Skip to main content

Biosynthesis and Molecular Mechanism of Brassinosteroids Action

  • Chapter
  • First Online:
Hormones and Plant Response

Part of the book series: Plant in Challenging Environments ((PCE,volume 2))

  • 1035 Accesses

Abstract

Plant hormones play vital functions in the integration of various environmental cues associated with signaling networks. Brassinosteroids (BRs) are the sixth class of phytohormones involved in regulating various developmental processes, such as fertility, vascular differentiation, root and shoot growth, flowering, and seed germination, as well as in responding to numerous stresses. A characteristic feature of BRs is their presence in low concentrations. Biosynthesis and signal transduction have been well analyzed through forward and reverse genetics. In the biosynthesis pathways, BRs can be synthesized by a pathway dependent on cycloartenol or cycloartanol. A receptor kinase-mediated signal transduction pathway transduces the BR signal. For activation and deactivation, the BR receptor’s complex utilizes various posttranslational changes and recruits different proteins. This review highlights recent advances in biosynthesis and the mode of the molecular action of BRs.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

3-DT:

3-dehydroteasterone

6-deoxo-3-DT:

3-dehydro-6-deoxoteasterone

6-deoxoCT:

6-deoxocathasterone

7-DR2:

7-dehydroCR reductase 2

BAK1:

BRI1-ASSOCIATED KINASE1

BL:

brassinolide

BR:

brassinosteroid

BRI1:

BRASSINOSTEROID INSENSITIVE1

Brz:

brassinazole

C5-SD:

sterol C5(6) desaturase 2

CDP-ME:

4-(cytidine 5′-diphospho)-2-C methylerythritol

CN:

campestanol

CR:

cholesterol

CS:

castasterone

CT:

cathasterone

DOXP:

1-deoxy-D-xylulose 5-phosphate

DS:

dolichosterone

HMG-CoA:

3-hydroxy-3-methylglutaryl-CoA

IPP:

isopentenyl diphosphate

MEP:

2-C-methyl-D-erythritol 4-phosphate

MVA:

mevalonic acid, mevalonate

MVA-PP:

MVA-pyrophospate

SMO4:

C4-sterol methyloxidase 4

SSR2:

sterol side chain reductase 2

TE:

teasterone

TY :

typhasterol

References

  • Ali B, Hasan SA, Hayat S, Hayat Q, Yadav S, Fariduddin Q, Ahmad A (2008) A role for brassinosteroids in the amelioration of aluminium stress through antioxidant system in mung bean (Vigna radiata L. Wilczek). Environ Exp Bot 62:153–159

    Article  CAS  Google Scholar 

  • Anuradha S, Rao SSR (2001) Effect of brassinosteroids on salinity stress induced inhibition of seed germination and seedling growth of rice (Oryza sativa L.). Plant Growth Regul 33:151–153

    Article  CAS  Google Scholar 

  • Asami T, Yoshida S (1999) Brassinosteroid biosynthesis inhibitors. Trend Plant Sci 4:348–353

    Article  CAS  Google Scholar 

  • Asami T, Min YK, Nagata N, Yamagishi K, Takatsuto S, Fujioka S, Murofushi N, Yamaguchi I, Yoshida S (2000) Characterization of brassinazole, a triazole-type brassinosteroid biosynthesis inhibitor. Plant Physiol 123:93–99

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Asami T, Mizutani M, Fujioka S, Goda H, Min YK, Shimada Y, Nakano T, Takatsuto S, Matsuyama T, Nagata N, Sakata K, Yoshida S (2001) Selective interaction of triazole derivatives with DWF4, a cytochrome P450 monooxygenase of the brassinosteroid biosynthetic pathway, correlates with brassinosteroid deficiency in planta. J Biol Chem 276:25687–25691

    Article  CAS  PubMed  Google Scholar 

  • Asami T, Nakano T, Nakashita H, Sekimata K, Shimada Y, Yoshida S (2003) The influence of chemical genetics on plant science: shedding light on functions and mechanism of action of brassinosteroids using biosynthesis inhibitors. J Plant Growth Regul 22:336–349

