. Plant Cell 27:3143–3159

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Stanga JP, Smith SM, Briggs WR, Nelson DC (2013) SUPPRESSOR OF MORE AXILLARY GROWTH2 1 controls seed germination and seedling development in Arabidopsis. Plant Physiol 163:318–330

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Sun H, Tao J, Liu S, Huang S, Chen S, Xie X, Yoneyama K, Zhang Y, Xu G (2014) Strigolactones are involved in phosphate-and nitrate-deficiency-induced root development and auxin transport in rice. J Exp Bot 65:6735–6746

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Torres-Vera R, García JM, Pozo MJ, López-Ráez JA (2014) Do strigolactones contribute to plant defence? Mol Plant Pathol 15:211–216

    Article  PubMed  CAS  Google Scholar 

  • Torres-Vera R, García JM, Pozo MJ, López-Ráez JA (2016) Expression of molecular markers associated to defense signaling pathways and strigolactone biosynthesis during the early interaction tomato-Phelipanche ramosa. Physiol Mol Plant Pathol 94:100–107

    Article  CAS  Google Scholar 

  • Trabelsi I, Yoneyama K, Abbes Z, Amri M, Xie X, Kisugi T, Kim H, Kharrat M (2017) Characterization of strigolactones produced by Orobanche foetida and Orobanche crenata resistant faba bean (Vicia faba L.) genotypes and effects of phosphorous, nitrogen, and potassium deficiencies on strigolactone production. South Afr J Bot 108:15–22

    Article  CAS  Google Scholar 

  • Tsavkelova E, Klimova SY, Cherdyntseva T, Netrusov A (2006) Hormones and hormone-like substances of microorganisms: a review. Appl Biochem Microbiol 42:229–235

    Article  CAS  Google Scholar 

  • Tsuchiya Y, Vidaurre D, Toh S, Hanada A, Nambara E, Kamiya Y, Yamaguchi S, McCourt P (2010) A small-molecule screen identifies new functions for the plant hormone strigolactone. Nat Chem Biol 6:741

    Article  PubMed  CAS  Google Scholar 

  • Umehara M, Hanada A, Yoshida S, Akiyama K, Arite T, Takeda-Kamiya N, Magome H, Kamiya Y, Shirasu K, Yoneyama K (2008) Inhibition of shoot branching by new terpenoid plant hormones. Nature 455:195–200

    Article  PubMed  CAS  Google Scholar 

  • Umehara M, Hanada A, Magome H, Takeda-Kamiya N, Yamaguchi S (2010) Contribution of strigolactones to the inhibition of tiller bud outgrowth under phosphate deficiency in rice. Plant Cell Physiol 51:1118–1126

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Urquhart S, Foo E, Reid JB (2015) The role of strigolactones in photomorphogenesis of pea is limited to adventitious rooting. Physiol Plant 153:392–402

    Article  PubMed  CAS  Google Scholar 

  • Van Ha C, Leyva-González MA, Osakabe Y, Tran UT, Nishiyama R, Watanabe Y, Tanaka M, Seki M, Yamaguchi S, Van Dong N (2014) Positive regulatory role of strigolactone in plant responses to drought and salt stress. Proc Natl Acad Sci U S A 111:851–856

    Article  PubMed  CAS  Google Scholar 

  • Vanstraelen M, Benková E (2012) Hormonal interactions in the regulation of plant development. Annu Rev Cell Dev Biol 28:463–487

    Article  PubMed  CAS  Google Scholar 

  • Visentin I, Vitali M, Ferrero M, Zhang Y, Ruyter-Spira C, Novák O, Strnad M, Lovisolo C, Schubert A, Cardinale F (2016) Low levels of strigolactones in roots as a component of the systemic signal of drought stress in tomato. New Phytol 212:954–963

    Article  PubMed  CAS  Google Scholar 

  • Visentin I, Pagliarani C, Deva E, Caracci A, Turečková V, Novák O, Lovisolo C, Schubert A, Cardinale F (2020) A novel strigolactone-miR156 module controls stomatal behaviour during drought recovery. Plant Cell Environ 43(7):1613–1624. https://doi.org/10.1111/pce.13787

    Article  PubMed  CAS  Google Scholar 

  • Vosátka M, Látr A, Gianinazzi S, Albrechtová J (2012) Development of arbuscular mycorrhizal biotechnology and industry: current achievements and bottlenecks. Symbiosis 58:29–37

    Article  CAS  Google Scholar 

  • Wada S, Cui S, Yoshida S (2019) Reactive oxygen species (ROS) generation is indispensable for haustorium formation of the root parasitic plant Striga hermonthica. Front Plant Sci 10:328

