Skip to main content

Hormones in Photoperiodic Flower Induction

  • Chapter
  • First Online:
Hormones and Plant Response

Part of the book series: Plant in Challenging Environments ((PCE,volume 2))

  • 1037 Accesses

Abstract

The timing of the transition from vegetative to reproductive development is of great fundamental and practical interest. Physiological event is a subject to strict and precise control. Among the environmental factors, the most important is photoperiod defined as the following changes in the light and darkness duration in the daily cycle, while the endogenous control depends on hormones action. Due to the different photoperiodic sensitivity, the plants were divided into long-day plants (LDPs), short-day plants (SDPs), and day-neutral plants (DNPs). Mainly genetic and molecular approaches have led to the identification of various components in the photoperiodic pathway among which the key are photoreceptors necessary for light perception, and elements of the endogenous circadian clock. Moreover, the circadian clock also synchronizes changes in the level of hormones. In Arabidopsis thaliana, as well as in many other LDPs, gibberellins (GAs) promote flowering, whereas in SDPs, GAs do not affect or inhibit this process. The influence of other hormones on flower induction is also dependent on photoperiodic requirements. Numerous studies have shown that ethylene (ET) and jasmonates (JAs) usually inhibit generative development. In the case of abscisic acid (ABA), a dual role in photoperiodic flowering was also recognized. The unclear role of individual hormones in the induction of flowering results from the fact that they interact in many ways. It is indisputable, however, that these small molecules are an important element coordinating the transformations leading to the generative induction of plants. On one hand, photoperiod regulates hormone levels and affects their signal transduction pathways, while on the other hand, the steady balance between hormonal stimulators and inhibitors of flowering determines the activation or inhibition of gene expression associated with generative induction pathways.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

ABA:

abscisic acid

AG:

AGAMOUS

AP:

APETALA

CAL:

CAULIFLOWER

CCA1:

CIRCADIAN CLOCK-ASSOCIATED1

CDF:

CYCLING DOF FACTOR

CO:

CONSTANS

COP1-SPA1:

CONSTITUTIVE PHOTOMORPHOGENIC1-SUPPRESSOR PHYA105 1

CRYs:

cryptochromes

DNPs:

day-neutral plants

ELF:

EARLY FLOWERING

ET:

ethylene

FBH:

FLOWERING bHLH

FD:

FLOWERING LOCUS D

FKF1:

FLAVIN-BINDING KELCH REPEAT F-BOX 1

FT:

FLOWERING LOCUS T

GAs:

gibberellins

GI:

GIGANTEA

LD:

long day

HD:

HEADING DATE

HOS1:

HIGH EXPRESSION OF OSMOTICALLY RESPONSIVE GENE1

IAA:

indolyl-3-acetic acid

PHL:

PHYTOCHROME-DEPENDENT LATE FLOWERING

JAs:

jasmonates

LDPs:

long-day plants

LFY:

LEAFY

LHY:

LATE ELONGATED HYPOCOTYL

LKP2:

LOV KELCH PROTEIN2

LUX:

LUX ARRHYTHMO

RVE8:

REVEILLE8

LWD1:

LIGHT REGULATED WD1

MFT:

MOTHER OF FT

miP1a:

microProtein1a

NF-Y:

NUCLEAR FACTOR-Y

PHYA-E:

phytochromes A-E

PRR5/7/9:

PSEUDO RESPONSE REGULATOR 5/7/9

RFI2:

RED AND FAR-RED INSENSITIVE2

SDPs:

short-day plants

SOC1:

SUPPRESSOR OF OVEXPRESION OF CO1

SVP:

SHORT VEGETATIVE PHASE

TEM:

TEMPRANILLO

TFL1:

TERMINAL FLOWER 1 (TFL1)

TOC1:

TIMING OF CAB EXPRESSION1

TOE:

TARGET OF EAT

TSF:

TWIN SISTER OF FT

ZTL:

ZEITLUPE

References

  • Abeles FB (1967) Inhibition of flowering in Xanthium pensylvanicum Walln. by Ethylene. Plant Physiol 42:608–609

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Achard P, Baghour M, Chapple A, Hedden P, Van Der Straeten D, Genschik P, Moritz T, Harberd NP (2007) The plant stress hormone ethylene controls floral transition via DELLA-dependent regulation of floral meristem-identity genes. Proc Natl Acad Sci U S A 104:6484–6489

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Albrechtová JTP, Ullmann J (1994) Methyl jasmonate inhibits growth and flowering in Chenopodium rubrum. Biol Plant 36:317–319

    Article  Google Scholar 

  • Amagasa T, Suge H (1987) The mode of flower inhibiting action of ethylene in Pharbitis nil. Plant Cell Physiol 28:1159–1161

    CAS  Google Scholar 

  • An H, Roussot C, Suarez-Lopez P, Corbesier L, Vincent C, Pineiro M, Hepworth S, Mouradov A, Justin S, Turnbull C, Coupland G (2004) CONSTANS acts in the phloem to regulate a systemic signal that induces photoperiodic flowering of Arabidopsis. Development 131:3615–3626

    Article  CAS  PubMed  Google Scholar 

  • An F, Zhang X, Zhu Z, Ji Y, He W, Jiang Z, Li M, Guo H (2012) Coordinated regulation of apical hook development by gibberellins and ethylene in etiolated Arabidopsis seedlings. Cell Res 22:915–927

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Andrés F, Coupland G (2012) The genetic basis of flowering responses to seasonal cues. Nat Rev Genet 13:627–639

    Article  PubMed  CAS  Google Scholar 

  • Aukerman MJ, Sakai H (2003) Regulation of flowering time and floral organ identity by a MicroRNA and its APETALA2-like target genes. Plant Cell 15:2730–2741

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ausín I, Alonso-Blanco C, Martínez-Zapater JM (2005) Environmental regulation of flowering. Int J Dev Biol 49:689–705

    Article  PubMed  CAS  Google Scholar 

  • Bagnall DJ, King RW (2001) Phytochrome and flowering of Arabidopsis thaliana: photophysiological studies using mutants and transgenic lines. Aust J Plant Physiol 28:401–408

    CAS  Google Scholar 

  • Barendse GWM, Croes AF, Van Den Ende G, Bosveld M, Creemers T (1985) Role of hormones on flower bud formation in thin-layer explants of tobacco. Biol Plant Praha 27:408–412

    Article  CAS  Google Scholar 

  • Bäurle I, Dean C (2006) The timing of developmental transitions in plants. Cell 125:655–664