    Article  CAS  PubMed  Google Scholar 

  • Bajguz A (2007) Metabolism of brassinosteroids in plants. Plant Physiol Bioch 45:95–107

    Article  CAS  Google Scholar 

  • Bajguz A, Asami T (2004) Effects of brassinazole, an inhibitor of brassinosteroid biosynthesis, on light- and dark-grown Chlorella vulgaris. Planta 218:869–877

    Article  CAS  PubMed  Google Scholar 

  • Bajguz A, Asami T (2005) Suppression of Wolffia arrhiza growth by brassinazole, an inhibitor of brassinosteroid biosynthesis and its restoration by endogenous 24-epibrassinolide. Phytochemistry 66:1787–1796

    Article  CAS  PubMed  Google Scholar 

  • Bajguz A, Hayat S (2009) Effects of brassinosteroids on the plant responses to environmental stresses. Plant Physiol Bioch 47:1–8

    Article  CAS  Google Scholar 

  • Bajguz A, Piotrowska-Niczyporuk A (2013) Synergistic effect of auxins and brassinosteroids on the growth and regulation of metabolite content in the green alga Chlorella vulgaris (Trebouxiophyceae). Plant Physiol Bioch 71:290–297

    Article  CAS  Google Scholar 

  • Bajguz A, Piotrowska-Niczyporuk A (2014a) Brassinosteroids implicated in growth and stress responses. In: Tran LSP, Pal S (eds) Phytohormones: a window to metabolism, signaling and biotechnological applications, New York, Springer, pp 163–190

    Google Scholar 

  • Bajguz A, Piotrowska-Niczyporuk A (2014b) Interactive effect of brassinosteroids and cytokinins on growth, chlorophyll, monosaccharide and protein content in the green alga Chlorella vulgaris (Trebouxiophyceae). Plant Physiol Bioch 80:176–183

    Article  CAS  Google Scholar 

  • Bajguz A, Tretyn A (2003) The chemical characteristic and distribution of brassinosteroids in plants. Phytochemistry 62:1027–1046

    Article  CAS  PubMed  Google Scholar 

  • Bajguz A, Orczyk W, Golebiewska A, Chmur M, Piotrowska-Niczyporuk A (2019) Occurrence of brassinosteroids and influence of 24-epibrassinolide with brassinazole on their content in the leaves and roots of Hordeum vulgare L. cv. Golden Promise. Planta 249:123–137

    Article  CAS  PubMed  Google Scholar 

  • Bali AS, Sidhu GPS, Kumar V, Bhardwaj R (2019) Mitigating cadmium toxicity in plants by phytohormones. In: Hasanuzzaman M, Prasad MNV, Fujita M (eds) Cadmium toxicity and tolerance in plants. Academic, pp 375–396

    Chapter  Google Scholar 

  • Bhandari S, Nailwal TK (2020) Role of brassinosteroids in mitigating abiotic stresses in plants. Biologia. https://doi.org/10.2478/s11756-020-00587-8

  • Bojar D, Martinez J, Santiago J, Rybin V, Bayliss R, Hothorn M (2014) Crystal structures of the phosphorylated BRI1 kinase domain and implications for brassinosteroid signal initiation. Plant J 78:31–43

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chapman EJ, Greenham K, Castillejo C, Sartor R, Bialy A, Sun TP, Estelle M (2012) Hypocotyl transcriptome reveals auxin regulation of growth-promoting genes through GA-dependent and -independent pathways. PLoS One 7:e36210

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Choe S (2004) Brassinosteroid biosynthesis and metabolism. In: Davies PJ (ed) Plant hormones: biosynthesis, signal transduction, action! Kluwer Academic Publishers, Dordrecht, pp 156–178

    Google Scholar 

  • Choe S (2006) Brassinosteroid biosynthesis and inactivation. Physiol Plant 126:539–548