    Article  PubMed  PubMed Central  Google Scholar 

  • Wakabayashi T, Hamana M, Mori A, Akiyama R, Ueno K, Osakabe K, Osakabe Y, Suzuki H, Takikawa H, Mizutani M (2019) Direct conversion of carlactonoic acid to orobanchol by cytochrome P450 CYP722C in strigolactone biosynthesis. Sci Adv 5:eaax9067

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Wallner E-S, López-Salmerón V, Belevich I, Poschet G, Jung I, Grünwald K, Sevilem I, Jokitalo E, Hell R, Helariutta Y (2017) Strigolactone-and karrikin-independent SMXL proteins are central regulators of phloem formation. Curr Biol 27:1241–1247

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Wang YH, Irving HR (2011) Developing a model of plant hormone interactions. Plant Signal Behav 6:494–500

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Wang F, Perry SE (2013) Identification of direct targets of FUSCA3, a key regulator of Arabidopsis seed development. Plant Physiol 161:1251–1264

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Wang L, Wang B, Jiang L, Liu X, Li X, Lu Z, Meng X, Wang Y, Smith SM, Li J (2015) Strigolactone signaling in Arabidopsis regulates shoot development by targeting D53-like SMXL repressor proteins for ubiquitination and degradation. Plant Cell 27:3128–3142

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Wang H, Chen W, Eggert K, Charnikhova T, Bouwmeester H, Schweizer P, Hajirezaei MR, Seiler C, Sreenivasulu N, von Wirén N (2018) Abscisic acid influences tillering by modulation of strigolactones in barley. J Exp Bot 69:3883–3898

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Wang JY, Haider I, Jamil M, Fiorilli V, Saito Y, Mi J, Baz L, Kountche BA, Jia K-P, Guo X (2019a) The apocarotenoid metabolite zaxinone regulates growth and strigolactone biosynthesis in rice. Nat Commun 10:1–9

    CAS  Google Scholar 

  • Wang Q, Ni J, Shah F, Liu W, Wang D, Yao Y, Hu H, Huang S, Hou J, Fu S (2019b) Overexpression of the stress-inducible SsMAX2 promotes drought and salt resistance via the regulation of redox homeostasis in Arabidopsis. Int J Mol Sci 20:837

    Article  PubMed Central  CAS  Google Scholar 

  • Wang L, Wang B, Yu H, Guo H, Lin T, Kou L, Wang A, Shao N, Ma H, Xiong G (2020) Transcriptional regulation of strigolactone signalling in Arabidopsis. Nature 583(7815):277–281. https://doi.org/10.1038/s41586-020-2382-x

    Article  PubMed  CAS  Google Scholar 

  • Wasaya A, Manzoor S, Yasir TA, Sarwar N, Mubeen K, Ismail IA, Raza A, Rehman A, Hossain A, EL Sabagh A (2021) Evaluation of Fourteen Bread Wheat (Triticum aestivum L.) Genotypes by Observing Gas Exchange Parameters, Relative Water and Chlorophyll Content, and Yield Attributes under Drought Stress. Sustainability 13:4799

    Google Scholar 

  • Waters MT, Nelson DC, Scaffidi A, Flematti GR, Sun YK, Dixon KW, Smith SM (2012) Specialisation within the DWARF14 protein family confers distinct responses to karrikins and strigolactones in Arabidopsis. Development 139:1285–1295

    Article  PubMed  CAS  Google Scholar 

  • Xia X-J, Zhou Y-H, Shi K, Zhou J, Foyer CH, Yu J-Q (2015) Interplay between reactive oxygen species and hormones in the control of plant development and stress tolerance. J Exp Bot 66:2839–2856

    Article  PubMed  CAS  Google Scholar 

  • Xie X, Wang G, Yang L, Cheng T, Gao J, Wu Y, Xia Q (2015) Cloning and characterization of a novel Nicotiana tabacum ABC transporter involved in shoot branching. Physiol Plant 153:299–306

    Article  PubMed  CAS  Google Scholar 

  • Xu J, Zha M, Li Y, Ding Y, Chen L, Ding C, Wang S (2015) The interaction between nitrogen availability and auxin, cytokinin, and strigolactone in the control of shoot branching in rice (Oryza sativa L.). Plant Cell Rep 34:1647–1662

    Article  PubMed  CAS  Google Scholar 

  • Xu X, Fang P, Zhang H, Chi C, Song L, Xia X, Shi K, Zhou Y, Zhou J, Yu J (2019) Strigolactones positively regulate defense against root-knot nematodes in tomato. J Exp Bot 70:1325–1337