    Article  PubMed  CAS  Google Scholar 

  • Ben-Naim O, Eshed R, Parnis A, Teper-Bamnolker P, Shalit A, Coupland G, Samach A, Lifschitz E (2006) The CCAAT binding factor can mediate interactions between CONSTANS-like proteins and DNA. Plant J 46:462–476

    Article  CAS  PubMed  Google Scholar 

  • Bernier G, Kinet JM, Sachs RM (1981) The physiology of flowering. I, II. CRP Press, Boca Raton, pp 1033–1036

    Google Scholar 

  • Bernier G, Havelange A, Houssa C, Pentitjean A, Lejeune PP (1993) Physiological signals that induce flowering. Plant Cell 5:1147–1155

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Blanvillain R, Wei S, Wei P, Kim JH, Ow DW (2011) Stress tolerance to stress escape in plants: role of the OXS2 zinc-finger transcription factor family. EMBO J 30:3812–3822

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bolouri Moghaddam MR, Van den Ende W (2013) Sugars, the clock and transition to flowering. Front Plant Sci 4:22

    CAS  PubMed  Google Scholar 

  • Brachi B, Aimé C, Glorieux C, Cuguen J, Roux F (2012) Adaptive value of phenological traits in stressful environments: predictions based on seed production and laboratory natural selection. PLoS One 7:e32069

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Burghardt LT, Runcie DE, Wilczek AM, Cooper MD, Roe JL, Welch SM, Schmitt J (2016) Fluctuating, warm temperatures decrease the effect of a key floral repressor on flowering time in Arabidopsis thaliana. New Phytol 210:564–576

    Article  CAS  PubMed  Google Scholar 

  • Cao S, Kumimoto RW, Gnesutta N, Calogero AM, Mantovani R, Holt BF (2014) A distal CCAAT/NUCLEAR FACTOR Y complex promotes chromatin looping at the FLOWERING LOCUS T promoter and regulates the timing of flowering in Arabidopsis. Plant Cell 26:1009–1017

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Castillejo C, Pelaz S (2008) The balance between CONSTANS and TEMPRANILLO activities determines FT expression to trigger flowering. Curr Biol 18:1338–1343

    Article  CAS  PubMed  Google Scholar 

  • Chailakhyan MH (1936) On the mechanism of photoperiodic reaction. CR Acad Sci URSS 10:89–93

    Google Scholar 

  • Chang C, Kwok SF, Bleecker AB, Meyerowitz EM (1993) Arabidopsis ethylene-response gene ETR1: similarity of product to two-component regulators. Science 262:539–544

    Article  CAS  PubMed  Google Scholar 

  • Chauvin A, Lenglet A, Wolfender JL, Farmer EE (2016) Paired hierarchical organization of 13-lipoxygenases in Arabidopsis. Plants 5:16

    Google Scholar 

  • Chen X (2004) A microRNA as a translational repressor of APETALA2 in Arabidopsis flower development. Science 303:2022–2025

    Article  CAS  PubMed  Google Scholar 

  • Chini A, Fonseca S, Fernández G, Adie B, Chico JM, Lorenzo O, García-Casado G, López-Vidriero I, Lozano FM, Ponce MR, Micol JL, Solano R (2007) The JAZ family of repressors is the missing link in jasmonate signalling. Nature 448:666–671

    Article  CAS  PubMed  Google Scholar 

  • Choi H, Hong J, Ha J, Kang J, Kim SY (2000) ABFs, a family of ABA-responsive element binding factors. J Biol Chem 275:1723–1730

    Article  CAS  PubMed  Google Scholar 

  • Cockshull KE, Horridge JS (1978) 2-Chloroethylphosphonic acid flower initiation by Chrysanthemum morifolium Ramat in short day sand in long days. J Hortic Sci 53:85–90

    Article  CAS  Google Scholar 

  • Conti L (2017) Hormonal control of the floral transition: can one catch them all? Dev Biol 430:288–301

    Article  CAS  PubMed  Google Scholar 

  • Corbesier L, Vincent C, Jang S, Fornara F, Fan Q, Searle I, Giakountis A, Farrona S, Gissot L, Turnbull C, Coupland G (2007) FT protein movement contributes to long-distance signaling in floral induction of Arabidopsis. Science 316:1030–1033

    Article  CAS  PubMed  Google Scholar 

  • Davis SJ (2009) Integrating hormones into the floral-transition pathway of Arabidopsis thaliana. Plant Cell Environ 32:1201–1210

    Article  CAS  PubMed  Google Scholar 

  • El-Antably HMM, Wareing PF (1966) Stimulation of flowering in certain schort-day plants by abscisin. Nature 210:328–329

    Article  CAS  Google Scholar 

  • El-Antably HMM, Wareing PF, Hillman J (1967) Some physiological responses to D.I. Abscisin (dormin). Planta 73:74–90

    Article  CAS  PubMed  Google Scholar 

  • Endo M, Tanigawa Y, Murakami T, Araki T, Nagatani A (2013) PHYTOCHROME-DEPENDENT LATE-FLOWERING accelerates flowering through physical interactions with phytochrome B and CONSTANS. Proc Natl Acad Sci U S A 110:18017–18022

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Eriksson S, Bohlenius H, Moritz T, Nilsson O (2006) GA4 is the active gibberellin in the regulation of Leafy transcription and Arabidopsis floral initiation. Plant Cell 18:2172–2181

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fornara F, Panigrahi KCS, Gissot L, Sauerbrunn N, Ruhl M, Jarillo JA, Coupland G (2009) Arabidopsis DOF transcription factors act redundantly to reduce CONSTANS expression and are essential for a photoperiodic flowering response. Dev Cell 17:75–86

    Article  CAS  PubMed  Google Scholar 

  • Frankowski K, Kęsy J, Wojciechowski W, Kopcewicz J (2009) Light- and IAA-regulated ACC synthase gene (PnACS) from Pharbitis nil and its possible role in IAA-mediated flower inhibition. J Plant Physiol 166:192–202

    Article  CAS  PubMed  Google Scholar 

  • Frankowski K, Wilmowicz E, Kućko A, Kęsy J, Świeżawska B, Kopcewicz J (2014) Ethylene, auxin and abscisic acid interactions in the control of photoperiodic flower induction in Pharbitis nil. Biol Plant 58:305–310

    Article  CAS  Google Scholar 

  • Friedman H, Spiegelstein H, Goldschmidt EE, Halevy AH (1990) Flowering response of Pharbitis nil to agents affecting cytoplasmic pH. Plant Physiol 94:114–119

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gagne JM, Smalle J, Gingerich DJ, Walker JM, Yoo SD, Yanagisawa S, Vierstra RD (2004) Arabidopsis EIN3-binding F-box 1 and 2 form ubiquitin-protein ligases that repress ethylene action and promote growth by directing EIN3 degradation. Proc Natl Acad Sci USA 101:6803–6808