    Article  CAS  Google Scholar 

  • Choudhary SP, Yu JQ, Yamaguchi-Shinozaki K, Shinozaki K, Tran LSP (2012) Benefits of brassinosteroid crosstalk. Trend Plant Sci 17:594–605

    Article  CAS  Google Scholar 

  • Chung Y, Choe S (2013) The regulation of brassinosteroid biosynthesis in Arabidopsis. Crit Rev Plant Sci 32:396–410

    Article  Google Scholar 

  • Fahad S, Hussain S, Matloob A, Khan FA, Khaliq A, Saud S, Hassan S, Shan D, Khan F, Ullah N, Faiq M, Khan MR, Tareen AK, Khan A, Ullah A, Ullah N, Huang J (2015) Phytohormones and plant responses to salinity stress: a review. Plant Growth Regul 75:391–404

    Article  CAS  Google Scholar 

  • Frigerio M, Alabadí D, Pérez-Gómez J, García-Cárcel L, Phillips AL, Hedden P, Blázquez MA (2006) Transcriptional regulation of gibberellin metabolism genes by auxin signaling in Arabidopsis. Plant Physiol 142:553–563

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fujioka S, Takatsuto S, Yoshida S (2002) An early C-22 oxidation branch in the brassinosteroid biosynthetic pathway. Plant Physiol 130:930–939

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fujita S, Ohnishi T, Watanabe B, Yokota T, Takatsuto S, Fujioka S, Yoshida S, Sakata K, Mizutani M (2006) Arabidopsis CYP90B1 catalyses the early C-22 hydroxylation of C27, C28 and C29 sterols. Plant J 45:765–774

    Article  CAS  PubMed  Google Scholar 

  • Gruszka D (2019) Genetic and molecular bases of brassinosteroid metabolism and interactions with other phytohormones. In: Hayat S, Yusuf M, Bhardwaj R, Bajguz A (eds) Brassinosteroids: plant growth and development. Springer, pp 219–249

    Chapter  Google Scholar 

  • Hartwig T, Corvalan C, Best NB, Budka JS, Zhu JY, Choe S, Schulz B (2012) Propiconazole is a specific and accessible brassinosteroid (BR) biosynthesis inhibitor for Arabidopsis and maize. PLoS One 7:e36625

    Google Scholar 

  • Hohmann U, Hothorn M (2018) Brassinosteroid sensing and signaling in plants. In: Hejátko J, Hakoshima T (eds) Plant structural biology: hormonal regulations. Springer, pp 149–164

    Chapter  Google Scholar 

  • Hu YR, Yu DQ (2014) BRASSINOSTEROID INSENSITIVE2 interacts with ABSCISIC ACID INSENSITIVE5 to mediate the antagonism of Brassinosteroids to Abscisic acid during seed germination in Arabidopsis. Plant Cell 26:4394–4408

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hu S, Liu L, Li S, Shao Z, Meng F, Liu H, Duan W, Liang D, Zhu C, Xu T, Wang Q (2020) Regulation of fruit ripening by the brassinosteroid biosynthetic gene SlCYP90B3 via an ethylene-dependent pathway in tomato. Hortic Res-England 7:163

    Article  CAS  Google Scholar 

  • Joo SH, Kim TW, Son SH, Lee WS, Yokota T, Kim SK (2012) Biosynthesis of a cholesterol-derived brassinosteroid, 28-norcastasterone, in Arabidopsis thaliana. J Exp Bot 63:1823–1833

    Article  CAS  PubMed  Google Scholar 

  • Joo SH, Jang MS, Kim MK, Lee JE, Kim SK (2015) Biosynthetic relationship between C28-brassinosteroids and C29-brassinosteroids in rice (Oryza sativa) seedlings. Phytochemistry 111:84–90

    Article  CAS  PubMed  Google Scholar 

  • Kagale S, Divi UK, Krochko JE, Keller WA, Krishna P (2007) Brassinosteroid confers tolerance in Arabidopsis thaliana and Brassica napus to a range of abiotic stresses. Planta 225:353–364