    Article  PubMed  CAS  Google Scholar 

  • Yamada Y, Furusawa S, Nagasaka S, Shimomura K, Yamaguchi S, Umehara M (2014) Strigolactone signaling regulates rice leaf senescence in response to a phosphate deficiency. Planta 240:399–408

    Article  PubMed  CAS  Google Scholar 

  • Yanev M, Kalinova S (2020) Influence of glyphosate on leaf gas exchange and photosynthetic pigments of broomrape-infested tobacco plants. Bulgarian J Agric Sci 26:435–440

    Google Scholar 

  • Yang T, Lian Y, Wang C (2019) Comparing and contrasting the multiple roles of butenolide plant growth regulators: strigolactones and karrikins in plant development and adaptation to abiotic stresses. Int J Mol Sci 20:6270

    Article  PubMed Central  CAS  Google Scholar 

  • Yang Y-Y, Ren Y-R, Zheng P-F, Zhao L-L, You C-X, Wang X-F, Hao Y-J (2020) Cloning and functional identification of a strigolactone receptor gene MdD14 in apple. Plant Cell Tissue Org Cult 140:197–208

    Article  CAS  Google Scholar 

  • Yoneyama K, Xie X, Kim HI, Kisugi T, Nomura T, Sekimoto H, Yokota T, Yoneyama K (2012) How do nitrogen and phosphorus deficiencies affect strigolactone production and exudation? Planta 235:1197–1207

    Article  PubMed  CAS  Google Scholar 

  • Yoneyama K, Kisugi T, Xie X, Yoneyama K (2013) Chemistry of strigolactones: why and how do plants produce so many strigolactones. J Mol Microbial Ecol Rhizosphere 1:373–379

    Article  CAS  Google Scholar 

  • Zafar SA, Zaidi SS-e-A, Gaba Y, Singla-Pareek SL, Dhankher OP, Li X, Mansoor S, Pareek A (2020) Engineering abiotic stress tolerance via CRISPR/Cas-mediated genome editing. J Exp Bot 71:470–479

    Article  PubMed  CAS  Google Scholar 

  • Zhang Y, Van Dijk AD, Scaffidi A, Flematti GR, Hofmann M, Charnikhova T, Verstappen F, Hepworth J, Van Der Krol S, Leyser O (2014) Rice cytochrome P450 MAX1 homologs catalyze distinct steps in strigolactone biosynthesis. Nat Chem Biol 10:1028–1033

    Article  PubMed  CAS  Google Scholar 

  • Zhang Y, Cheng X, Wang Y, Díez-Simón C, Flokova K, Bimbo A, Bouwmeester HJ, Ruyter-Spira C (2018a) The tomato MAX1 homolog, SlMAX1, is involved in the biosynthesis of tomato strigolactones from carlactone. New Phytol 219:297–309

    Article  PubMed  CAS  Google Scholar 

  • Zhang Y, Lv S, Wang G (2018b) Strigolactones are common regulators in induction of stomatal closure in planta. Plant Signal Behav 13:e1444322

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Zhao Q-P, Wang X-N, Li N-N, Zhu Z-Y, Mu S-C, Zhao X, Zhang X (2018) Functional analysis of MAX2 in phototropins-mediated cotyledon flattening in Arabidopsis. Front Plant Sci 9:1507

    Article  PubMed  PubMed Central  Google Scholar 

  • Zhou F, Lin Q, Zhu L, Ren Y, Zhou K, Shabek N, Wu F, Mao H, Dong W, Gan L (2013) D14–SCF D3-dependent degradation of D53 regulates strigolactone signalling. Nature 504:406–410

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Zou X, Wang Q, Chen P, Yin C, Lin Y (2019) Strigolactones regulate shoot elongation by mediating gibberellin metabolism and signaling in rice (Oryza sativa L.). J Plant Physiol 237:72–79

    Article  PubMed  CAS  Google Scholar 

  • Zwanenburg B, Blanco-Ania D (2018) Strigolactones: new plant hormones in the spotlight. J Exp Bot 69:2205–2218

    Article  PubMed  CAS  Google Scholar 

  • Zwanenburg B, Mwakaboko AS, Kannan C (2016) Suicidal germination for parasitic weed control. Pest Manag Sci 72:2016–2025

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Raza, A. et al. (2021). Strigolactones for Sustainable Plant Growth and Production Under Adverse Environmental Conditions. In: Husen, A. (eds) Plant Performance Under Environmental Stress . Springer, Cham. https://doi.org/10.1007/978-3-030-78521-5_6

Download citation

Publish with us

Policies and ethics