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Galvão VC, Horrer D, Küttner F, Schmid M (2012) Spatial control of flowering by DELLA proteins in Arabidopsis thaliana. Development 139:4072–4082

    Article  PubMed  CAS  Google Scholar 

  • Garcia-Martinez JL, Gil J (2002) Light regulation of gibberellins biosynthesis and mode of action. J Plant Growth Regul 20:354–368

    Article  CAS  Google Scholar 

  • Gocal GFW, Sheldon C, Gubler F, Moritz T, Bagnall D, Song FL, Parish RW, Dennis ES, Weigel D, King RW (2001) GAMYB-like genes and gibberellin in Arabidopsis. Plant Physiol 127:1682–1693

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Goto N, Kumagai T, Koornneef M (1991) Flowering responses to light-breaks in photomorphogenic mutants of Arabidopsis thaliana, a long-day plant. Physiol Plant 83:209–215

    Article  Google Scholar 

  • Graeff M, Straub D, Eguen T, Dolde U, Rodrigues V, Brandt R, Wenkel S (2016) MicroProtein-mediated recruitment of CONSTANS into a TOPLESS trimeric complex represses flowering in Arabidopsis. PLoS Genet 12:e1005959

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Gupta S, Maheshwari SC (1970) Growth and flowering of Lemna paucicostata II. Role of growth regulators. Plant Cell Physiol 11:97–106

    Article  CAS  Google Scholar 

  • Halevy AH, Spiegelstein H, Goldschmidt EE (1991) Auxin inhibition of flower induction of Pharbitis is not mediated by ethylene. Plant Physiol 95:652–654

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Halliday KJ, Salter MG, Thingnaes E, Whitelam GC (2003) Phytochrome control of flowering is temperature sensitive and correlates with expression of the floral integrator FT. Plant J 33:875–885

    Article  CAS  PubMed  Google Scholar 

  • Harada H, Bose TK, Cheruel J (1971) Effects of four growth regulating chemicals on flowering of Pharbitis nil. Z Pflanzenphysiol 64:267–269

    CAS  Google Scholar 

  • Hayama R, Coupland G (2004) The molecular basis of diversity in the photoperiodic flowering responses of Arabidopsis and rice. Plant Physiol 135:677–684

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hayama R, Yokoi S, Tamaki S, Yano M, Shimamoto K (2003) Adaptation of photoperiodic control pathways produces short-day flowering in rice. Nature 422:719–722

    Article  CAS  PubMed  Google Scholar 

  • Higham BM, Smith H (1969) The induction of flowering by abscisic acid in Lemna paucicostata. Life Sci 8:1061–1065

    CAS  PubMed  Google Scholar 

  • Hisamatsu T, King RW (2008) The nature of floral signals in Arabidopsis. II. Roles for Flowering locus T (FT) and gibberellin. J Exp Bot 59:3821–3829

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hisamatsu T, Koshioka M, Kubota S, Fujime Y, King RW, Mander LN (2000) The role of gibberellin biosynthesis in the control of growth and flowering in Matthiola incana. Physiol Plant 109:97–105

    Article  CAS  Google Scholar 

  • Hisamatsu T, King RW, Helliwell CA, Koshioka M (2005) The involvement of gibberellin 20-oxidase genes in phytochrome regulated petiole elongation of Arabidopsis. Plant Physiol 138:1106–1116

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hou X, Lee LYC, Xia K, Yan Y, Yu H (2010) DELLAs modulate jasmonate signaling via competitive binding to JAZs. Dev Cell 19:884–894

    Article  CAS  PubMed  Google Scholar 

  • Hou X, Zhou J, Liu C, Liu L, Shen L, Yu H (2014) Nuclear factor Y-mediated H3K27me3 demethylation of the SOC1 locus orchestrates flowering responses of Arabidopsis. Nat Commun 5:4601

    Article  CAS  PubMed  Google Scholar 

  • Hua J, Sakai H, Nourizadeh S, Chen QG, Bleecker AB, Ecker JR, Meyerowitz EM (1998) EIN4 and ERS2 are members of the putative ethylene receptor gene family in Arabidopsis. Plant Cell 10:1321–1332

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Huijser P, Schmid M (2011) The control of developmental phase transitions in plants. Development 138:4117–4129

    Article  CAS  PubMed  Google Scholar 

  • Imaizumi T, Kay SA (2006) Photoperiodic control of flowering: not only by coincidence. Trend Plant Sci 11:550–558

    Article  CAS  Google Scholar 

  • Imaizumi T, Schultz TF, Harmon FG, Ho LA, Kay SA (2005) FKF1 F-box protein mediates cyclic degradation of a repressor of CONSTANS in Arabidopsis. Science 309:293–297

    Article  CAS  PubMed  Google Scholar 

  • Ito S, Song YH, Josephson-Day AR, Miller RJ, Breton G, Olmstead RG, Imaizumi T (2012) FLOWERING BHLH transcriptional activators control expression of the photoperiodic flowering regulator CONSTANS in Arabidopsis. Proc Natl Acad Sci U S A 109:3582–3587

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Izawa T, Oikawa T, Sugiyama N, Tanisaka T, Yano M, Shimamoto K (2002) Phytochrome mediates the external light signal to repress FT orthologs in photoperiodic flowering of rice. Genes Dev 16:2006–2020

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jaeger KE, Wigge PA (2007) FT protein acts as a long-range signal in Arabidopsis. Curr Biol 17:1050–1054

    Article  CAS  PubMed  Google Scholar 

  • Jang S, Marchal V, Panigrahi KCS, Wenkel S, Soppe W, Deng X-W, Valverde F, Coupland G (2008) Arabidopsis COP1 shapes the temporal pattern of CO accumulation conferring a photoperiodic flowering response. EMBO J 27:1277–1288

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jasinski S, Piazza P, Craft J, Hay A, Woolley L, Rieu I, Phillips A, Hedden P, Tsiantis M (2005) KNOX action in Arabidopsis is mediated by coordinate regulation of cytokinin and gibberellin activities. Curr Biol 15:1560–1565

    Article  CAS  PubMed  Google Scholar 

  • Kardailsky I, Shukla VK, Ahn JH, Dagenais N, Christensen SK, Nguyen JT, Chory J, Harrison MJ, Weigel D (1999) Activation tagging of the floral inducer FT. Science 286:1962–1965

    Article  CAS  PubMed  Google Scholar 

  • Kazan K, Lyons R (2016) The link between flowering time and stress tolerance. J Exp Bot 67:47–60