    Article  CAS  PubMed  Google Scholar 

  • Kim S, Moon J, Roh J, Kim SK (2018) Castasterone can be biosynthesized from 28-homodolichosterone in Arabidopsis thaliana. J Plant Biol 61:330–335

    Article  CAS  Google Scholar 

  • Kwon M, Choe S (2005) Brassinosteroid biosynthesis and dwarf mutants. J Plant Biol 48:1–15

    Article  CAS  Google Scholar 

  • Lee SC, Hwang JY, Joo SH, Son SH, Youn JH, Kim SK (2010) Biosynthesis and metabolism of dolichosterone in Arabidopsis thaliana. Bull Kor Chem Soc 31:3475–3478

    Article  CAS  Google Scholar 

  • Lee SC, Joo SH, Son SH, Youn JH, Kim SK (2011) Metabolism of 28-homodolichosterone in Phaseolus vulgaris. Bull Kor Chem Soc 32:403–404

    Article  CAS  Google Scholar 

  • Lichtenthaler HK (2000) Non-mevalonate isoprenoid biosynthesis: enzymes, genes and inhibitors. Biochem Soc Trans 28:785–789

    Article  CAS  PubMed  Google Scholar 

  • Lilley JLS, Gan YB, Graham IA, Nemhauser JL (2013) The effects of DELLAs on growth change with developmental stage and brassinosteroid levels. Plant J 76:165–173

    Google Scholar 

  • Miziorko HM (2011) Enzymes of the mevalonate pathway of isoprenoid biosynthesis. Arch Biochem Biophys 505:131–143

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nolan TM, VukaÅ¡inović N, Liu D, Russinova E, Yin Y (2020) Brassinosteroids: multidimensional regulators of plant growth, development, and stress responses. Plant Cell 32:295–318

    Article  CAS  PubMed  Google Scholar 

  • Oh E, Zhu JY, Wang ZY (2012) Interaction between BZR1 and PIF4 integrates brassinosteroid and environmental responses. Nat Cell Biol 14:802–809

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Oh K, Matsumoto T, Yamagami A, Hoshi T, Nakano T, Yoshizawa Y (2015a) Fenarimol, a pyrimidine-type fungicide, inhibits brassinosteroid biosynthesis. Int J Mol Sci 16:17273–17288

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Oh K, Matsumoto T, Yamagami A, Ogawa A, Yamada K, Suzuki R, Sawada T, Fujioka S, Yoshizawa Y, Nakano T (2015b) YCZ-18 is a new Brassinosteroid biosynthesis inhibitor. PLoS One 10:e0120812

    Google Scholar 

  • Ohnishi T (2018) Recent advances in brassinosteroid biosynthetic pathway: insight into novel brassinosteroid shortcut pathway. J Pestic Sci 43:159–167

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ohnishi T, Szatmari AM, Watanabe B, Fujita S, Bancos S, Koncz C, Lafos M, Shibata K, Yokota T, Sakata K, Szekeres M, Mizutani M (2006a) C-23 hydroxylation by Arabidopsis CYP90C1 and CYP90D1 reveals a novel shortcut in brassinosteroid biosynthesis. Plant Cell 18:3275–3288

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ohnishi T, Watanabe B, Sakata K, Mizutani M (2006b) CYP724B2 and CYP90B3 function in the early C-22 hydroxylation steps of brassinosteroid biosynthetic pathway in tomato. Biosci Biotech Bioch 70:2071–2080

    Article  CAS  Google Scholar 

  • Peng P, Yan ZY, Zhu YY, Li JM (2008) Regulation of the Arabidopsis GSK3-like kinase brassinosteroid-insensitive 2 through proteasome-mediated protein degradation. Mol Plant 1:338–346

    Article  CAS  PubMed  Google Scholar 

  • Piotrowska A, Bajguz A (2011) Conjugates of abscisic acid, brassinosteroids, ethylene, gibberellins, and jasmonates. Phytochemistry 72:2097–2112

    Article  CAS  PubMed  Google Scholar 

  • Rady MM (2011) Effect of 24-epibrassinolide on growth, yield, antioxidant system and cadmium content of bean (Phaseolus vulgaris L.) plants under salinity and cadmium stress. Sci Hortic 129:232–237

    Article  CAS  Google Scholar 

  • Ren CM, Han CY, Peng W, Huang Y, Peng ZH, Xiong XY, Zhu Q, Gao BD, Xie DX (2009) A leaky mutation in DWARF4 reveals an antagonistic role of brassinosteroid in the inhibition of root growth by jasmonate in Arabidopsis. Plant Physiol 151:1412–1420

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Roh J, Yeom HS, Jang H, Kim S, Youn JH, Kim SK (2017) Identification and biosynthesis of C-24 ethylidene brassinosteroids in Arabidopsis thaliana. J Plant Biol 60:533–538

    Article  CAS  Google Scholar 

  • Rozhon W, Akter S, Fernandez A, Poppenberger B (2019) Inhibitors of brassinosteroid biosynthesis and signal transduction. Molecules 24:4372

    Article  CAS  PubMed Central  Google Scholar 

  • Ryu H, Hwang I (2013) Brassinosteroids in plant developmental signaling networks. J Plant Biol 56:267–273

    Article  CAS  Google Scholar 

  • Ryu H, Cho H, Kim K, Hwang I (2010a) Phosphorylation dependent nucleocytoplasmic shuttling of BES1 is a key regulatory event in brassinosteroid signaling. Mol Cells 29:283–290

    Article  CAS  PubMed  Google Scholar 

  • Ryu H, Kim K, Cho H, Hwang I (2010b) Predominant actions of cytosolic BSU1 and nuclear BIN2 regulate subcellular localization of BES1 in brassinosteroid signaling. Mol Cell 29:291–296

    Article  CAS  Google Scholar 

  • Saini S, Sharma I, Pati PK (2015) Versatile roles of brassinosteroid in plants in the context of its homoeostasis, signaling and crosstalks. Front Plant Sci 6:950

    Google Scholar 

  • Schneider B (2002) Pathways and enzymes of brassinosteroid biosynthesis. In: Esser K, Llittge U, Beyschlag W, Hellwig F (eds) Progress in botany, vol 63. Springer, pp 286–306

    Chapter  Google Scholar 

  • Sekimata K, Kimura T, Kaneko I, Nakano T, Yoneyama K, Takeuchi Y, Yoshida S, Asami T (2001) A specific brassinosteroid biosynthesis inhibitor, Brz2001: evaluation of its effects on Arabidopsis, cress, tobacco, and rice. Planta 213:716–721

    Article  CAS  PubMed  Google Scholar 

  • Sekimata K, Uzawa J, Han SY, Yoneyama K, Takeuchi Y, Yoshida S, Asami T (2002) Brz220 a novel brassinosteroid biosynthesis inhibitor: stereochemical structure-activity relationship. Tetrahedron-Asymmetr 13:1875–1878

    Article  CAS  Google Scholar 

  • Sekimata K, Ohnishi T, Mizutani M, Todoroki Y, Han SY, Uzawa J, Fujioka S, Yoneyama K, Takeuchi Y, Takatsuto S, Sakata K, Yoshida S, Asami T (2008) Brz220 interacts with DWF4, a cytochrome P450 monooxygenase in brassinosteroid biosynthesis, and exerts biological activity. Biosci Biotech Bioch 72:7–12

    Article  CAS  Google Scholar 

  • Sharma I, Bhardwaj R, Pati PK (2015) Exogenous application of 28-homobrassinolide modulates the dynamics of salt and pesticides induced stress responses in an elite rice variety Pusa Basmati-1. J Plant Growth Regul 34:509–518

    Article  CAS  Google Scholar 

  • Shimada Y, Fujioka S, Miyauchi N, Kushiro M, Takatsuto S, Nomura T, Yokota T, Kamiya Y, Bishop GJ, Yoshida S (2001) Brassinosteroid-6-oxidases from Arabidopsis and tomato catalyze multiple C-6 oxidations in brassinosteroid biosynthesis. Plant Physiol 126:770–779