    Article  CAS  PubMed  Google Scholar 

  • Kenney AM, McKay JK, Richards JH, Juenger TE (2014) Direct and indirect selection on flowering time, water-use efficiency (WUE, δ (13)C), and WUE plasticity to drought in Arabidopsis thaliana. Ecol Evol 4:4505–4521

    Article  PubMed  PubMed Central  Google Scholar 

  • Kęsy J, Maciejewska B, Sowa M, Szumilak M, Kawałowski K, Borzuchowska M, Kopcewicz J (2008) Ethylene and IAA interactions in the inhibition of photoperiodic flower induction of Pharbitis nil. Plant Growth Regul 55:43–50

    Article  CAS  Google Scholar 

  • Kęsy J, Frankowski K, Wilmowicz E, Glazińska P, Wojciechowski W, Kopcewicz J (2010) The possible role of PnACS2 in IAA-mediated flower inhibition in Pharbitis nil. Plant Growth Regul 61:1–10

    Article  CAS  Google Scholar 

  • Kęsy J, Wilmowicz E, Maciejewska B, Frankowski K, Glazińska P, Kopcewicz J (2011) Independent effects of jasmonates and ethylene on inhibition of Pharbitis nil flowering. Acta Physiol Plant 33:1211–1216

    Article  CAS  Google Scholar 

  • Khatoon S, Seidlová F, Krekule J (1973) Time-dependence of auxin and ethrel effects on flowering in Chenopodium rubrum L. Biol Plant 15:361–363

    Article  CAS  Google Scholar 

  • Kim KC, Maeng J (1995) Photoperiodic floral induction in Pharbitis nil cotyledons affected by polyamines and ethylene. J Plant Biol 38:227–234

    CAS  Google Scholar 

  • Kim JJ, Lee JH, Kim W, Jung HS, Huijser P, Ahn JH (2012) The microRNA156-SQUAMOSA PROMOTER BINDING PROTEIN-LIKE3 module regulates ambient temperature-responsive flowering via FLOWERING LOCUS T in Arabidopsis. Plant Physiol 159:461–478

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • King RW, Evans LT (2003) Gibberellins and flowering of grasses and cereals: prizing open the lid of the ‘florigen’ black box. Annu Rev Plant Biol 54:307–328

    Article  CAS  PubMed  Google Scholar 

  • King RW, Moritz T, Evans LT, Junttila O, Herlt AJ (2001) Long-day induction of flowering in Lolium temulentum involves sequential increases in specific gibberellins at the shoot apex. Plant Physiol 127:624–632

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • King RW, Moritz T, Evans LT, Martin J, Andersen CH, Blundell C, Kardailsky I, Chandler PM (2006) Regulation of flowering in the long-day grass Lolium temulentum by gibberellins and the Flowering Locus T gene. Plant Physiol 141:498–507

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • King RW, Mander LN, Asp T, MacMillan CP, Blundell CA, Evans LT (2008a) Selective deactivation of gibberellins below the shoot apex is critical to flowering but not to stem elongation of Lolium. Mol Plant 1:295–307

    Article  CAS  PubMed  Google Scholar 

  • King RW, Hisamatsu T, Goldschmidt EE, Blundell C (2008b) The nature of floral signals in Arabidopsis. I. Photosynthesis and a far-red photoresponse independently regulate flowering by increasing expression of Flowering locus T (FT). J Exp Bot 59:3811–3820

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kobayashi Y, Weigel D (2007) Move on up, it’s time for change–mobile signals controlling photoperiod-dependent flowering. Genes Dev 21:2371–2384

    Article  CAS  PubMed  Google Scholar 

  • Koops P, Pelser S, Ignatz M, Klose C, Marrocco-Selden K, Kretsch T (2011) EDL3 is an F-box protein involved in the regulation of abscisic acid signalling in Arabidopsis thaliana. J Exp Bot 62:5547–5560

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kooyers NJ (2015) The evolution of drought escape and avoidance in natural herbaceous populations. Plant Sci 234:155–162

    Article  CAS  PubMed  Google Scholar 

  • Krajnčič B, Nemec J (1995) The effect of jasmonic acid on flowering in Spirodela polyrrhiza L. Schleiden. J Plant Physiol 146:754–756

    Article  Google Scholar 

  • Krekule J, Horavka B (1972) The response of short day plant Chenopodium rubrum L. to abscisic acid and gibberellic acid treatment applied at two levels of photoperiodic induction. Biol Plant 14:254–259

    Article  CAS  Google Scholar 

  • Krekule J, Ullman J (1971) The effect of abscisic acid on flowering in Chenopodium rubrum L. Biol Plant 13:60–63

    Article  CAS  Google Scholar 

  • Kućko A, Czeszewska-Rosiak G, Wolska M, Glazińska P, Kopcewicz J, Wilmowicz E (2016) Auxin increases the InJMT expression and the level of JAMe -inhibitor of flower induction in Ipomoea nil. Acta Soc Bot Pol 86:1–10

    Article  CAS  Google Scholar 

  • Kulikowska-Gulewska H, Kopcewicz J (1999) Ethylene in the control of photoperiodic flower induction in Pharbitis nil Chois. Acta Soc Bot Pol 68:33–37

    Article  CAS  Google Scholar 

  • Kulikowska-Gulewska H, Majewska M, Kopcewicz J (2000) Gibberellins in the control of photoperiodic flower transition in Pharbitis nil. Physiol Plant 108:202–207

    Article  CAS  Google Scholar 

  • Kumimoto RW, Adam L, Hymus GJ, Repetti PP, Reuber TL, Marion CM, Hempel FD, Ratcliff OJ (2008) The Nuclear Factor Y subunits NF-YB2 and NFYB3 play additive roles in the promotion of flowering by inductive long-day photoperiods in Arabidopsis. Planta 228:709–723

    Article  CAS  PubMed  Google Scholar 

  • Kuromori T, Sugimoto E, Shinozaki K (2014) Inter-tissue signal transfer of abscisic acid from vascular cells to guard cells. Plant Physiol 164:1587–1592

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kurup S, Jones HD, Holdsworth MJ (2001) Interactions of the developmental regulator ABI3 with proteins identified from developing Arabidopsis seeds. Plant J 21:143–155

    Article  Google Scholar 

  • Kwon HJ, Son KC, Gu EG (1994) Influence of auxin, ethylene, and polyamines on the flowering induction of morning glory (Pharbitis nil Chois cv. Violet). J Kor Soc Hort Sci 35:258–264

    CAS  Google Scholar 

  • Lang A (1956) Induction of flower formation in biennial Hyoscyamus by treatment with gibberellin. Naturwiss 43:284–285