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sonawane PD, Pollier J, Panda S, Szymanski J, Massalha H, Yona M, Unger T, Malitsky S, Arendt P, Pauwels L, Almekias-Siegl E, Rogachev I, Meir S, Cárdenas PD, Masri A, Petrikov M, Schaller H, Schaffer AA, Kamble A, Giri AP, Goossens A, Aharoni A (2016) Plant cholesterol biosynthetic pathway overlaps with phytosterol metabolism. Nat Plant 3:16205

    Article  CAS  Google Scholar 

  • Sun Y, Fan XY, Cao DM, Tang WQ, He K, Zhu JY, He JX, Bai MY, Zhu SW, Oh E, Patil S, Kim TW, Ji HK, Wong WH, Rhee SY, Wang ZY (2010) Integration of Brassinosteroid signal transduction with the transcription network for plant growth regulation in Arabidopsis. Dev Cell 19:765–777

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Symons GM, Ross JJ, Jager CE, Reid JB (2008) Brassinosteroid transport. J Exp Bot 59:17–24

    Article  CAS  PubMed  Google Scholar 

  • Talarek-Karwel M, Bajguz A, Piotrowska-Niczyporuk A (2020) 24-Epibrassinolide modulates primary metabolites, antioxidants, and phytochelatins in Acutodesmus obliquus exposed to lead stress. J Appl Phycol 32:263–276

    Article  CAS  Google Scholar 

  • Vercruyssen L, Gonzalez N, Werner T, Schmulling T, Inze D (2011) Combining enhanced root and shoot growth reveals cross talk between pathways that control plant organ size in Arabidopsis. Plant Physiol 155:1339–1352

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Vert G (2008) Plant signaling: brassinosteroids, immunity and effectors are BAK! Curr Biol 18:R963–R965

    Article  CAS  PubMed  Google Scholar 

  • Vert G, Chory J (2006) Downstream nuclear events in brassinosteroid signalling. Nature 441:96–100

    Article  CAS  PubMed  Google Scholar 

  • Vert G, Walcher CL, Chory J, Nemhauser JL (2008) Integration of auxin and brassinosteroid pathways by auxin response factor 2. Pro Natl Acad Sci U S A 105:9829–9834

    Article  CAS  Google Scholar 

  • Wang XL, Chory J (2006) Brassinosteroids regulate dissociation of BKI1, a negative regulator of BRI1 signaling, from the plasma membrane. Science 313:1118–1122

    Article  CAS  PubMed  Google Scholar 

  • Wang H, Mao HL (2014) On the origin and evolution of plant brassinosteroid receptor kinases. J Mol Evol 78:118–129

    Article  CAS  PubMed  Google Scholar 

  • Wang JM, Asami T, Yoshida S, Murofushi N (2001) Biological evaluation of 5-substituted pyrimidine derivatives as inhibitors of brassinosteroid biosynthesis. Biosci Biotech Bioch 65:817–822

    Article  CAS  Google Scholar 

  • Wang ZY, Bai MY, Oh E, Zhu JY (2012) Brassinosteroid signaling network and regulation of photomorphogenesis. Annu Rev Genet 46:701–724

    Article  CAS  PubMed  Google Scholar 

  • Wang J, Jiang JJ, Wang J, Chen L, Fan SL, Wu JW, Wang XL, Wang ZX (2014a) Structural insights into the negative regulation of BRI1 signaling by BRI1-interacting protein BKI1. Cell Res 24:1328–1341

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang YL, Li ZC, Liu D, Xu JH, Wei XC, Yan LM, Yang C, Lou ZY, Shui WQ (2014b) Assessment of BAK1 activity in different plant receptor-like kinase complexes by quantitative profiling of phosphorylation patterns. J Proteome 108:484–493

    Article  CAS  Google Scholar 

  • Wang RJ, Liu MM, Yuan M, Oses-Prieto JA, Cai XB, Sun Y, Burlingame AL, Wang ZY, Tang WQ (2016) The brassinosteroid-activated BRI1 receptor kinase is switched off by dephosphorylation mediated by cytoplasm-localized PP2A B’ subunits. Mol Plant 9:148–157

    Article  CAS  PubMed  Google Scholar 

  • Wang DX, Yang CJ, Wang HJ, Wu ZH, Jiang JJ, Liu JJ, He ZN, Chang F, Ma H, Wang XL (2017a) BKI1 regulates plant architecture through coordinated inhibition of the brassinosteroid and ERECTA signaling pathways in Arabidopsis. Mol Plant 10:297–308

    Article  PubMed  CAS  Google Scholar 

  • Wang H, Wei Z, Li J, Wang X (2017b) Brassinosteroids. In: Li J, Li C, Smith SM (eds) Hormone metabolism and signaling in plants. Academic, pp 291–326

    Chapter  Google Scholar 

  • Wang HJ, Tang J, Liu J, Hu J, Liu JJ, Chen YX, Cai ZY, Wang XL (2018) Abscisic acid signaling inhibits Brassinosteroid signaling through dampening the dephosphorylation of BIN2 by ABI1 and ABI2. Mol Plant 11:315–325

    Article  CAS  PubMed  Google Scholar 

  • Wang F, Gao YS, Liu YW, Zhang X, Gu XX, Ma DB, Zhao ZW, Yuan ZJ, Xue HW, Liu HT (2019) BES1-regulated BEE1 controls photoperiodic flowering downstream of blue light signaling pathway in Arabidopsis. New Phytol 223:1407–1419

    Article  CAS  PubMed  Google Scholar 

  • Wang H, Song S, Cheng H, Tan YW (2020) State-of-the-art technologies for understanding Brassinosteroid signaling networks. Int J Mol Sci 21:8179

    Google Scholar 

  • Wei ZY, Li J (2016) Brassinosteroids regulate root growth, development, and symbiosis. Mol Plant 9:86–100

    Article  CAS  PubMed  Google Scholar 

  • Wei ZY, Li J (2018) Receptor-like protein kinases: key regulators controlling root hair development in Arabidopsis thaliana. J Integr Plant Biol 60:841–850

    Article  CAS  PubMed  Google Scholar 

  • Wei Z, Yuan T, Tarkowská D, Kim J, Nam HG, Novák O, He K, Gou X, Li J (2017a) Brassinosteroid biosynthesis is modulated via a transcription factor cascade of COG1, PIF4, and PIF5. Plant Physiol 174:1260–1273

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wei ZY, Yuan T, Tarkowska D, Kim J, Nam HG, Novak O, He K, Gou XP, Li J (2017b) Brassinosteroid biosynthesis is modulated via a transcription factor cascade of COG1, PIF4, and PIF5. Plant Physiol 174:1260–1273

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wendeborn S, Lachia M, Jung PMJ, Leipner J, Brocklehurst D, De Mesmaeker A, Gaus K, Mondiere R (2017) Biological activity of brassinosteroids – direct comparison of known and new analogs in planta. Helv Chim Acta 100:e1600305

    Article  CAS  Google Scholar 

  • Xin PY, Yan JJ, Li BB, Fang S, Fang JS, Tian HL, Shi Y, Tian WS, Yan CY, Chu JF (2016) A comprehensive and effective mass spectrometry-based screening strategy for discovery and identification of new brassinosteroids from rice tissues. Front Plant Sci 7:1786

    Article  PubMed  PubMed Central  Google Scholar 

  • Xue LW, Du JB, Yang H, Xu F, Yuan S, Lin HH (2009) Brassinosteroids counteract Abscisic acid in germination and growth of Arabidopsis. Z Naturforsch C 64:225

    Article  CAS  PubMed  Google Scholar 

  • Yan HJ, Zhao YF, Shi H, Li J, Wang YC, Tang DZ (2018) BRASSINOSTEROID-SIGNALING KINASE1 phosphorylates MAPKKK5 to regulate immunity in Arabidopsis. Plant Physiol 176:2991–3002