    Article  CAS  Google Scholar 

  • Lang A (1957) The effect of gibberellin upon flower formation. Proc Natl Acad Sci U S A 43:709–717

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lazaro A, Mouriz A, Piñeiro M, Jarillo JA (2015) Red light-mediated degradation of CONSTANS by the E3 ubiquitin ligase HOS1 regulates photoperiodic flowering in Arabidopsis. Plant Cell 27:2437–2454

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lee DJ, Zeevaart JAD (2002) Differential regulation of RNA levels of gibberellins dioxygenases by photoperiod in spinach. Plant Physiol 130:2085–2094

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lee DJ, Zeevaart JAD (2007) Regulation of gibberellin 20-oxidase 1 expression in spinach by photoperiod. Planta 226:35–44

    Article  CAS  PubMed  Google Scholar 

  • Léon-Kloosterziel KM, Gil MA, Ruijs GJ, Jacobsen SE, Olszewski NE, Schwartz SH, Zeevaart JAD, Koornneef M (1996) Isolation and characterization of abscisic acid-deficient Arabidopsis mutants at two new loci. Plant J 10:655–661

    Article  PubMed  Google Scholar 

  • Leung J, Giraudat J (1998) Abscisic acid signal transduction. Annu Rev Plant Physiol Plant Mol Biol 49:199–222

    Article  CAS  PubMed  Google Scholar 

  • Li M, An F, Li W, Ma M, Feng Y, Zhang X, Guo H (2016) DELLA proteins interact with FLC to repress flowering transition. J Integr Plant Biol 58:642–655

    Article  CAS  PubMed  Google Scholar 

  • Liu C, Zhou J, Bracha-Drori K, Yalovsky S, Ito T, Yu H (2007) Specification of Arabidopsis floral meristem identity by repression of flowering time genes. Development 134:1901–1910

    Article  CAS  PubMed  Google Scholar 

  • Liu LJ, Zhang YC, Li QH, Sang Y, Mao J, Lian HL, Wang L, Yang HQ (2008) COP1-mediated ubiquitination of CONSTANS is implicated in cryptochrome regulation of flowering in Arabidopsis. Plant Cell 20:292–306

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Łukasiewicz-Rutkowska H, Tretyn A, Cymerski M, Kopcewicz J (1997) The effect of exogenous acetylcholine and other cholinergic agents on photoperiodic flower induction of Pharbitis nil. Acta Soc Bot Pol 66:47–54

    Article  Google Scholar 

  • Maciejewska B, Kopcewicz J (2002) Inhibitory effect of methyl jasmonate on flowering and elongation growth in Pharbitis nil. J Plant Growth Regul 21:216–223

    Article  CAS  Google Scholar 

  • Maciejewska B, Kęsy J, Zielińska M, Kopcewicz J (2004) Jasmonates inhibit flowering in short-day plant Pharbitis nil. Plant Growth Regul 43:1–8

    Article  CAS  Google Scholar 

  • Marciniak K, Kęsy J, Tretyn A, Kopcewicz J (2012a) Gibberellins–structure, biosynthesis and deactivation in plants. Post Biochem 58:14–25

    Google Scholar 

  • Marciniak K, Grzegorzewska W, Kęsy J, Szmidt-Jaworska A, Tretyn A, Kopcewicz J (2012b) Regulation of gibberellin metabolism in plants. Kosmos 61:213–232

    CAS  Google Scholar 

  • Marciniak K, Świeżawska B, Kęsy J, Tretyn A, Kopcewicz J (2012c) Gibberellins–perception and signal transduction in plants. Post Biol Kom 39:25–48

    CAS  Google Scholar 

  • Marciniak K, Kućko A, Wilmowicz E, Kęsy J, Kopcewicz J (2018a) Photoperiodic flower induction in Ipomoea nil is accompanied by decreasing content of gibberellins. Plant Growth Regul 84:395–400

    Article  CAS  Google Scholar 

  • Marciniak K, Kućko A, Wilmowicz E, Świdziński M, Kęsy J, Kopcewicz J (2018b) Photoperiodic flower induction in Ipomoea nil is accompanied by decreasing content of gibberellins. Plant Growth Regul 84:395–400

    Article  CAS  Google Scholar 

  • Marciniak K, Wilmowicz E, Kućko A, Kopcewicz J (2018c) Photoperiod and ethylene-dependent expression of gibberellin metabolism gene InEKO1 during flower induction of Ipomoea nil. Biol Plant 62:194–199

    Article  CAS  Google Scholar 

  • Marín-de la Rosa N, Sotillo B, Miskolczi P, Gibbs DJ, Vicente J, Carbonero P, Oñate-Sánchez L, Holdsworth MJ, Bhalerao R, Alabadí D, Blázquez MA (2014) Large-scale identification of gibberellin-related transcription factors defines group VII ETHYLENE RESPONSE FACTORS as functional DELLA partners. Plant Physiol 166:1022–1032

    Article  PubMed  CAS  Google Scholar 

  • Martínez-Zapater JM, Coupland G, Dean C, Koornneef M (1994) The transition to flowering in Arabidopsis. Cold Spring Harb Monogr Arch 27:403–433

    Google Scholar 

  • Más P (2005) Circadian clock signaling in Arabidopsis thaliana: from gene expression to physiology and development. Int J Dev Biol 49:491–500

    Article  PubMed  CAS  Google Scholar 

  • Mathieu J, Warthmann N, Kuttner F, Schmid M (2007) Export of FT protein from phloem companion cells is sufficient for floral induction in Arabidopsis. Curr Biol 17:1055–1060

    Article  CAS  PubMed  Google Scholar 

  • Mathieu J, Yant LJ, Mürdter F, Küttner F, Schmid M (2009) Repression of flowering by the miR172 target SMZ. PLoS Biol 7:e1000148

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Mattioli R, Marchese D, D’Angeli S, Altamura MM, Costantino P, Trovato M (2008) Modulation of intracellular proline levels affects flowering time and inflorescence architecture in Arabidopsis. Plant Mol Biol 66:277–288

    Article  CAS  PubMed  Google Scholar 

  • McKay JK, Richards JH, Mitchell-Olds T (2003) Genetics of drought adaptation in Arabidopsis thaliana: I. Pleiotropy contributes to genetic correlations among ecological traits. Mol Ecol 12:1137–1151

    Article  CAS  PubMed  Google Scholar 

  • Michaels SD (2009) Flowering time regulation produces much fruit. Curr Opin Plant Biol 12:75–80

    Article  CAS  PubMed  Google Scholar 

  • Mitchum MG, Yamaguchi S, Hanada A, Kuwahara A, Yoshioka Y, Kato T, Tabata S, Kamiya Y, Sun TP (2006) Distinct and overlapping roles of two gibberellin 3oxidases in Arabidopsis development. Plant J 45:804–818