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yang M, Wang X (2017) Multiple ways of BES1/BZR1 degradation to decode distinct developmental and environmental cues in plants. Mol Plant 10:915–917

    Article  CAS  PubMed  Google Scholar 

  • Yang KZ, Jiang M, Wang M, Xue S, Zhu LL, Wang HZ, Zou JJ, Lee EK, Sack F, Le J (2015) Phosphorylation of serine 186 of bHLH transcription factor SPEECHLESS promotes stomatal development in Arabidopsis. Mol Plant 8:783–795

    Article  CAS  PubMed  Google Scholar 

  • Ye HX, Li L, Yin YH (2011) Recent advances in the regulation of brassinosteroid signaling and biosynthesis pathways. J Integr Plant Biol 53:455–468

    Article  CAS  PubMed  Google Scholar 

  • Ye HX, Li L, Guo HQ, Yin YH (2012) MYBL2 is a substrate of GSK3-like kinase BIN2 and acts as a corepressor of BES1 in brassinosteroid signaling pathway in Arabidopsis. Proc Natl Acad Sci U S A 109:20142–20147

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ye HX, Liu SZ, Tang BY, Chen JN, Xie ZL, Nolan TM, Jiang H, Guo HQ, Lin HY, Li L, Wang YQ, Tong HN, Zhang MC, Chu CC, Li ZH, Aluru M, Aluru S, Schnable PS, Yin YH (2017) RD26 mediates crosstalk between drought and brassinosteroid signalling pathways. Nat Commun 8:14573

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yokota T, Ohnishi T, Shibata K, Asahina M, Nomura T, Fujita T, Ishizaki K, Kohchi T (2017) Occurrence of brassinosteroids in non-flowering land plants, liverwort, moss, lycophyte and fern. Phytochemistry 136:46–55

    Article  CAS  PubMed  Google Scholar 

  • Yu X, Xu GY, Li B, Vespoli LD, Liu H, Moeder W, Chen SX, de Oliveira MVV, de Souza SA, Shao WY, Rodrigues B, Ma Y, Chhajed S, Xue SW, Berkowitz GA, Yoshioka K, He P, Shan LB (2019) The receptor kinases BAK1/SERK4 regulate Ca2+ channel-mediated cellular homeostasis for cell death containment. Curr Biol 29:3778–3790

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang S, Cai Z, Wang X (2009) The primary signaling outputs of brassinosteroids are regulated by abscisic acid signaling. Proc Natl Acad Sci U S A 106:4543–4548

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhao BL, Li J (2012) Regulation of brassinosteroid biosynthesis and inactivation. J Integr Plant Biol 54:746–759

    Article  CAS  PubMed  Google Scholar 

  • Zheng T, Dong T, Haider MS, Jin H, Jia H, Fang J (2020) Brassinosteroid regulates 3-hydroxy-3-methylglutaryl CoA reductase to promote grape fruit development. J Agric Food Chem 68:11987–11996

    Article  CAS  PubMed  Google Scholar 

  • Zhou J, Wang J, Li X, Xia XJ, Zhou YH, Shi K, Chen ZX, Yu JQ (2014) H2O2 mediates the crosstalk of brassinosteroid and abscisic acid in tomato responses to heat and oxidative stresses. J Exp Bot 65:4371–4383

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zullo MAT, Bajguz A (2019) The brassinosteroids family – structural diversity of natural compounds and their precursors. In: Hayat S, Yusuf M, Bhardwaj R, Bajguz A (eds) Brassinosteroids: plant growth and development. Springer, Singapore, pp 1–44

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Andrzej Bajguz .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Bajguz, A., Chmur, M. (2021). Biosynthesis and Molecular Mechanism of Brassinosteroids Action. In: Gupta, D.K., Corpas, F.J. (eds) Hormones and Plant Response. Plant in Challenging Environments, vol 2. Springer, Cham. https://doi.org/10.1007/978-3-030-77477-6_9

Download citation

Publish with us

Policies and ethics