    Article  CAS  PubMed  Google Scholar 

  • Mozley D, Thomas B (1995) Developmental and photobiological factors affecting photoperiodic induction in Arabidopsis thaliana Heynh Landsberg Erecta. J Exp Bot 46:173–179

    Article  CAS  Google Scholar 

  • Mutasa-Göttgens E, Hedden P (2009) Gibberellin as a factor in floral regulatory networks. J Exp Bot 60:1979–1989

    Article  PubMed  CAS  Google Scholar 

  • Nakamichi N, Kita M, Ito S, Yamashino T, Mizuno T (2005) PSEUDO-RESPONSE REGULATORS, PRR9, PRR7 and PRR5, together play essential roles close to the circadian clock of Arabidopsis thaliana. Plant Cell Physiol 46:686–698

    Article  CAS  PubMed  Google Scholar 

  • Nakayama S, Hashimoto T (1973) Effects of abscisic acid on flowering in Pharbitis nil. Plant Cell Physiol 14:419–422

    CAS  Google Scholar 

  • Nguyen KT, Park J, Park E, Lee I, Choi G (2015) The Arabidopsis RING domain protein BOI inhibits flowering via CO-dependent and CO-independent mechanisms. Mol Plant 8:1725–1736

    Article  CAS  PubMed  Google Scholar 

  • Niwa Y, Ito S, Nakamichi N, Mizoguchi T, Niinuma K, Yamashino T, Mizuno T (2007) Genetic linkages of the circadian clock-associated genes, TOC1, CCA1 and LHY, in the photoperiodic control of flowering time in Arabidopsis thaliana. Plant Cell Physiol 48:925–937

    Article  CAS  PubMed  Google Scholar 

  • O’Malley RC, Rodriguez FI, Esch JJ, Binder BM, O’Donnell P, Klee HJ, Bleecker AB (2005) Ethylene-binding activity, gene expression levels, and receptor system output for ethylene receptor family members from Arabidopsis and tomato. Plant J 41:651–659

    Article  PubMed  CAS  Google Scholar 

  • Osnato M, Castillejo C, Matías-Hernández L, Pelaz S (2012) TEMPRANILLO genes link photoperiod and gibberellin pathways to control flowering in Arabidopsis. Nat Commun 3:808

    Article  PubMed  CAS  Google Scholar 

  • Parcy F (2005) Flowering: a time for integration. Int J Dev Biol 49:585–593

    Article  PubMed  Google Scholar 

  • Park J, Nguyen KT, Park E, Jeon JS, Choi G (2013) DELLA proteins and their interacting RING Finger proteins repress gibberellin responses by binding to the promoters of a subset of gibberellin-responsive genes in Arabidopsis. Plant Cell 25:927–943

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Porri A, Torti S, Romera-Branchat M, Coupland G (2012) Spatially distinct regulatory roles for gibberellins in the promotion of flowering of Arabidopsis under long photoperiods. Development 139:2198–2209

    Article  CAS  PubMed  Google Scholar 

  • Potuschak T, Lechner E, Parmentier Y, Yanagisawa S, Grava S, Koncz C, Genschik P (2003) EIN3-dependent regulation of plant ethylene hormone signaling by two Arabidopsis F box proteins: EBF1 and EBF2. Cell 115:679–689

    Article  CAS  PubMed  Google Scholar 

  • Reed JW, Nagatini A, Elich TD, Fagan M, Chory J (1994) Phytochrome A and phytochrome B have overlapping but distinct functions in Arabidopsis development. Plant Physiol 104:1139–1149

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Riboni M, Galbiati M, Tonelli C, Conti L (2013) GIGANTEA enables drought escape response via abscisic acid-dependent activation of the florigens and SUPPRESSOR OF OVEREXPRESSION OF CONSTANS1. Plant Physiol 162:1706–1719

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Riboni M, Robustelli Test A, Galbiati M, Tonelli C, Conti L (2014) Environmental stress and flowering time: the photoperiodic connection. Plant Signal Behav 9:e29036

    Article  PubMed  PubMed Central  Google Scholar 

  • Riboni M, Robustelli Test A, Galbiati M, Tonelli C, Conti L (2016) ABA-dependent control of GIGANTEA signalling enables drought escape via up-regulation of FLOWERING LOCUS T in Arabidopsis thaliana. J Exp Bot 67:6309–6322

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Robson F, Okamoto H, Patrick E, Harris SR, Wasternack C, Brearley C, Turner JG (2010) Jasmonate and phytochrome A signaling in Arabidopsis wound and shade responses are integrated through JAZ1 stability. Plant Cell 22:1143–1160

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sakamoto T, Kobayashi M, Itoh H, Tagiri A, Kayano T, Tanaka H, Iwahori S, Matsuoka M (2001) Expression of a gibberellin 2-oxidase gene around the shoot apex is related to phase transition in rice. Plant Physiol 125:1508–1516

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Samach A, Wigge PA (2005) Ambient temperature perception in plants. Curr Opin Plant Biol 8:483–486

    Article  PubMed  Google Scholar 

  • Samach A, Onouchi H, Gold SE, Ditta GS, Schwarz-Sommer Z, Yanofsky MF, Coupland G (2000) Distinct roles of CONSTANS target genes in reproductive development of Arabidopsis. Science 288:1613–1616

    Article  CAS  PubMed  Google Scholar 

  • Santner A, Santner A, Estelle M, Estelle M (2009) Recent advances and emerging trends in plant hormone signalling. Nature 459:1071

    Article  CAS  PubMed  Google Scholar 

  • Sarid-Krebs L, Panigrahi KC, Fornara F, Takahashi Y, Hayama R, Jang S, Tilmes V, Valverde F, Coupland G (2015) Phosphorylation of CONSTANS and its COP1-dependent degradation during photoperiodic flowering of Arabidopsis. Plant J 84:451–463

    Article  CAS  PubMed  Google Scholar 

  • Sawa M, Kay SA (2011) Gigantea directly activates Flowering locus T in Arabidopsis thaliana. Proc Natl Acad Sci U S A 108:11698–11703

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sawa M, Nusinow DA, Kay SA, Imaizumi T (2007) FKF1 and GIGANTEA complex formation is required for day-length measurement in Arabidopsis. Science 318:261–265

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Schwabe WW, Al-Doori AH (1973) Analysis of juvenile-like condition affecting flowering in the black currant (Ribes nigrum). J Exp Bot 24:969–981

    Article  CAS  Google Scholar 

  • Seo JS, Koo YJ, Jung C, Yeu SY, Song JT, Kim JK, Choi Y, Lee JS, Do Choi Y (2013) Identification of a novel jasmonate-responsive element in the AtJMT promoter and its binding protein for AtJMT repression. PLoS One 8:e55482

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shim JS, Kubota A, Imaizumi T (2017) Circadian clock and photoperiodic flowering in Arabidopsis: CONSTANS is a hub for signal integration. Plant Physiol 173:5–15

    Article  CAS  PubMed  Google Scholar 

  • Shu K, Chen Q, Wu Y, Liu R, Zhang H, Wang S, Tang S, Yang W, Xie Q (2016) ABSCISIC ACID-INSENSITIVE 4 negatively regulates flowering through directly promoting Arabidopsis FLOWERING LOCUS C transcription. J Exp Bot 67:195–205

    Google Scholar 

  • Simpson GG (2004) The autonomous pathway: epigenetic and post-transcriptional gene regulation in the control of Arabidopsis flowering time. Curr Opin Plant Biol 7:570–574

    Article  CAS  PubMed  Google Scholar 

  • Song YH, Lee I, Lee SY, Imaizumi T, Hong JC (2012a) CONSTANS and ASYMMETRIC LEAVES 1 complex is involved in the induction of FLOWERING LOCUS T in photoperiodic flowering in Arabidopsis. Plant J 69:332–342

    Article  CAS  PubMed  Google Scholar 

  • Song YH, Smith RW, To BJ, Millar AJ, Imaizumi T (2012b) FKF1 conveys timing information for CONSTANS stabilization in photoperiodic flowering. Science 336:1045–1049

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Song YH, Estrada DA, Johnson RS, Kim SK, Lee SY, MacCoss MJ, Imaizumi T (2014) Distinct roles of FKF1, GIGANTEA, and ZEITLUPE proteins in the regulation of CONSTANS stability in Arabidopsis photoperiodic flowering. Proc Natl Acad Sci U S A 111:17672–17677

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Suge H (1972) Inhibition of photoperiodic floral induction in Pharbitis nil by ethylene. Plant Cell Physiol 13:1031–1038

    CAS  Google Scholar 

  • Sullivan JA, Deng XW (2003) From seed to seed: the role of photoreceptors in Arabidopsis development. Dev Biol 260:289–297

    Article  CAS  PubMed  Google Scholar 

  • Takada S, Goto K (2003) TERMINAL FLOWER2, an Arabidopsis homolog of HETEROCHROMATIN PROTEIN1, counteracts the activation of FLOWERING LOCUS T by CONSTANS in the vascular tissues of leaves to regulate flowering time. Plant Cell 15:2856–2865

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Takeno K, Tsuruta T, Maeda T (1996) Gibberellins are not essential for photoperiodic flower induction of Pharbitis nil. Physiol Plant 97:397–401

    Article  CAS  Google Scholar 

  • Thines B, Katsir L, Melotto M, Niu Y, Mandaokar A, Liu G, Nomura K, He SY, Howe GA, Browse J (2007) JAZ repressor proteins are targets of the SCF(COI1) complex during jasmonate signalling. Nature 448:661–665

    Article  CAS  PubMed  Google Scholar 

  • Tiwari SB, Shen Y, Chang HC, Hou Y, Harris A, Ma SF, Mcpartland M, Hymus GJ, Adam L, Marion C, Belachew A, Repetti PP, Reuber TL, Ratcliffe OJ (2010) The flowering time regulator CONSTANS is recruited to the FLOWERING LOCUS T promoter via a unique cis-element. New Phytol 187:57–66

    Article  CAS  PubMed  Google Scholar 

  • Trusov Y, Botella JR (2006) Delayed flowering in pineapples (Ananas comosus (L.) Merr.) caused by co-suppression of the ACACS2 gene. Acta Hort 702

    Google Scholar 

  • Uno Y, Furihata T, Abe H, Yoshida R, Shinozaki K, Yamaguchi-Shinozaki K (2000) Arabidopsis basic leucine zipper transcription factors involved in an abscisic acid dependent signal transduction pathway under drought and high-salinity conditions. Proc Natl Acad Sci U S A 97:11632–11637

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Valverde F (2011) Constans and the evolutionary origin of photoperiodic timing of flowering. J Exp Bot 62:2453–2463

    Article  CAS  PubMed  Google Scholar 

  • Valverde F, Mouradov A, Soppe W, Ravenscroft D, Samach A, Coupland G (2004) Photoreceptor regulation of CONSTANS protein in photoperiodic flowering. Science 303:1003–1006

    Article  CAS  PubMed  Google Scholar 

  • Vriezen WH, Achard P, Harberd NP, Van Der Straeten D (2004) Ethylene-mediated enhancement of apical hook formation in etiolated Arabidopsis thaliana seedlings is gibberellin dependent. Plant J 37:505–516

    Article  CAS  PubMed  Google Scholar 

  • Wada N, Shinozaki M, Iwamura H (1994) Flower induction by polyamines and related compounds in seedlings of Morning Glory (Pharbitis nil cv. Kidachi). Plant Cell Physiol 35:469–472

    CAS  Google Scholar 

  • Wang F, Zhu D, Huang X, Li S, Gong Y, Yao Q, Fu X, Fan LM, Deng XW (2009) Biochemical insights on degradation of Arabidopsis DELLA proteins gained from a cell-free assay system. Plant Cell 21:2378–2390

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang Y, Li L, Ye T, Lu Y, Chen X, Wu Y (2013) The inhibitory effect of ABA on floral transition is mediated by ABI5 in Arabidopsis. J Exp Bot 64:675–684

    Google Scholar 

  • Wang CQ, Guthrie C, Sarmast MK, Dehesh K (2014) BBX19 interacts with CONSTANS to repress FLOWERING LOCUS T transcription, defining a flowering time checkpoint in Arabidopsis. Plant Cell 26:3589–3602

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang H, Pan J, Li Y, Lou D, Hu Y, Yu D (2016) The DELLA-CONSTANS transcription factor cascade integrates gibberellic acid and photoperiod signaling to regulate flowering. Plant Physiol 172:479–488

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wareing PF, El-Antably HMM (1970) The possible role of endogenous growth inhibitors in the control of flowering. In: Bernier G (ed) Cellular and molecular aspects of floral induction. Longman, London, pp 285–303

    Google Scholar 

  • Weiler EWJ, Albrecht T, Groth B, Xia ZQ, Luxem MC, Liss H, Andert L, Spengler P (1993) Evidence for the involvement of jasmonates and their octadecanoid preursors in the tendril coiling response of Bryonia dioica. Phytochemistry 32:591–600

    Article  CAS  Google Scholar 

  • Wenkel S, Turck F, Singer K, Gissot L, Le Gourrierec J, Samach A, Coupland G (2006) CONSTANS and the CCAAT box binding complex share a functionally important domain and interact to regulate flowering of Arabidopsis. Plant Cell 18:2971–2984

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wijayanti L, Kobayashi M, Fujioka S, Yoshizawa K, Samurai A (1995) Identification and quantification of abscisic acid, indole-3-acetic acid and gibberellins in phloem exudates of Pharbitis nil. Biosci Biochem 59:1533–1535

    Article  CAS  Google Scholar 

  • Wijayanti L, Fujioka S, Kobayashi M, Sakurai A (1997) Involvement of abscisic acid and indole-3-acetic acid in the flowering of Pharbitis nil. J Plant Growth Regul 16:115–119

    Article  CAS  Google Scholar 

  • Wilkie JD, Sedgely M, Olesen T (2008) Regulation of floral initiation in horticultural trees. J Exp Bot 59:3215–3228

    Article  CAS  PubMed  Google Scholar 

  • Wilmowicz E, Kęsy J, Kopcewicz J (2008) Ethylene and ABA interactions in the regulation of flower induction in Pharbitis nil. J Plant Physiol 165:1917–1928

    Article  CAS  PubMed  Google Scholar 

  • Wilmowicz E, Frankowski K, Glazińska P, Kęsy J, Kopcewicz J (2011a) Involvement of ABA in flower induction of Pharbitis nil. Acta Soc Bot Pol 80:21–26

    Article  CAS  Google Scholar 

  • Wilmowicz E, Frankowski K, Glazińska P, Kęsy J, Wojciechowski W, Kopcewicz J (2011b) Cross talk between phytohormones in the regulation of flower induction in Pharbitis nil. Biol Plant 55:757

    Article  CAS  Google Scholar 

  • Wilmowicz E, Frankowski K, Kęsy J, Glazińska P, Wojciechowski W, Kućko A, Kopcewicz J (2013) The role of PnACO1 in light- and IAA-regulated flower inhibition in Pharbitis nil. Acta Physiol Plant 35:801–810

    Article  CAS  Google Scholar 

  • Wilmowicz E, Frankowski K, Kućko A, Kęsy J, Kopcewicz J (2014) Involvement of the IAA-regulated ACC oxidase gene PnACO3 in Pharbitis nil flower inhibition. Acta Biol Crac Ser Bot 56:90–96

    CAS  Google Scholar 

  • Wilson RN, Heckman JW, Somerville CR (1992) Gibberellin is required for flowering in Arabidopsis thaliana under short days. Plant Physiol 100:403–408

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wolters H, Jürgens G (2009) Survival of the flexible: hormonal growth control and adaptation in plant development. Nat Rev Genet 10:305

    Article  CAS  PubMed  Google Scholar 

  • Wu K, Li L, Gage DA, Zeevaart JAD (1996) Molecular cloning and photoperiod-regulated expression of gibberellin 20-oxidase from the long-day plant spinach. Plant Physiol 110:547–554

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Xu Y, Gage DA, Zeevaart JAD (1997) Gibberellins and stem growth in Arabidopsis thaliana: effects of photoperiod on expression of the GA4 and GA5 loci. Plant Physiol 114:1471–1476

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Xu F, Li T, Xu PB, Li L, Du SS, Lian HL, Yang HQ (2016) DELLA proteins physically interact with CONSTANS to regulate flowering under long days in Arabidopsis. FEBS Lett 590:541–549

    Article  CAS  PubMed  Google Scholar 

  • Yamaguchi A, Kobayashi Y, Goto K, Abe M, Araki T (2005) Twin sister of FT (TSF) acts as a floral pathway integrator redundantly with FT. Plant Cell Physiol 46:1175–1189

    Article  CAS  PubMed  Google Scholar 

  • Yang YY, Yamaguchi I, Takeno-Wada K, Suzuki Y, Murofushi N (1995) Metabolism and translocation of gibberellins in seedlings of Pharbitis nil. (I) Effect of photoperiod on stem elongation and endogenous gibberellins in cotyledons and their phloem exudates. Plant Cell Physiol 2:221–227

    Article  Google Scholar 

  • Yoshida T, Fujita Y, Maruyama K, Mogami J, Todaka D, Shinozaki K, Yamaguchi-Shinozaki K (2014) Four Arabidopsis AREB/ABF transcription factors function predominantly in gene expression downstream of SnRK2 kinases in abscisic acid signalling in response to osmotic stress. Plant Cell Environ 38:35–49

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Yu S, Galvão VC, Zhang YC, Horrer D, Zhang TQ, Hao YH, Feng YQ, Wang S, Schmid M, Wang JW (2012) Gibberellin regulates the Arabidopsis floral transition through miR156-targeted SQUAMOSA promoter binding-like transcription factors. Plant Cell 24:3320–3332

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zeevaart JAD, Talon M (1992) Gibberellins and mutants in Arabidopsis thaliana. In: Karstens CM, Loon LC, van Vreugdenhil D (eds) Plant growth regulator. Kluwer, Amsterdam, pp 34–42

    Chapter  Google Scholar 

  • Zhai Q, Zhang X, Wu F, Feng H, Deng L, Xu L, Zhang M, Wang Q, Li C (2015) Transcriptional mechanism of jasmonate receptor COI1-mediated delay of flowering time in Arabidopsis. Plant Cell 27:2814–2828

    CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang X, Garreton V, Chua NH (2009) The AIP2 E3 ligase acts as a novel negative regulator of ABA signaling by promoting ABI3 degradation. Genes Dev 276:1532–1543

    Google Scholar 

  • Zienkiewicz A, Tretyn A, Kopcewicz J (2004) Molecular and physiological bases of circadian clock in plants. Post Biol Kom 31:607–623

    CAS  Google Scholar 

  • Zienkiewicz A, Kozłowska E, Kopcewicz J (2006) Light regulation of flowering. Post Biol Kom 33:493–507

    CAS  Google Scholar 

  • Zuo Z, Liu H, Liu B, Liu X, Lin C (2011) Blue light-dependent interaction of CRY2 with SPA1 regulates COP1 activity and floral initiation in Arabidopsis. Curr Biol 21:841–847

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Emilia Wilmowicz .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Wilmowicz, E., Marciniak, K., Kopcewicz, J. (2021). Hormones in Photoperiodic Flower Induction. In: Gupta, D.K., Corpas, F.J. (eds) Hormones and Plant Response. Plant in Challenging Environments, vol 2. Springer, Cham. https://doi.org/10.1007/978-3-030-77477-6_6

Download citation

Publish with us

Policies and ethics